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Abstract: Epidemic modeling is an important theoretical approach for investigating the transmission dynamics 

of infectious diseases. It formulates mathematical models to describe the mechanisms of disease transmissions 

and dynamics of infectious agents and then informs the health control practitioners the likely impact of the 

control methods. In this paper we investigate the spread of an infectious disease in a human population 

structured into n-patches. The population is initially fully susceptible until an infectious individual is introduced 

in one of the patches. The interaction between patches is dominated by movement of individuals between 

patches and also the migration of individuals and therefore any infection occurring in one patch will have a 

force of infection on the susceptible individuals on the other patches. We build a mathematical model for a 

metapopulation consisting of 𝑛 patches. The patches are connected by movement of individuals. For 𝑛 = 2, we 

obtained the basic reproduction number and obtained the condition under which the disease free equilibrium 

will be asymptotically stable. We further described in terms of the model parameters how control methods could 

be applied to ensure that the epidemic does not occur and validated the results by the use of the numerical 

simulation. We showed that the global basic reproduction number cannot exceed one unless the local basic 

reproduction number is greater than one in at least one of the sub-populations. We further showed that the 

control of the epidemic in this case can be achieved by applying a control method that decreases the 

transmission parameters in patches where the local basic reproduction number is greater than one. 

Keywords: Metapopulation, Basic reproduction number, Epidemic Control, Target reproduction number, 

migration, Lipchitz continuity. 
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List of Symbols and Notations. 

r Birth rate 

𝑅0 Global Basic Reproduction Number 

ℛ𝑖  Local reproduction number for patch i. 

𝐾 Next generation matrix. 

𝐾  Alternative next generation matrix. 

𝐾  Target matrix  

𝐾   Target matrix for alternative next generation matrix. 

𝐾𝑐  Controlled next generation matrix 

𝒯 Target reproduction number 

 𝜔 Target set for disease control 

𝕋 Type reproduction number 

𝜇 per-capita death rate 

𝛽 Transmission probability 

𝛾 Recovery rate 

𝜓 Rateof migration of susceptible individuals  

𝜙 Rateof migration of infectious individuals 

𝜉 Rateof migration of recovered individuals 
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I. Introduction 
Epidemic modeling is a tool used to study the mechanism through which communicable diseases 

spreads, predict the future course of the epidemic and identify possible strategies that can be employed to 

prevent the disease from spreading further. The threshold for many epidemic models is the basic reproduction 

number which is defined as the average number of secondary infections resulting from an index case in an 

otherwise susceptible population [2]. For many infectious diseases, an infectious agent will invade the 

population if and only if the basic reproduction number (𝑅0) is greater than one and therefore in many 

occasions, the basic reproduction number is usually considered as the threshold quantity that determines whether 

an infectious disease will invade the population or not. Despite the extensive vaccination programs, improved 

sanitation and use of antibiotics, infectious diseases continue to be a major cause of morbidity and mortality 

throughout the world. In addition, pathogens adapt and evolve so that new infectious diseases continue to 

emerge [7]. Drug and antibiotic resistance has also become a serious issue in the control of several 

communicable diseases such as Malaria, Tuberculosis, Dengue and Gonorrhea. In recent years, the emergence 

of new infectious agents known as prions has caused major problem in public health. The invasion of humans 

and animals to new ecosystems, global warming and increased international travel continue to provide 

opportunities for infectious diseases to spread to new regions [9]. In future therefore, there will be need to have 

sound quantitative methods to guide disease control measures. 

In this paper, we consider the transmission of an infectious disease in a metapopulation structured into 

n - patches. Many infectious disease models assume that there is homogeneous mixing of individuals in the 

population which means that each individual in the population has the same probability of contacting any other 

individual in the population. However, in real populations, individuals occupy spatially structured population 

patches that are connected by human travel. We therefore sub-divide the population into spatially separated 

patches. Each of these patch will have its own dynamics which will be affected by migration of individuals. 

Such a distinct group of population in a given patch is known as a metapopulation. In a metapopulation setup, a 

patch will be termed infected if there exist at least one infected individual in that patch otherwise the patch is 

uninfected. 

The study conducted by [1] was designed to study the influence of the travel rates with respect to the 

transmission of Influenza in a metapopulation setup. The results of the model analysis indicated that in the case 

of isolated patches, the disease approached disease free equilibrium in one patch and an endemic equilibrium in 

the other. On introducing the movement of individuals at a low rate, the disease status approached endemic 

equilibrium in both patches however, when the travel rates were increased further, the disease status approached 

disease free equilibrium in both patches. The study carried out by [5] to investigate the impact of human 

mobility on HIV transmission in Kenya using mobile phone data to track movement of individuals showed that 

movement of individual had little effect on HIV transmission in Kenya. However, the important consequence of 

movement of individuals on the transmission of HIV was the transmission of HIV from high prevalence to low 

prevalence areas. The authors also showed that mobility of individuals slightly increased HIV incidences in 

areas with initially low prevalence and decreased HIV incidences in areas with initially high prevalence. [6] 

investigated the effect of migration on the persistence of the infectious agent in a metapopulation setup. Their 

study revealed that a higher migration rate would lead to the increase in the probability of persistence of 

infectious agent in the population. [3] on the other hand used an SIRS metapopulation model with vital 

dynamics and described a novel approach of investigating the effect of various control methods. The methods 

described by the author made use of various alternative next generation matrices to investigate the effect of 

various control measures. Each next generation matrix was designed for a particular control method. Using this 

technique, the author showed the dependence of the transmission dynamics on the targeted parameters. 

In this paper, we use an SIR model with demographic factors to investigate the transmission dynamics 

of a communicable disease in a metapopulation structured into n - patches and connected by migration of 

individuals. Interaction between individuals will involve both intra-patch interactions and inter-patch 

interactions. We assume that there is homogeneous mixing of individuals within each patch. However inter-

patch interactions will be modeled by two methods depending on the frequency of movement of individuals 

between these patches. When the interaction between the two patches is dominated by frequent movement of 

individuals such as people traveling to and from work, then the patches will be assumed to be interacting in a 

random manner. In this case each infection occurring in one patch will have a force of infection on the other 

connected patch. We define the force of infection as per capita rate at which the disease is transmitted from the 

infected individuals to the susceptible individuals. If on the other hand the interaction between the two patches 

take the form of migration, then an individual will move to the host patch with the disease status acquired in the 

home patch and then participate in the disease transmission in the host patch[8]. Previously these two cases have 

been studied separately but are likely to occur concurrently in real world. We therefore build a metapopulation 

model that incorporate both patch coupling and migration of individuals. We model a non-fatal disease with per-

capita transmission rate 𝛽, recovery rate 𝛾 in a population with constant birth rate r and per capita death rate 𝜇 
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thus the basic framework is the SIR model with demography and is of the form;  
𝑑𝑆

𝑑𝑡
= 𝑟 − 𝛽𝑆𝐼 − 𝜇𝑆

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − (𝛾 + 𝜇)𝐼

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − 𝜇𝑅

  (1) 

The model is a normalised system in which all the variables are proportions of the total population thus  

𝑆 + 𝐼 + 𝑅 = 1 (2) 

The force of infection for the above SIR model is given by 𝛽𝑆𝐼. For a metapopulation having n-

patches, the force of infection on patch i will be affected by the sum of the infection situations on the patches 

that are connected to patch i. Thus the force of infection on patch i is given by  𝑛
𝑗 =1 𝛽𝑖𝑗 𝑆𝑖𝐼𝑗  where 𝛽𝑖𝑗  is the per 

capita rate of transmission of the disease for a contact in patch j between a susceptible individual from patch i 

and an infectious individual in patch j. The per capita migration rates of susceptible, infectious and the 

recovered individuals will be denoted by 𝜓,    𝜙 and 𝜉 respectively. The rate of immigration from patch j to 

patch i is denoted by 𝜓𝑗𝑖  while the emigration rate from patch i to patch j will be denoted by 𝜓𝑖𝑗 . In general the 

subscript ij will denote migration from patch i to patch j while ji will denote migration to patch i from patch j. 

The SIR model for the system becomes;  
𝑑𝑆𝑖

𝑑𝑡
= 𝑟 − 𝜇𝑆𝑖 −  𝑛

𝑗=1 𝛽𝑖𝑗 𝑆𝑖𝐼𝑗 +  𝑛
𝑗=1,𝑗≠𝑖 𝜓𝑗𝑖 𝑆𝑗 −  𝑛

𝑗 =1,𝑗≠𝑖 𝜓𝑖𝑗 𝑆𝑖

𝑑𝐼𝑖

𝑑𝑡
=  𝑛

𝑗 =1 𝛽𝑗𝑖 𝑆𝑗 𝐼𝑖 − (𝜇 + 𝛾𝑖)𝐼𝑖 +  𝑛
𝑗=1,𝑗≠𝑖 𝜙𝑗𝑖 𝐼𝑗 −  𝑛

𝑗=1,𝑗≠𝑖 𝜙𝑖𝑗 𝐼𝑖
𝑑𝑅𝑖

𝑑𝑡
= 𝛾𝑖𝐼𝑖 − 𝜇𝑅𝑖 +  𝑛

𝑗 =1,𝑗≠𝑖 𝜉𝑗𝑖 𝑅𝑗 −  𝑛
𝑗=1,𝑗≠𝑖 𝜉𝑖𝑗 𝑅𝑖

 (3) 

For 𝑛 = 2, the disease transmission dynamics in a metapopulation may be represented by Figure 1 below. 

 

 

 
 

Figure1: Infectious Disease Transmission Dynamics in a Two Patch Metapopulation Model with Demographic 

Factors and Migration 

The mathematical model for the system becomes;  
𝑑𝑆1

𝑑𝑡
= −𝛽11𝑆1𝐼1 − 𝛽12𝑆1𝐼2 − 𝜓12𝑆1 + 𝜓21𝑆2 + 𝑟 − 𝜇𝑆1

𝑑𝑆2

𝑑𝑡
= −𝛽21𝑆2𝐼1 − 𝛽22𝑆2𝐼2 + 𝜓12𝑆1 − 𝜓21𝑆2 + 𝑟 − 𝜇𝑆2

𝑑𝐼1

𝑑𝑡
= 𝛽11𝑆1𝐼1 + 𝛽21𝑆2𝐼1 − 𝜇𝐼1 − 𝛾1𝐼1 − 𝜙12𝐼1 + 𝜙21𝐼2

𝑑𝐼2

𝑑𝑡
= 𝛽12𝑆1𝐼2 + 𝛽22𝑆2𝐼2 − 𝜇𝐼2 − 𝛾2𝐼2 + 𝜙12𝐼1 − 𝜙21𝐼2

𝑑𝑅1

𝑑𝑡
= 𝛾1𝐼1 − 𝜇𝑅1 − 𝜉12𝑅1 + 𝜉21𝑅2

𝑑𝑅2

𝑑𝑡
= 𝛾2𝐼2 − 𝜇𝑅2 + 𝜉12𝑅1 − 𝜉21𝑅2

 (4) 

 

II. Basic Reproduction Number 
The basic reproduction number (𝑅0) is defined as the average number of secondary infections resulting 

from the index case in a wholly susceptible population. In emerging epidemics, this number is usually useful as 

a measure of the strength of the control measure needed to break the epidemic. [4] identified the basic 

reproduction number as the spectral radius of the next generation matrix. To compute the next generation 

matrix, one first identifies the infected subsystem of the model. These are the set of equations that describe the 

new infections and the changes of state of the system. The infected sub system is then linearlised about the 

disease free equilibrium forming the Jacobian matrix (J). The Jacobian matrix is then decomposed as 𝐽 = 𝑇 − 𝑉. 

Where T describes the production of new infections while V describes the changes in state and is a non-singular 

M-matrix. The next generation matrix (K) is then defined as 𝐾 = 𝑇𝑉−1. However [3] showed that there exist 
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different splitting of J that would satisfy the same properties of T and V thus there exist an alternative next 

generation matrix (𝐾1).  

For the metapopulation system 4, the infected subsystem is given by;  
𝑋1 = 𝛽11𝑆1𝐼1 + 𝛽21𝑆2𝐼1 − 𝜇𝐼1 − 𝛾1𝐼1 − 𝜙12𝐼1 + 𝜙21𝐼2

𝑋2 = 𝛽12𝑆1𝐼2 + 𝛽22𝑆2𝐼2 − 𝜇𝐼2 − 𝛾2𝐼2 + 𝜙12𝐼1 − 𝜙21𝐼2
 (5) 

Linearising about the DFE we get the Jacobian matrix 𝐽 as follows;  

𝐽 =  
𝛽11 + 𝛽21 − (𝜇 + 𝛾1 + 𝜙12) 𝜙21

𝜙12 𝛽12 + 𝛽22 − (𝜇 + 𝛾2 + 𝜙21)
 
 (6) 

To compute the NGM, we decompose the matrix 𝐽 into 𝑇 − 𝑉 

where 𝑇 =  
𝛽11 + 𝛽21 𝜙21

𝜙12 𝛽12 + 𝛽22
  and 

𝑉 =  
𝜇 + 𝛾1 + 𝜙12 0
0 𝜇 + 𝛾2 + 𝜙21

  

we note that 𝑉 is a non-singular M-matrix and its inverse is given by 

𝑉−1 =

 

 

1

𝜇 + 𝛾1 + 𝜙12

0

0
1

𝜇 + 𝛾2 + 𝜙21 

  

 

The NGM 𝐾 = 𝑇𝑉−1 becomes  

𝐾 = 𝑇𝑉−1 =

 

 

𝛽11 +𝛽21

𝜇+𝛾1+𝜙12

𝜙21

𝜇+𝛾2+𝜙21

𝜙12

𝜇+𝛾1+𝜙12

𝛽12 +𝛽22

𝜇+𝛾2+𝜙21 

  (7) 

Computing the spectral radius of this matrix, we get the basic reproduction number 𝑅0. Thus  

𝑅0 = 𝜌(𝑇𝑉−1)

𝑅0 =
1

2
 

𝛽11 +𝛽21

𝜇+𝛾1+𝜙12
+

𝛽12 +𝛽22

𝜇+𝛾2+𝜙21
 +

1

2
  

𝛽11 +𝛽21

𝜇+𝛾1+𝜙12
−

𝛽12 +𝛽22

𝜇+𝛾2+𝜙21
 

2

+  
4𝜙12𝜙21

(𝜇+𝛾1+𝜙12 )(𝜇+𝛾2+𝜙21 )
 

 (8) 

If 𝑅0 < 1 then each infectious individual will on average infect less than one other individual during 

the entire period that he/she remains infectious and the epidemic will die out. In this case no control measures 

are necessary to contain the epidemic. However if 𝑅0 > 1 then each infectious individual will on average infect 

more than one other individual during the period that he/she remains infectious thus the disease will invade the 

population. In this case control measures need to be applied to contain the epidemic. Since the control measures 

must target to reduce the basic reproduction number to less than unity, then the strategies should target the 

transmission rates (𝛽11 , 𝛽12 , 𝛽21 , 𝛽22), the migration rates (𝜙12 , 𝜙21) of the infectious individuals or the 

combination of the two. From equation 8 we note that changing the values of 𝛽11 , 𝛽12 , 𝛽21 , 𝛽22 , 𝜙12     𝑎𝑛𝑑    𝜙21  

will change the value of the basic reproduction number 𝑅0 thus various control strategies are available for the 

health control practitioners. These strategies include but not limited to;  

1.  Control strategy that targets transmission rates in one or both patches.  

2.  Control strategy that targets the migration rates.  

3.  Combination of the above two strategies.  

 

2.1  Target Reproduction Number 

In homogeneous populations, the basic reproduction number measures the strength of the control 

measures necessary to break the epidemic. A large value of 𝑅0will therefore indicate a disease which is difficult 

to control. However, in heterogeneous populations where individuals are divided into different host types, the 

growth or the decay of the epidemic is given in terms of the generation process. The next generation matrix 

gives the transmission of the infection from one generation to the next [11]. The entry 𝑘𝑖𝑗  of the next generation 

matrix usually gives the number of expected cases that an infectious individual of type j causes among the 

susceptible individuals of type i. If the applied control strategy targets all individuals in the population 

regardless of their epidemiological type, then the basic reproduction number will measure the strength of the 

control measure required to eliminate the infection from the specified population provided that it is possible to 

change all the entries of the next generation matrix. However, limitations may arise when employing the control 
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measure because some of the entries of the next generation matrix may not accommodate change. In such a 

case, a control strategy may be applied that targets only a specified host type. Such a control measure would 

imply changing only the elements of a given row or column of the next generation matrix [10]. A different 

strategy may be applied that only affects the interaction between hosts without affecting the disease status of the 

host but only the contacts between them [11]. The reproduction numbers associated with these strategies are 

known as the type reproduction (𝕋) and target reproduction (𝒯) numbers respectively and gives the measure of 

the strength of the control measure necessary to break the epidemic when the specified method is applied. We 

now give a brief overview of the design of a control method as outlined by [3]. Given the next generation matrix 

𝐾, one begins by identifying the entries containing the targeted parameters forming a set 𝜔. This is the set of 

entries in the next generation matrix that are subject to change when applying the specified control method. The 

target matrix 𝐾  is then defined as; 

𝐾 =  
𝑘𝑖𝑗 (𝑖, 𝑗) ∈ 𝜔

0 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒
  

The control of the epidemic by targeting the identified parameters is possible if and only if 𝜌(𝐾 −
𝐾 ) < 1. This condition is termed the controllability condition. Provided that the controllability condition holds, 

then the target reproduction number (𝒯𝜔 ) is defined by 𝒯𝜔 = 𝜌(𝐾 ⋅ (𝐼 − 𝐾 + 𝐾 )−1) where 𝐼 is a unit matrix. If 

the basic reproduction number 𝑅0 > 1 and the controllability condition holds then 𝒯𝜔 > 1 and the entry 𝑘𝑖𝑗 , 

(𝑖, 𝑗) ∈ 𝜔 of the next generation matrix can be replaced by 
𝑘𝑖𝑗

𝒯𝜔
 to form a new next generation matrix with 

spectral radius less than unity. If on the other hand 𝜌(𝐾 − 𝐾 ) > 1 then the control of the epidemic by targeting 

the set 𝜔 is not possible and the control measure must be extended to other parameters. 

 

III. Design of the Control Methods for a Two-Patch Metapopulation 
In this section we discuss the design of the control methods targeting various parameters and 

demonstrate how these control strategies could be implemented to bring the epidemic to an end. 

 

3.1  Strategy I: Control strategy that targets transmission rates in both patches. 

We consider in this case a control method that target the transmission parameters in both patches i.e. 

𝛽11 , 𝛽12 , 𝛽21  and 𝛽22 . We note that these parameters appear in the elements 𝑘11  and 𝑘22  of the next generation 

matrix (7) thus the target set is given by 𝜔 = {(1,1), (2,2)} and the target matrix becomes  

𝐾 =

 

 
 

𝛽11 + 𝛽21

𝜇 + 𝛾1 + 𝜙12

0

0
𝛽12 + 𝛽22

𝜇 + 𝛾2 + 𝜙21 

 
 

 

 the controlability condition 𝜌(𝐾 − 𝐾 ) < 1 may therefore be stated as  

𝜌(𝐾 − 𝐾 ) = max
𝜆

  
−𝜆

𝜙21

𝜇 + 𝛾2 + 𝜙21

𝜙12

𝜇 + 𝛾1 + 𝜙12

−𝜆
  < 1 

 or  
𝜙12𝜙21

(𝜇 + 𝛾1 + 𝜙12 )(𝜇 + 𝛾2 + 𝜙21)
< 1 

 Since (𝜇 + 𝛾1 + 𝜙12)(𝜇 + 𝛾2 + 𝜙21) > 𝜙12𝜙21  then the controlability condition is satisfied and the target 

reproduction number (𝒯𝜔 ) is given by;  

𝒯𝜔 = 𝜌  𝐾   𝐼 − 𝐾 + 𝐾  
−1

  =
1

2
 𝐴 +  𝐵 + 4𝐶  

 where  

𝐴 =
(𝛽11 + 𝛽21 )(𝜇 + 𝛾2 + 𝜙21) + (𝛽12 + 𝛽22 )(𝜇 + 𝛾1 + 𝜙12)

(𝜇 + 𝛾1 + 𝜙12)(𝜇 + 𝛾2 + 𝜙21) − 𝜙12𝜙21

 

  

𝐵 =  
(𝛽11 + 𝛽21)(𝜇 + 𝛾2 + 𝜙21) − (𝛽12 + 𝛽22)(𝜇 + 𝛾1 + 𝜙12)

(𝜇 + 𝛾1 + 𝜙12)(𝜇 + 𝛾2 + 𝜙21) − 𝜙12𝜙21

 

2

 

 and  

𝐶 =
(𝛽11 + 𝛽21)(𝛽12 + 𝛽22)𝜙12𝜙21

[(𝜇 + 𝛾1 + 𝜙12)(𝜇 + 𝛾2 + 𝜙21) − 𝜙12𝜙21]2
 

since 𝑅0 > 1 then by [11, Theorem 2.1], 𝒯𝜔 > 1 and the disease will be eliminated if the transmission rate 𝛽𝑚  is 
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reduced to less than 
𝛽𝑚

𝒯𝜔
 where 𝛽𝑚 = {𝛽11 , 𝛽12 , 𝛽21 , 𝛽22 }. 

The results for this control strategy are illustrated using figure below, we use the initial conditions 

𝑆1(0) = 0.83, 𝑆2(0) = 0.90, 𝐼1(0) = 0.17, 𝐼2(0) = 0.10 and 𝑅1(0) = 𝑅2(0) = 0 and choose the parameter 

values 𝛽11 = 0.13, 𝛽12 = 0.10, 𝛽21 = 0.06, 𝛽22 = 0.14, 𝛾1 = 0.05, 𝛾2 = 0.04, 𝜙12 = 𝜓12 = 𝜉12 = 𝜉21 =
0.02, 𝜙21 = 0.03, 𝜓21 = 0.01,    𝜇 = 0.01429 per year and 𝑟 = 0.0384 per year. By using these values, the 

value of the basic reproduction number becomes 𝑅0 = 3.5694 while the controlability condition 𝜌(𝐾 − 𝐾 ) =
0.3497 which is less than unity and therefore the control of the transmission is possible using the specified 

control method. We compute the value of the target reproduction number and its value is 𝒯𝜔 = 4.7786. The 

disease is therefore controlled by reducing the transmission parameter 𝛽𝑚  to less than 
𝛽𝑚

𝒯𝜔
 where 𝑚 ∈

{11,12,21,22}. Figure 2 show the solution curves before the intervention strategies are applied.From this figure, 

we note that when the infectives are introduced into the population, an outbreak occurs in both patches. When 

the intervention strategies are introduced, the value of 𝑅0 reduces to 0.9971 and the epidemic does not occur. 

This is demonstrated by figure 3. From this figure we observe that the number of infectives decays as a function 

of time (red and black continuous curves) in both patches hence the epidemic is prevented.  

 

 
Figure  2: Solution curves for 𝑅0 = 3.5694 without control. The basic reproduction number is greater than one 

and there is an outbreak of the disease in both patches. 

 

 
Figure  3: Morbidity curves for 𝑅0 = 3.5694. After applying the control strategy the basic reproduction number 

reduces to 0.9971 which is less than one and the outbreak of the disease is prevented. 
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Figure 4 (a) show the propagation of the infectious population before the introduction of the 

intervention strategies. When the infectious individuals are introduced into the population with 𝑅0 > 1, the 

infectious population grows rapidly which indicates an outbreak of the disease in both patches affecting close to 

half of the entire population. Figure 4 (b) on the other hand show the transmission dynamics of the infectious 

disease after the introduction of intervention methods. We note that after the infectious individuals are 

introduced into the population, their population will decay as function of time for all time and the epidemic does 

not occur. This indicates that the intervention strategies introduced are adequate for the control of the epidemic 

in both patches.  

 

 
 

Figure 4: Transmission dynamics of the total infectious population proportion (a) before intervention strategies 

are applied and (b) after intervention strategies are applied 

 

3.2  Strategy II: Control Targets the Transmission and Migration Rates in One Patch 

Without losing the generality of the control strategy being applied, we assume that the control strategy 

targets the transmission and migration rates in the first patch. The target set is therefore given by 𝜔 =
{(1,1), (2,1)} while the target matrix is given by;  

𝐾 =

 

 
 

𝛽11 + 𝛽21

𝜇 + 𝛾1 + 𝜙12

0

𝜙12

𝜇 + 𝛾1 + 𝜙12

0
 

 
 

 

 and the controllability condition 𝜌 𝐾 − 𝐾  < 1 is given by;  

𝛽12 + 𝛽22

𝜇 + 𝛾2 + 𝜙21

< 1 

 If the controllability condition is valid then the target reproduction number 𝒯𝜔  is given by  

𝒯𝜔 = 𝜌  𝐾  𝐼 − 𝐾 + 𝐾  
−1

  

 where  

𝐼 − 𝐾 + 𝐾 =

 

  
 

1 −
𝜙21

(𝜇 + 𝛾2 + 𝜙21)

0
(𝜇 + 𝛾2 + 𝜙21) − (𝛽12 + 𝛽22)

𝜇 + 𝛾2 + 𝜙21  

  
 

 

 and  

𝐾  𝐼 − 𝐾 + 𝐾  
−1

=

 

  
 

𝛽11 + 𝛽21

𝜇 + 𝛾1 + 𝜙12

𝜙21(𝛽11 + 𝛽21)

(𝜇 + 𝛾1 + 𝜙12)(𝜇 + 𝛾2 + 𝜙21 − 𝛽12 − 𝛽22)

𝜙12

𝜇 + 𝛾1 + 𝜙12

𝜙12𝜙21

(𝜇 + 𝛾1 + 𝜙12)(𝜇 + 𝛾2 + 𝜙21 − 𝛽12 − 𝛽22) 

  
 

 

 which is a singular matrix thus  

𝒯𝜔 =
𝛽11 + 𝛽21

𝜇 + 𝛾1 + 𝜙12

+
𝜙12𝜙21

(𝜇 + 𝛾1 + 𝜙12)(𝜇 + 𝛾2 + 𝜙21 − 𝛽12 − 𝛽22)

=
(𝛽11 + 𝛽21)(𝜇 + 𝛾2 + 𝜙21 − 𝛽12 − 𝛽21 ) + 𝜙12𝜙21

(𝜇 + 𝛾2 + 𝜙21 − 𝛽12 − 𝛽21)(𝜇 + 𝛾1 + 𝜙12)
 

(b) (a) 
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Since 𝑅0 > 1 then theorem 2.1 [11] implies that 𝒯𝜔 > 1 thus the disease can be controlled by reducing the 

targeted entries of the next generation matrix. The next generation matrix 𝐾𝑐  of the controlled system is 

constructed such that 𝑘11
𝑐 =

𝑘11

𝒯𝜔
, 𝑘21

𝑐 =
𝑘21

𝒯𝜔
, 𝑘12

𝑐 = 𝑘12  and 𝑘22
𝑐 = 𝑘22 . We therefore determine the new 

parameters 𝛽11
𝑐 , 𝛽21

𝑐  and 𝜙12
𝑐  such that  

𝛽11 +𝛽21

(𝜇+𝛾1+𝜙12 )𝒯𝜔
=

𝛽11
𝑐 +𝛽21

𝑐

𝜇+𝛾1+𝜙12
𝑐  (9) 

 and  
𝜙12

(𝜇+𝛾1+𝜙12 )𝒯𝜔
=

𝜙12
𝑐

𝜇+𝛾1+𝜙12
𝑐  (10) 

 From 10 we have  

𝜇 + 𝛾1 + 𝜙12
𝑐 =

𝜙12
𝑐 𝒯𝜔 (𝜇+𝛾1+𝜙12 )

𝜙12
 (11) 

substituting equation 11 into 9 and simplifying, we get  

𝛽11
𝑐 + 𝛽21

𝑐 = (𝛽11 + 𝛽21)
𝜙12

𝑐

𝜙12

 

 From which  

𝛽11
𝑐 =

𝛽11𝜙12
𝑐

𝜙12

 

  

𝛽21
𝑐 =

𝛽21𝜙12
𝑐

𝜙12

 

 on transposing equation 10, we get  

𝜙12
𝑐 =

(𝜇 + 𝛾1)𝜙12

(𝜇 + 𝛾1 + 𝜙12)𝒯𝜔 − 𝜙12

 

We note that 
𝜙12

𝑐

𝜙12
=

𝜇+𝛾1

(𝜇+𝛾1)𝒯𝜔 +𝜙12 (𝒯𝜔 −1)
< 1 hence the epidemic control is achieved by decreasing the 

transmission rates in patch one and the travel outflow from patch one to patch two. 

We illustrate this control method by using the initial conditions 𝑆1(0) = 0.83, 𝑆2(0) = 0.90, 𝐼1(0) =
0.17, 𝐼2(0) = 0.10 and 𝑅1(0) = 𝑅2(0) = 0 and choose the parameter values 𝛽11 = 0.29, 𝛽12 = 0.15, 𝛽21 =
0.19, 𝛽22 = 0.15, 𝛾1 = 0.20, 𝛾2 = 0.22, 𝜙12 = 0.08, 𝜙21 = 0.09𝜓12 = 𝜉12 = 𝜉21 = 0.02, 𝜓21 = 0.01,    𝜇 =
0.01429 per year and 𝑟 = 0.0384 per year. By using these values, we get 𝑅0 = 1.8122 while the controllability 

criteria 𝜌(𝐾 − 𝐾 ) = 0.9568 < 1 hence the disease is controllable. The type reproduction number becomes 

𝒯𝜔 = 3.4809. Thus the critical migration and transmission parameters are given by 𝜙12
𝑐 = 0.0179, 𝛽11

𝑐 =
0.0648 and 𝛽21

𝑐 = 0.0425. Figure 5 show the solution curves for the transmission of the communicable disease 

before intervention strategies are applied. After applying the control strategy, the basic reproduction number is 

reduced to less than one and the epidemic is prevented as can be seen in figure 6. 

 

 
Figure 5: Morbidity curves for 𝑅0 = 1.8122 before the control method is applied. 
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Figure 6: Morbidity curves for 𝑅0 = 1.8122. After applying the control strategy the basic reproduction number 

reduces to less than one and the outbreak of the disease is prevented 

 

Figure 7 (a) show the propagation of the infectious population before the introduction of the intervention 

strategies. We observe that when the infectious individuals are introduced into the population with 𝑅0 > 1, there 

will be a sharp growth of the infectious population which indicates the outbreak of the disease in both 

populations. Figure 7 (b) show the transmission dynamics of the infectious population after the introduction of 

intervention methods. We note that after the infectious individuals are introduced into the population, their 

population will decay as function of time for all time and the epidemic does not occur. This indicates that the 

intervention strategies are adequate for the control of the epidemic in both the sub populations.  

 

 
 

Figure 7: Transmission dynamics of the total infectious population proportion (a) before intervention strategies 

are applied and (b) after intervention strategies are applied. 

 

3.3  Strategy III: Control Targets the Migration Rates 

We now investigate a control method that seeks to control the epidemic by changing the travel rates. 

Let 𝐶1 and 𝐶2 denote the sums of the first and second columns of the next generation matrix 7 and let ℛ1 and ℛ2 

denote the local reproduction numbers in patch 1 and patch 2 respectively, then 

 

𝐶1 =
𝛽11 + 𝛽21 + 𝜙12

𝜇 + 𝛾1 + 𝜙12

,       𝐶2 =
𝛽12 + 𝛽22 + 𝜙21

𝜇 + 𝛾2 + 𝜙21

 

 and  

ℛ1 =
𝛽11 + 𝛽21

𝜇 + 𝛾1

,           ℛ2 =
𝛽12 + 𝛽22

𝜇 + 𝛾2

 

A standard result from the theory of matrices is that the spectral radius of a non-negative square matrix is 

bounded below and above by the minimum and the maximum of the column sums respectively [12]. 

(a) (b) 
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If 𝛽11 + 𝛽21 < 𝜇 + 𝛾1 then 
𝛽11 +𝛽21

𝜇+𝛾1
< 1 and  

lim
𝜙12→∞

 
𝛽11 + 𝛽21 + 𝜙12

𝜇 + 𝛾1 + 𝜙12

 = 1. 

 Thus 𝐶1 =
𝛽11 +𝛽21 +𝜙12

𝜇+𝛾1+𝜙12
 is an increasing function of 𝜙12  and  

ℛ1 =
𝛽11 + 𝛽21

𝜇 + 𝛾1

<
𝛽11 + 𝛽21 + 𝜙12

𝜇 + 𝛾1 + 𝜙12

< 1 

 If on the other hand 𝛽11 + 𝛽21 > 𝜇 + 𝛾1 then 
𝛽11 +𝛽21

𝜇+𝛾1
> 1 and  

 

lim
𝜙12→∞

 
𝛽11 + 𝛽21 + 𝜙12

𝜇 + 𝛾1 + 𝜙12

 = 1 

 Thus 𝐶1 =
𝛽11 +𝛽21 +𝜙12

𝜇+𝛾1+𝜙12
 is a decreasing function of 𝜙12  and 

 

1 <
𝛽11 + 𝛽21 + 𝜙12

𝜇 + 𝛾1 + 𝜙12

<
𝛽11 + 𝛽21

𝜇 + 𝛾1

= ℛ1 

 Similarly if 𝛽12 + 𝛽22 > 𝜇 + 𝛾2 then 
𝛽12 +𝛽22

𝜇+𝛾2
> 1 and  

ℛ2 =
𝛽12 + 𝛽22

𝜇 + 𝛾2

<
𝛽12 + 𝛽22 + 𝜙21

𝜇 + 𝛾2 + 𝜙21

< 1 

 and when 𝛽12 + 𝛽22 < 𝜇 + 𝛾2 then 
𝛽12 +𝛽22

𝜇+𝛾2
> 1 and  

1 <
𝛽12 + 𝛽22 + 𝜙21

𝜇 + 𝛾2 + 𝜙21

<
𝛽12 + 𝛽22

𝜇 + 𝛾2

= ℛ2 

From the results above we note that the spectral radius of the next generation matrix and therefore the 

basic reproduction number is bounded below and above by the minimum and the maximum of the local 

reproduction numbers respectively. 

If ℛ1 < 1 and ℛ2 < 1 then 𝑅0 = 𝜌(𝐾) < 1 hence the disease free equilibrium is asymptotically stable and no 

amount of travel rates can destabilize this state. 

If on the other hand ℛ1 > 1 and ℛ2 > 1 then 𝑅0 = 𝜌(𝐾) > 1 and no amount of travel rate can reduce 

it to less than one. In this case a control measure targeting to change the travel rates cannot prevent the 

epidemic. That is the control of the epidemic cannot be achieved by increasing or decreasing the travel rates 

alone but the control strategy must be extended to the transmission rates.If however one of the local 

reproduction number is less than one while the other is greater than one, then the control measure targeting the 

travel rates may be applied to control the epidemic. 

Without losing the of generality of the control strategy, we assume that ℛ1 > 1 and ℛ2 < 1. 
Thus 𝛽11 + 𝛽21 > 𝜇 + 𝛾1 and 𝛽12 + 𝛽22 < 𝜇 + 𝛾2 

We consider a different splitting of the Jacobian matrix (J) 6 such that 𝐽 = 𝑇 − 𝑉 to form an alternative Next 

Generation Matrix (𝐾 ). 

where 𝑇 is a non-negative matrix and 𝑉 is a non-singular M- Matrix. Thus  

𝐽 =  
𝛽11 + 𝛽21 − (𝜇 + 𝛾1) 0
0 𝛽12 + 𝛽22

 −  
𝜙12 −𝜙21

−𝜙12 𝜇 + 𝛾2 + 𝜙21
 = 𝑇 − 𝑉 

 where  

𝑇 =  
𝛽11 + 𝛽21 − (𝜇 + 𝛾1) 0
0 𝛽12 + 𝛽22

  

 and  

𝑉 =  
𝜙12 −𝜙21

−𝜙12 𝜇 + 𝛾2 + 𝜙21
  

 

|𝑉| = (𝜇 + 𝛾2 + 𝜙21)𝜙12 − 𝜙12𝜙21 = (𝜇 + 𝛾2)𝜙12  

 Hence  

𝑉−1 =
1

(𝜇 + 𝛾2)𝜙12

 
𝜇 + 𝛾2 + 𝜙21 𝜙21

𝜙12 𝜙12
  

we note that 𝑇 is non-negative and 𝑉 is a non-singular 𝑀 − matrix thus the alternative Next Generation Matrix 

(𝐾 ) is given by;  
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𝐾 = 𝑇𝑉−1 =

 

 

(𝛽11 +𝛽21−𝜇−𝛾1)(𝜇 +𝛾2+𝜙21 )

(𝜇+𝛾2)𝜙12

(𝛽11 +𝛽21−𝜇−𝛾1)𝜙21

(𝜇 +𝛾2)𝜙12

𝛽12 +𝛽22

𝜇 +𝛾2

𝛽12 +𝛽22

𝜇 +𝛾2  

  (12) 

 From equation 12, we note that the targeted parameters appears only in the first row of the alternative Next 

Generation Matrix thus the target set is given by 𝜔 = {(1,1), (1,2)}. The target Matrix (𝐾  ) is given by; 

 

𝐾  =  

(𝛽11 + 𝛽21 − 𝜇 − 𝛾1)(𝜇 + 𝛾2 + 𝜙21)

(𝜇 + 𝛾2)𝜙12

(𝛽11 + 𝛽21 − 𝜇 − 𝛾1)𝜙21

(𝜇 + 𝛾2)𝜙12

0 0

  

 and  

𝐾 − 𝐾  =  

0 0
𝛽12 + 𝛽22

𝜇 + 𝛾2

𝛽12 + 𝛽22

𝜇 + 𝛾2

  

 The controlability condition therefore becomes  

𝜌(𝐾 − 𝐾  ) =
𝛽12 + 𝛽22

𝜇 + 𝛾2

= ℛ2 < 1 

 To find the target reproduction number, we re-write the alternative next generation matrix 12 as;  

𝐾 =  
𝑘11 𝑘12

𝑘21 𝑘22
  

 where  

𝑘11 =
(𝛽11 + 𝛽21 − 𝜇 − 𝛾1)(𝜇 + 𝛾2 + 𝜙21)

(𝜇 + 𝛾2)𝜙12

 

  

𝑘12 =
(𝛽11 + 𝛽21 − 𝜇 − 𝛾1)𝜙21

(𝜇 + 𝛾2)𝜙12

 

  

𝑘21 = 𝑘22 =
𝛽12 + 𝛽22

𝜇 + 𝛾2

 

 Thus  

𝐼 − 𝐾 + 𝐾  =  
1 0
−𝑘21 1 − 𝑘22

  

 whose inverse is given by;  

 (𝐼 − 𝐾 + 𝐾  )−1 =  

1 0

𝑘21

1 − 𝑘22

1

1 − 𝑘22

  

 and  

𝐾 (𝐼 − 𝐾 + 𝐾  )−1 =  
𝑘11 +

𝑘12𝑘21

1 − 𝑘22

𝑘12

1 − 𝑘22

0 0

  

 which is a singular matrix hence the target reproduction number is given by;  

𝒯𝜔 = 𝜌(𝐾  (𝐼 − (𝐾 − 𝐾  ))−1) 
 

𝒯𝜔 = 𝑘11 +
𝑘12𝑘21

1 − 𝑘22

=
(𝛽11 + 𝛽21 − 𝜇 − 𝛾1)(𝜇 + 𝛾2 + 𝜙21)

(𝜇 + 𝛾2)𝜙12

+

(𝛽11 +𝛽21−𝜇−𝛾1)𝜙21

(𝜇+𝛾2)𝜙12
⋅

𝛽12 +𝛽22

𝜇 +𝛾2

1 −
𝛽12 +𝛽22

𝜇 +𝛾2

 

=
𝛽11 + 𝛽21 − 𝜇 − 𝛾1

(𝜇 + 𝛾2)𝜙12

 𝜇 + 𝛾2 + 𝜙21 +
(𝛽11 + 𝛽22)𝜙21

𝜇 + 𝛾2 − 𝛽12 − 𝛽22

  

 

Since 𝑅0 > 1 then 𝒯𝜔 > 1 thus the controlled matrix (𝐾  𝑐) can be constructed by defining its elements 𝑘𝑖𝑗
𝑐  by; 

𝑘11
𝑐 =

𝑘11

𝒯𝜔
, 𝑘12

𝑐 =
𝑘12

𝒯𝜔
, 𝑘21

𝑐 = 𝑘21  and 𝑘22
𝑐 = 𝑘22. We therefore need the transformation of the parameters 𝜙12  and 

𝜙21  such that 𝑘11
𝑐 =

𝑘11

𝒯𝜔
 and 𝑘12

𝑐 =
𝑘12

𝒯𝜔
. The new travel rates 𝜙12

𝑐  and 𝜙21
𝑐  are determined such that  
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(𝛽11 +𝛽21−𝜇−𝛾1)(𝜇+𝛾2+𝜙21 )

(𝜇+𝛾2)𝜙12𝒯𝜔
=

(𝛽11 +𝛽21−𝜇−𝛾1)(𝜇+𝛾2+𝜙21
𝑐 )

(𝜇+𝛾2)𝜙12
𝑐  (13) 

 and  
(𝛽11 + 𝛽21 − 𝜇 − 𝛾1)𝜙21

(𝜇 + 𝛾2)𝜙12𝒯𝜔

=
(𝛽11 + 𝛽21 − 𝜇 − 𝛾1)𝜙21

𝑐

(𝜇 + 𝛾2)𝜙12
𝑐  

 Multiplying both sides of equation 13 by 
𝜇+𝛾2

𝛽11 +𝛽21−𝜇−𝛾1
 and simplifying, we get;  

1

𝜙12𝒯𝜔

(𝜇 + 𝛾2) +
𝜙21

𝜙12𝒯𝜔

=
1

𝜙12
𝑐 (𝜇 + 𝛾2) +

𝜙21
𝑐

𝜙12
𝑐  

 from which  

𝜙12
𝑐 = 𝜙12𝒯𝜔  

𝜙21
𝑐 = 𝜙21  

The control strategy therefore involves increasing the travel inflow into patch 2 with ℛ2 < 1 while the 

travel inflow into patch 1 with ℛ1 > 1 should remain unchanged. 

The results for this control method are illustrated by the figures 12 and 13. In the numerical simulations we use 

the initial conditions 𝑆1(0) = 0.83, 𝑆2(0) = 0.90, 𝐼1(0) = 0.17, 𝐼2(0) = 0.10 and 𝑅1(0) = 𝑅2(0) = 0 and 

choose the parameter values 𝛽11 = 0.16, 𝛽12 = 0.007, 𝛽21 = 0.10, 𝛽22 = 0.009, 𝛾1 = 0.14, 𝛾2 = 0.20, 𝜙12 =
0.05, 𝜙21 = 0.08, 𝜓12 = 𝜉12 = 𝜉21 = 0.02, 𝜓21 = 0.01,    𝜇 = 0.01429 per year and 𝑟 = 0.0384 per year. 

Using these values, 𝑅0 = 1.4232 and the controllability criteria 𝜌(𝐾 − 𝐾 ) = 0.08 < 1 thus the target 

reproduction number is computed and its value is 𝒯𝜔 = 3.4421. 

Figure 8 show the solution curves for the transmission of the communicable disease before intervention 

strategies are applied. After applying the control method, the basic reproduction number reduces to 𝑅0 =
0.9839 which is less than one and the epidemic is prevented as can be seen in figure 9. 

 

 
Figure 8: Morbidity curves for 𝑅0 = 1.4232. The local reproduction numbers ℛ1 = 1.8566, ℛ2 = 0.0800 thus 

the epidemic occurs in patch one. 
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Figure 9: Morbidity curves for 𝑅0 = 1.4232. After applying the control strategy the basic reproduction number 

reduces to less than one and the outbreak of the disease is prevented. 

 

IV. Equilibrium Analysis 

 At equilibrium 
𝑑𝑆𝑖

𝑑𝑡
=

𝑑𝐼𝑖

𝑑𝑡
=

𝑑𝑅𝑖

𝑑𝑡
= 0,    𝑖 = 1,2 thus we get the equations;  

 −𝛽11𝑆1𝐼1 − 𝛽12𝑆1𝐼2 − 𝜓12𝑆1 + 𝜓21𝑆2 + 𝑟 − 𝜇𝑆1 = 0 

 −𝛽21𝑆2𝐼1 − 𝛽22𝑆2𝐼2 + 𝜓12𝑆1 − 𝜓21𝑆2 + 𝑟 − 𝜇𝑆2 = 0 

 𝛽11𝑆1𝐼1 + 𝛽21𝑆2𝐼1 − 𝜇𝐼1 − 𝛾1𝐼1 − 𝜙12𝐼1 + 𝜙21𝐼2 = 0 (14) 

 𝛽12𝑆1𝐼2 + 𝛽22𝑆2𝐼2 − 𝜇𝐼2 − 𝛾2𝐼2 + 𝜙12𝐼1 − 𝜙21𝐼2 = 0 (15) 

 𝛾1𝐼1 − 𝜇𝑅1 − 𝜉12𝑅1 + 𝜉21𝑅2 = 0 

 𝛾2𝐼2 − 𝜇𝑅2 + 𝜉12𝑅1 − 𝜉21𝑅2 = 0 

 From equation 14,  

 𝐼1 =
−𝜙21 𝐼2

𝛽11𝑆1+𝛽21𝑆2−𝜇−𝛾1−𝜙12
 (16) 

 Substituting this into equation 15, we get;  

𝛽12𝑆1𝐼2 + 𝛽22𝑆2𝐼2 − 𝜇𝐼2 − 𝛾2𝐼2 +
−𝜙12𝜙21𝐼2

𝛽11𝑆1 + 𝛽21𝑆2 − 𝜇 − 𝛾1 − 𝜙12

− 𝜙21𝐼2 = 0 

 or  

 𝛽12𝑆1 + 𝛽22𝑆2 − 𝜇 − 𝛾2 +
−𝜙12𝜙21

𝛽11𝑆1+𝛽21𝑆2−𝜇−𝛾1−𝜙12
− 𝜙21 𝐼2 = 0 (17) 

 

4.1  Disease Free Equilibrium (DFE) 

At disease free equilibrium state there are no infectious individuals thus we substitute 𝐼2 = 0 in equation 16, this 

yields 𝐼1 = 0 thus the entire population comprise of the susceptible individuals only. The disease free 

equilibrium is therefore given by;  

 (𝑆1, 𝑆2 , 𝐼1 , 𝐼2 , 𝑅1 , 𝑅2) = (1,1,0,0,0,0) (18) 

 

4.2  Stability Analysis of the Disease Free Equilibrium 

To determine the stability of the disease free equilibrium, we first evaluate the Jacobian matrix J at the 

equilibrium point. The Jacobian matrix of the system 6 is given by; 

 

 𝐽 =

 

 
 
 

Ω1 𝜓21 −𝛽11𝑆1 −𝛽12𝑆1 0 0
𝜓12 Ω2 −𝛽21𝑆2 −𝛽22𝑆2 0 0
𝛽11𝐼1 𝛽21𝐼1 Ω3 𝜙21 0 0
𝛽12𝐼2 𝛽22𝐼2 𝜙12 Ω4 0 0
0 0 𝛾1 0 −𝜇 − 𝜉12 𝜉21

0 0 0 𝛾2 𝜉12 −𝜇 − 𝜉21 

 
 
 

 (19) 

 where  
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 Ω1 = −𝛽11𝐼1 − 𝛽12𝐼2 − 𝜓12 − 𝜇 

 Ω2 = −𝛽21𝐼1 − 𝛽22𝐼2 − 𝜓21 − 𝜇 

 Ω3 = 𝛽11𝑆1 + 𝛽21𝑆2 − 𝜇 − 𝛾1 − 𝜙12  

 Ω4 = 𝛽12𝑆1 + 𝛽22𝑆2 − 𝜇 − 𝛾2 − 𝜙21  

 substituting the values of 𝑆1 , 𝑆2 , 𝐼1 , 𝐼2 , 𝑅1    𝑎𝑛𝑑    𝑅2 at DFE we get;  

 𝐽𝐷𝐹𝐸 =

 

 
 
 

−𝜓12 − 𝜇 𝜓21 −𝛽11 −𝛽12 0 0
𝜓12 −𝜓21 − 𝜇 −𝛽21 −𝛽22 0 0
0 0 Θ1 𝜙21 0 0
0 0 𝜙12 Θ2 0 0
0 0 𝛾1 0 −𝜇 − 𝜉12 𝜉21

0 0 0 𝛾2 𝜉12 −𝜇 − 𝜉21 

 
 
 

 (20) 

 where  

 Θ1 = 𝛽11 + 𝛽21 − 𝜇 − 𝛾1 − 𝜙12  

 Θ2 = 𝛽12 + 𝛽22 − 𝜇 − 𝛾2 − 𝜙21  

 The Eigen values of the Jacobian matrix are given by the equations;  

 
−𝜓12 − 𝜇 − 𝜆 𝜓21

𝜓12 −𝜓21 − 𝜇 − 𝜆
 = 0 (21) 

 

 
−𝜇 − 𝜉12 − 𝜆 𝜉21

𝜉12 −𝜇 − 𝜉21 − 𝜆
 = 0 (22) 

 

 
Θ1 − 𝜆 𝜙21

𝜙12 Θ2 − 𝜆
 = 0 (23) 

 From equation 21  

𝜆1,2 =
−(2𝜇 + 𝜓12 + 𝜓21 ) ±  (2𝜇 + 𝜓12 + 𝜓21 )2 − 4(𝜇2 + 𝜇(𝜓12 + 𝜓21))

2
 

 Thus 𝑅𝑒{𝜆1,2} < 0 

From equation 22 we get;  

𝜆3,4 =
−(2𝜇 + 𝜉12 + 𝜉21) ±  (2𝜇 + 𝜉12 + 𝜉21 )2 − 4(𝜇2 + 𝜇(𝜉12 + 𝜉21 ))

2
 

 Thus 𝑅𝑒{𝜆3,4} < 0 

and from equation 23 we have  

𝜆5,6 =
Θ1 + Θ2 ±  (Θ1 − Θ2)2 + 4𝜙12𝜙21

2
 

 Thus the disease free equilibrium is asymptotically stable if 

Θ1 + Θ2 +  (Θ1 − Θ2)2 + 4𝜙12𝜙21 < 0 

From which  
𝜙12𝜙21

Θ1Θ2
< 1 or  

(𝛽11 +𝛽21 )(𝜇+𝛾2+𝜙21 )+(𝛽12 +𝛽22 )(𝜇+𝛾1+𝜙12 )

(𝛽11 +𝛽21 )(𝛽12 +𝛽22 )+𝜙21 (𝜇+𝛾1)+𝜙12 (𝜇+𝛾2)+(𝜇+𝛾1)(𝜇+𝛾2)
< 1 (24) 

 

V. Well posedness 
A time invariant system is said to be well posed if it has a unique solution which continuously depends 

on the data. For a system that describes the population, there is an additional condition that the solution must 

remain positive at all times [14].  

 

5.1  Lipschitz Continuity 

A function 𝑓(𝑥, 𝑦) is said to be locally Lipschitz continuous or simply locally Lipschitz at a point 

(𝑥, 𝑦0) ∈ 𝐷 (where D is an open set) if (𝑥, 𝑦0) has a neighbourhood 𝐷0 such that  

|𝑓(𝑥, 𝑦1) − 𝑓(𝑥, 𝑦2)| < 𝐿|𝑦1 − 𝑦2|,    ∀    (𝑥, 𝑦1), (𝑥, 𝑦2) ∈ 𝐷0 

where L is known as the Lipschitz constant and is fixed over the neighbourhood 𝐷0. A function 𝑓(𝑥, 𝑦) 

is said to be locally Lipschitz in a domain if it is locally Lipschitz at each point of the domain. We denote the set 

of all locally Lipschitz functions by 𝐿𝑙  and write symbolically 𝑓 ∈ 𝐿𝑙  whenever 𝑓 is a locally Lipschitz function. 

Moreover, we say that a function 𝑓(𝑥, 𝑦) is globally Lipschitz in a domain D and write 𝑓 ∈ 𝐿𝑔  (where 𝐿𝑔  is the 

set of all globally Lipschitz functions) if 𝑓(𝑥, 𝑦) is locally Lipschitz at all points of the domain with the same 

Lipschitz constant (𝐿) in the entire domain.  
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Theorem 5.1 (Picard-Lipschitz Theorem)[13] Let 𝐷 ⊂ ℝ𝑛  be a domain and 𝐽 ⊂ ℝ be an interval containing 

the point 𝑥0. Let 𝛤 be a closed and bounded sub-interval of 𝐽 such that 𝑥0 ∈ 𝛤. Let 𝑓: 𝐽 × 𝐷 → ℝ𝑛  be a 

continuous function. Let 𝑦𝑖(𝑥)    𝑖 ∈ {1,2, … , 𝑛} be a solution of the system  

 
𝑑𝑦𝑖

𝑑𝑥
= 𝑓𝑖(𝑥, 𝑦1 , 𝑦2 , … , 𝑦𝑛 ), 𝑦𝑖(𝑥0) = 𝑦0     𝑜𝑛    Γ (25) 

If the function 𝑓𝑖(𝑥, 𝑦1 , 𝑦2 , … , 𝑦𝑛 ) satisfies the Lipschitz condition with respect to the variable 𝑦𝑘 ,    𝑘 ∈
{1,2, … , 𝑛} then the system 25 has a unique solution which continuously depends on the data.  

 

Proposition 5.1 Let 𝐷 ⊂ ℝ𝑛  and let (𝑡0, 𝜂0) ∈ 𝐷 

where 𝜂0 = {𝑆𝑖(𝑡0), 𝑆𝑗 (𝑡0), 𝐼𝑖(𝑡0), 𝐼𝑗 (𝑡0), 𝑅𝑖(𝑡0), 𝑅𝑗 (𝑡0)} then the system 3 has a unique solution which depends 

continuously on the data.  

 

Proof. We re-write system 3 as  
𝑑𝑆𝑖

𝑑𝑡
= 𝑓1(𝜂) 

𝑑𝐼𝑖
𝑑𝑡

= 𝑓2(𝜂) 

𝑑𝑅𝑖

𝑑𝑡
= 𝑓3(𝜂) 

 where  

𝑓1(𝜂) = 𝑟 − 𝜇𝑆𝑖 −  

𝑛

𝑗 =1

𝛽𝑖𝑗 𝑆𝑖𝐼𝑗 +  

𝑛

𝑗=1,𝑗≠𝑖

𝜓𝑗𝑖 𝑆𝑗 −  

𝑛

𝑗=1,𝑗≠𝑖

𝜓𝑖𝑗 𝑆𝑖  

𝑓2(𝜂) =  

𝑛

𝑗 =1

𝛽𝑗𝑖 𝑆𝑗 𝐼𝑖 − (𝜇 + 𝛾𝑖)𝐼𝑖 +  

𝑛

𝑗=1,𝑗≠𝑖

𝜙𝑗𝑖 𝐼𝑗 −  

𝑛

𝑗 =1,𝑗≠𝑖

𝜙𝑖𝑗 𝐼𝑖  

𝑓3(𝜂) = 𝛾𝑖𝐼𝑖 − 𝜇𝑅𝑖 +  

𝑛

𝑗 =1,𝑗≠𝑖

𝜉𝑗𝑖 𝑅𝑗 −  

𝑛

𝑗 =1,𝑗≠𝑖

𝜉𝑖𝑗 𝑅𝑖  

 and 𝜂 = {𝑆1 , 𝑆2, 𝐼1 , 𝐼2 , 𝑅1, 𝑅2} 

Let 𝐷 ⊂ ℝ𝑛  and let (𝑡0, 𝜂0) ∈ 𝐷 where 𝜂0 = {𝑆𝑖(𝑡0), 𝑆𝑗 (𝑡0), 𝐼𝑖(𝑡0), 𝐼𝑗 (𝑡0), 𝑅𝑖(𝑡0), 𝑅𝑗 (𝑡0)}, we show that the 

functions 𝑓1(𝜂), 𝑓2(𝜂) and 𝑓3(𝜂) are all locally Lipschitz with respect to the variable 𝑥 ∈ 𝜂. 

For the function 𝑓1(𝜂) we have;  

 𝑓1 𝜂\𝑆𝑖 , 𝑆𝑖 𝑡1  − 𝑓1 𝜂\𝑆𝑖 , 𝑆𝑖 𝑡2   

=  𝑟 − 𝜇𝑆𝑖(𝑡1) −  

𝑛

𝑗 =1

𝛽𝑖𝑗 𝑆𝑖(𝑡1)𝐼𝑗 +  

𝑛

𝑗 =1,𝑗≠𝑖

𝜓𝑗𝑖 𝑆𝑗
 −  

𝑛

𝑗=1,𝑗≠𝑖

𝜓𝑖𝑗 𝑆𝑖(𝑡1)

−  𝑟 − 𝜇𝑆𝑖(𝑡2) −  

𝑛

𝑗 =1

𝛽𝑖𝑗 𝑆𝑖(𝑡2)𝐼𝑗    +  

𝑛

𝑗=1,𝑗≠𝑖

𝜓𝑗𝑖 𝑆𝑗 −  

𝑛

𝑗 =1,𝑗≠𝑖

𝜓𝑖𝑗 𝑆𝑖(𝑡2)   

 𝑓1 𝜂\𝑆𝑖 , 𝑆𝑖 𝑡1  − 𝑓1 𝜂\𝑆𝑖 , 𝑆𝑖 𝑡2   =  −𝜇 −  

𝑛

𝑗 =1

𝛽𝑖𝑗 𝐼𝑗 −  

𝑛

𝑗 =1,𝑗≠𝑖

𝜓𝑖𝑗  |𝑆𝑖(𝑡1) − 𝑆𝑖(𝑡2)| 

 𝑓1 𝜂\𝑆𝑖 , 𝑆𝑖 𝑡1  − 𝑓1 𝜂\𝑆𝑖 , 𝑆𝑖 𝑡2   ≤ 𝑀1|𝑆𝑖(𝑡1) − 𝑆𝑖(𝑡2)| 
 where  

𝑀1 =
max

𝐼𝑗 ∈ 𝐷  −𝜇 −  

𝑛

𝑗 =1

𝛽𝑖𝑗 𝐼𝑗 −  

𝑛

𝑗=1,𝑗≠𝑖

𝜓𝑖𝑗   

 

 𝑓1  𝜂\𝑆𝑗 , 𝑆𝑗  𝑡1  − 𝑓1  𝜂\𝑆𝑗 , 𝑆𝑗  𝑡2   

=  𝑟 − 𝜇𝑆𝑖 −  

𝑛

𝑗 =1

𝛽𝑖𝑗 𝑆𝑖𝐼𝑗 +  

𝑛

𝑗=1,𝑗≠𝑖

𝜓𝑗𝑖 𝑆𝑗 (𝑡1) −  

𝑛

𝑗=1,𝑗≠𝑖

𝜓𝑖𝑗 𝑆𝑖

−  𝑟 − 𝜇𝑆𝑖 −  

𝑛

𝑗 =1

𝛽𝑖𝑗 𝑆𝑖𝐼𝑗    +  

𝑛

𝑗 =1,𝑗≠𝑖

𝜓𝑗𝑖 𝑆𝑗 (𝑡2) −  

𝑛

𝑗=1,𝑗≠𝑖

𝜓𝑖𝑗 𝑆𝑖   
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 𝑓1  𝜂\𝑆𝑗 , 𝑆𝑗  𝑡1  − 𝑓1  𝜂\𝑆𝑗 , 𝑆𝑗  𝑡2   =   

𝑛

𝑗=1,𝑗≠𝑖

𝜓𝑗𝑖   𝑆𝑗  𝑡1 − 𝑆𝑗  𝑡2   

 𝑓1  𝜂\𝑆𝑗 , 𝑆𝑗  𝑡1  − 𝑓1  𝜂\𝑆𝑗 , 𝑆𝑗  𝑡2   ≤ 𝑀2 𝑆𝑗  𝑡1 − 𝑆𝑗  𝑡2   

 where  

𝑀2 =   

𝑛

𝑗=1,𝑗≠𝑖

𝜓𝑗𝑖   

 

 𝑓1  𝜂\𝐼𝑗 , 𝐼𝑗  𝑡1  − 𝑓1  𝜂\𝐼𝑗 , 𝐼𝑗  𝑡2   

=  𝑟 − 𝜇𝑆𝑖 −  

𝑛

𝑗 =1

𝛽𝑖𝑗 𝑆𝑖𝐼𝑗 (𝑡1) +  

𝑛

𝑗=1,𝑗≠𝑖

𝜓𝑗𝑖 𝑆𝑗
 −  

𝑛

𝑗=1,𝑗≠𝑖

𝜓𝑖𝑗 𝑆𝑖

−  𝑟 − 𝜇𝑆𝑖 −  

𝑛

𝑗 =1

𝛽𝑖𝑗 𝑆𝑖𝐼𝑗 (𝑡2)   +  

𝑛

𝑗 =1,𝑗≠𝑖

𝜓𝑗𝑖 𝑆𝑗 −  

𝑛

𝑗=1,𝑗≠𝑖

𝜓𝑖𝑗 𝑆𝑖   

 𝑓1  𝜂\𝐼𝑗 , 𝐼𝑗  𝑡1  − 𝑓1  𝜂\𝐼𝑗 , 𝐼𝑗  𝑡2   =  − 

𝑛

𝑗 =1

𝛽𝑖𝑗 𝑆𝑖 |𝐼𝑗 (𝑡1) − 𝐼𝑗 (𝑡2)| 

 𝑓1  𝜂\𝐼𝑗 , 𝐼𝑗  𝑡1  − 𝑓1  𝜂\𝐼𝑗 , 𝐼𝑗  𝑡2   ≤ 𝑀3|𝐼𝑗 (𝑡1) − 𝐼𝑗 (𝑡2)| 

 where  

𝑀3 = max
𝑆𝑖∈𝐷

 −  

𝑛

𝑗=1

𝛽𝑖𝑗 𝑆𝑖   

 

For the function 𝑓2(𝜂) we have;  

 𝑓2 𝜂\𝐼𝑖 , 𝐼𝑖 𝑡1  − 𝑓2 𝜂\𝐼𝑖 , 𝐼𝑖 𝑡2   

=    

𝑛

𝑗 =1

𝛽𝑖𝑗 𝑆𝑗 𝐼𝑖(𝑡1) − (𝜇 + 𝛾𝑖)𝐼𝑖(𝑡1) +  

𝑛

𝑗=1,𝑗≠𝑖

𝜙𝑗𝑖 𝐼𝑗    −  

𝑛

𝑗=1,𝑗≠𝑖

𝜙𝑖𝑗 𝐼𝑖(𝑡1) 

−   

𝑛

𝑗=1

𝛽𝑖𝑗 𝑆𝑗 𝐼𝑖(𝑡2) − (𝜇 + 𝛾𝑖)𝐼𝑖(𝑡2)   +  

𝑛

𝑗 =1,𝑗≠𝑖

𝜙𝑗𝑖 𝐼𝑗 −  

𝑛

𝑗=1,𝑗≠𝑖

𝜙𝑖𝑗 𝐼𝑖(𝑡2)   

 𝑓2 𝜂\𝐼𝑖 , 𝐼𝑖 𝑡1  − 𝑓2 𝜂\𝐼𝑖 , 𝐼𝑖 𝑡2   =   

𝑛

𝑗 =1

𝛽𝑖𝑗 𝑆𝑗 − (𝜇 + 𝛾𝑖) −  

𝑛

𝑗=1,𝑗≠𝑖

𝜙𝑖𝑗  |𝐼𝑖(𝑡1) − 𝐼𝑖(𝑡2)| 

 𝑓2 𝜂\𝐼𝑖 , 𝐼𝑖 𝑡1  − 𝑓2 𝜂\𝐼𝑖 , 𝐼𝑖 𝑡2   ≤ 𝑀4|𝐼𝑖(𝑡1) − 𝐼𝑖(𝑡2)| 
 where  

𝑀4 =
max

𝑆𝑗 ∈ 𝐷   

𝑛

𝑗=1

𝛽𝑖𝑗 𝑆𝑗 − (𝜇 + 𝛾𝑖) −  

𝑛

𝑗 =1,𝑗≠𝑖

𝜙𝑖𝑗   

  

 

 𝑓2  𝜂\𝐼𝑗 , 𝐼𝑗  𝑡1  − 𝑓2  𝜂\𝐼𝑗 , 𝐼𝑗  𝑡2   

=    

𝑛

𝑗 =1

𝛽𝑖𝑗 𝑆𝑗 𝐼𝑖 − (𝜇 + 𝛾𝑖)𝐼𝑖 +  

𝑛

𝑗=1,𝑗≠𝑖

𝜙𝑗𝑖 𝐼𝑗 (𝑡1)    −  

𝑛

𝑗=1,𝑗≠𝑖

𝜙𝑖𝑗 𝐼𝑖 

−   

𝑛

𝑗=1

𝛽𝑖𝑗 𝑆𝑗 𝐼𝑖 − (𝜇 + 𝛾𝑖)𝐼𝑖    +  

𝑛

𝑗 =1,𝑗≠𝑖

𝜙𝑗𝑖 𝐼𝑗 (𝑡2) −  

𝑛

𝑗=1,𝑗≠𝑖

𝜙𝑖𝑗 𝐼𝑖   
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 𝑓2  𝜂\𝐼𝑗 , 𝐼𝑗  𝑡1  − 𝑓2  𝜂\𝐼𝑗 , 𝐼𝑗  𝑡2   =   

𝑛

𝑗=1,𝑗≠𝑖

𝜙𝑗𝑖  |𝐼𝑗 (𝑡1) − 𝐼𝑗 (𝑡2)| 

 𝑓2  𝜂\𝐼𝑗 , 𝐼𝑗  𝑡1  − 𝑓2  𝜂\𝐼𝑗 , 𝐼𝑗  𝑡2   ≤ 𝑀5|𝐼𝑗 (𝑡1) − 𝐼𝑗 (𝑡2)| 

 where  

𝑀5 =  

𝑛

𝑗=1,𝑗≠𝑖

𝜙𝑗𝑖  

 

 𝑓2  𝜂\𝑆𝑗 , 𝑆𝑗  𝑡1  − 𝑓2  𝜂\𝑆𝑗 , 𝑆𝑗  𝑡2   

=    

𝑛

𝑗 =1

𝛽𝑖𝑗 𝑆𝑗 (𝑡1)𝐼𝑖 − (𝜇 + 𝛾𝑖)𝐼𝑖 +  

𝑛

𝑗=1,𝑗≠𝑖

𝜙𝑗𝑖 𝐼𝑗    −  

𝑛

𝑗=1,𝑗≠𝑖

𝜙𝑖𝑗 𝐼𝑖 

−   

𝑛

𝑗=1

𝛽𝑖𝑗 𝑆𝑗 (𝑡2)𝐼𝑖 − (𝜇 + 𝛾𝑖)𝐼𝑖    +  

𝑛

𝑗 =1,𝑗≠𝑖

𝜙𝑗𝑖 𝐼𝑗 −  

𝑛

𝑗=1,𝑗≠𝑖

𝜙𝑖𝑗 𝐼𝑖   

 𝑓2  𝜂\𝑆𝑗 , 𝑆𝑗  𝑡1  − 𝑓2  𝜂\𝑆𝑗 , 𝑆𝑗  𝑡2   =   

𝑛

𝑗=1

𝛽𝑖𝑗 𝐼𝑖  |𝑆𝑗 (𝑡1) − 𝑆𝑗 (𝑡2)| 

 𝑓2  𝜂\𝑆𝑗 , 𝑆𝑗  𝑡1  − 𝑓2  𝜂\𝑆𝑗 , 𝑆𝑗  𝑡2   ≤ 𝑀6|𝑆𝑗 (𝑡1) − 𝑆𝑗 (𝑡2)| 

 where  

𝑀6 =
𝑚𝑎𝑥
𝐼𝑖 ∈ 𝐷  

𝑛

𝑗=1

𝛽𝑖𝑗 𝐼𝑖  

 For the function 𝑓3(𝜂) we have;  

 𝑓3 𝜂\𝑅𝑖 , 𝑅𝑖 𝑡1  − 𝑓3 𝜂\𝑅𝑖 , 𝑅𝑖 𝑡2   

=   𝛾𝑖𝐼𝑖 − 𝜇𝑅𝑖(𝑡1) +  

𝑛

𝑗 =1,𝑗≠𝑖

𝜉𝑗𝑖 𝑅𝑗 −  

𝑛

𝑗 =1,𝑗≠𝑖

𝜉𝑖𝑗 𝑅𝑖(𝑡1)   − 𝛾𝑖𝐼𝑖 − 𝜇𝑅𝑖(𝑡2) +  

𝑛

𝑗=1,𝑗≠𝑖

𝜉𝑗𝑖 𝑅𝑗

−  

𝑛

𝑗=1,𝑗≠𝑖

𝜉𝑖𝑗 𝑅𝑖(𝑡2)   

 𝑓3 𝜂\𝑅𝑖 , 𝑅𝑖 𝑡1  − 𝑓3 𝜂\𝑅𝑖 , 𝑅𝑖 𝑡2   =  −𝜇 −  

𝑛

𝑗=1,𝑗≠𝑖

𝜉𝑖𝑗  |𝑅𝑖(𝑡1) − 𝑅𝑖(𝑡2)| 

 𝑓3 𝜂\𝑅𝑖 , 𝑅𝑖 𝑡1  − 𝑓3 𝜂\𝑅𝑖 , 𝑅𝑖 𝑡2   ≤ 𝑀7|𝑅𝑖(𝑡1) − 𝑅𝑖(𝑡2)| 
 where  

𝑀7 =  −𝜇 −  

𝑛

𝑗=1,𝑗≠𝑖

𝜉𝑖𝑗   

 𝑓3 𝜂\𝐼𝑖 , 𝐼𝑖 𝑡1  − 𝑓3 𝜂\𝐼𝑖 , 𝐼𝑖 𝑡2   

=   𝛾𝑖𝐼𝑖(𝑡1) − 𝜇𝑅𝑖 +  

𝑛

𝑗 =1,𝑗≠𝑖

𝜉𝑗𝑖 𝑅𝑗 −  

𝑛

𝑗 =1,𝑗≠𝑖

𝜉𝑖𝑗 𝑅𝑖   − 𝛾𝑖𝐼𝑖(𝑡2) − 𝜇𝑅𝑖 +  

𝑛

𝑗 =1,𝑗≠𝑖

𝜉𝑗𝑖 𝑅𝑗

−  

𝑛

𝑗=1,𝑗≠𝑖

𝜉𝑖𝑗 𝑅𝑖   

 𝑓3 𝜂\𝐼𝑖 , 𝐼𝑖 𝑡1  − 𝑓3 𝜂\𝐼𝑖 , 𝐼𝑖 𝑡2   =  𝛾𝑖||𝐼𝑖(𝑡1) − 𝐼𝑖(𝑡2)  

 𝑓3 𝜂\𝐼𝑖 , 𝐼𝑖 𝑡1  − 𝑓3 𝜂\𝐼𝑖 , 𝐼𝑖 𝑡2   ≤ 𝑀8|𝐼𝑖(𝑡1) − 𝐼𝑖(𝑡2)| 
 where  

𝑀8 = max
𝑖=1,2,…𝑛

 𝛾𝑖  
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 𝑓3  𝜂\𝑅𝑗 , 𝑅𝑗  𝑡1  − 𝑓3  𝜂\𝑅𝑗 , 𝑅𝑗  𝑡2   

=   𝛾𝑖𝐼𝑖 − 𝜇𝑅𝑖 +  

𝑛

𝑗 =1,𝑗≠𝑖

𝜉𝑗𝑖 𝑅𝑗 (𝑡1) −  

𝑛

𝑗 =1,𝑗≠𝑖

𝜉𝑖𝑗 𝑅𝑖    − 𝛾𝑖𝐼𝑖 − 𝜇𝑅𝑖 +  

𝑛

𝑗=1,𝑗≠𝑖

𝜉𝑗𝑖 𝑅𝑗 (𝑡2)

−  

𝑛

𝑗=1,𝑗≠𝑖

𝜉𝑖𝑗 𝑅𝑖   

 𝑓3  𝜂\𝑅𝑗 , 𝑅𝑗  𝑡1  − 𝑓3  𝜂\𝑅𝑗 , 𝑅𝑗  𝑡2   =   

𝑛

𝑗=1,𝑗≠𝑖

𝜉𝑗𝑖  |𝑅𝑗 (𝑡1) − 𝑅𝑗 (𝑡2)| 

 𝑓3  𝜂\𝑅𝑗 , 𝑅𝑗  𝑡1  − 𝑓3  𝜂\𝑅𝑗 , 𝑅𝑗  𝑡2   ≤ 𝑀9|𝑅𝑗 (𝑡1) − 𝑅𝑗 (𝑡2)| 

 where  

𝑀9 =   

𝑛

𝑗=1,𝑗≠𝑖

𝜉𝑗𝑖   

 

We observe that the three functions 𝑓1(𝜂), 𝑓2(𝜂) and 𝑓3(𝜂) are all locally Lipschitz continuous in 𝐷 and 

therefore by theorem 5.1 the system 3 has a solution which exist at all times and that this solution is unique and 

continuously depends on the data and therefore the system is well posed.  

 

VI. Conclusion 
In this paper we have done an investigation of the transmission of a infectious disease in a 

metapopulation setup with both coupling and migration of individuals and developed a mathematical model for 

the transmission of infectious diseases in a metapopulation with demographic factors and migration of 

individuals. 

We then carried out an investigation of the existence of equilibrium states for the models and observed 

that the disease free equilibrium was asymptotically stable provided that the basic reproduction number does not 

exceed one. The analysis of the basic reproduction number showed that its value was affected by the disease 

reproduction rate in each patch. The analysis also showed that its value could not exceed one unless the local 

reproduction number of the disease was greater than one in at least one of the sub-populations. We further 

conducted investigation of various control methods available for the health control practitioners. The object of 

this investigation was to establish the strength of the control measure required to control the epidemic. The 

result of this investigation demonstrated that the epidemic control was possible by targeting the transmission 

rates in the sub-populations where the local reproduction numbers exceeded one. For a two patch model we 

described how the method could be used to control the outbreak of the disease by applying a method that 

decreases the transmission probability and travel restrictions and determined the critical effort required for the 

control of the epidemic. Thus in the case of limited resources, health control practitioners should implement the 

control methods in the patches where the local reproduction number is greater than one. The control methods 

may include vaccination of susceptible individuals, contact tracing, social distancing etc. This optimal strategy 

assumes that the benefit of the recovered individual is the same irrespective of the geographical location of the 

individual and therefore gives focus to the overall benefit of the entire population when the control strategy is 

applied rather than specific individuals. 
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