Real Interpolationof Operatorsin Banach-Saks and Invariant Spaces WithApplications

NafisaAlgorashy ${ }^{(\text {a) }}$, Adam zakria ${ }^{(\text {b,c) }}$
(a) University King Khalid university College of Sciences and Arts Department of Mathematics Kingdom of Saudi Arabia
(b) University of Kordofan , Faculty of Science, Department of Mathematics, Sudan
Jouf University College of Sciences and Arts Department of Mathematics Kingdom of Saudi Arabia

Abstract

LinearOperators on invariant spaces and between Banach spaces we define a semi norm vanishing on the subspace of operators having the alternate signs Banach-Saks property. In particular, the estimates show that the alternate signsinvariant spaces and Banach-Saks property are inherited from a space of an interpolation pair $\left(A_{0}, A_{1}\right)$ tothe real interpolation spaces $A_{\theta, p}$. Finally, examples are given to support our results.

Keywords: invariant spaces ,Banach-Saks, Lions-Peetre

I. Introduction

A linear transformation $T: V \rightarrow V$ and $\leq V . \mathrm{T}$ is invariant under T if $\mathrm{TW} \subset \mathrm{W}$ and a bounded linear operator $T: V \rightarrow W$ acting between Banach spaces is said to have the Banach-Saks (BS) property if every bounded sequence $\left(v_{n}\right)$ in V contains a subsequence $\left(v_{n}^{\prime}\right)$ such that the Cesáro means of $\left(T v_{n}^{\prime}\right)$ converge in Y. If we restrict this definition to all weakly null sequences $\left(v_{n}\right)$ in X, we say that T has the weak Banach-Saks (WBS) property or the Banach-Saks-Rosenthal property. We say that T has the alternate signs Banach-Saks (ABS) property if every bounded sequence $\left(v_{n}\right)$ in V contains a subsequence (v_{n}^{\prime}) such that the Cesáro means of $\left((-1)^{n} T v_{n}^{\prime}\right)$ converge in Y.

A Banach space V is called to have the BS, WBS or ABS property if the corresponding property is possessed by the identity operator $I: V \rightarrow V$. For a detailed study of these properties we refer the reader to [11].

A natural question is the behavior ofinvariant spaces andBanach-Saks properties under interpolation. Beauzamy [11] proved that if $\left(A_{0}, A_{1}\right)$ is an interpolation pair such that A_{0} is continuously embedded in A_{1} and the embedding has the ABS property, then the real interpolation spaces $A_{\theta, p}$ with respect to $\left(A_{0}, A_{1}\right)$ have the ABS property for all $0<\theta<1$ and $1<p<\infty$. This in turn served to show that every operator withthe BS or ABS property factors through a space with the same property (see also [13]). Heinrich [3] proved that if the embedding $I: A_{0} \cap A_{1} \rightarrow A_{0}+A_{1}$ has the BS property, then so has $A_{\theta, p}$ with respect to $\left(A_{0}, A_{1}\right)$ for all $0<\theta<1$ and $1<p<\infty$ (see also [1,12]). We find a measure of deviation from the ABS property with good interpolation properties.

Our work is motivated by[2,9, 11,14], where similar results for a measure of weak noncompactness were obtained.

II. Invariant spaces and Banach-Saks property and spreading models

One of the basic results on invariant spacesBanach-Saks properties is the following one of Rosenthal [8]: if a Banach space X does not have the WBS property, then there exist a number $\delta>0$ and a bounded double sequence $\left(v \begin{array}{l}m \\ n\end{array}\right)$ in V such that for all $k \in \mathbb{N}$, all subsets $A \subset \mathbb{N}$ with $|A|=2^{k}$ and $k \leq \min A$, and all sequences of scalars $\left(c_{n}\right)$, we have

$$
\left\|\sum_{m, n \in A} c_{n} v{\underset{n}{n}}_{n}\right\| \geq \delta \sum_{n \in A}\left|c_{n}\right| .
$$

Definition 1. Let $\left(\begin{array}{ll}v & m\end{array}\right)$ be a bounded sequence in a Banach space V. Define

$$
\phi_{v s m}\left(v \begin{array}{c}
v \\
n
\end{array}\right)=\inf \left\||A|^{-1} \sum_{m, n \in A} \epsilon_{n} v \begin{array}{r}
m \\
n
\end{array}\right\|, \phi_{a m}\left(v \begin{array}{ll}
v & m
\end{array}\right)=\inf \left\||A|^{-1} \sum_{m, n \in A} v \underset{n}{m}\right\|,
$$

the infimum for $\phi_{v s m}\left(v{ }_{n}^{m}\right)$ being taken over all finite subsets $A \subset \mathbb{N}$ and all sequences of
$\operatorname{signs}\left(\epsilon_{n}\right)$, the infimum for φ ambeing taken over all finite subsets $A \subset \mathbb{N}$. If $\left(w_{n}^{m}\right)$ is a sequence of svsm for $\left(v \begin{array}{c}m \\ n\end{array}\right)$, in particular, $\left(\begin{array}{ll}w & m \\ n\end{array}\right)$ is double a subsequence of $\left(v \begin{array}{c}m \\ n\end{array}\right)$ or $\binom{w}{n}$ is double a sequence of sam for $\left(v_{n}\right)$, then $\phi_{v s m}\left(\begin{array}{ll}v & m \\ n\end{array}\right) \leq \phi_{v s m}\left(\begin{array}{ll}w & m \\ n\end{array}\right)$.
Definition $2 T: V \rightarrow V$ and $W \leq V . T$ is invariant under T if $\mathrm{TW} \subset \mathrm{W}$.
Note that $g(T) W \subset W$ for any polynomial g.
Proposition 3. suppose $\left(v \begin{array}{l}m \\ n\end{array}\right)$ be double a bounded sequence in a Banach space X. There exist double a subsequence $\left(v \begin{array}{c}\prime m\end{array}\right) \quad$ of $\left(v{ }_{n}^{m}\right)$ and a seminorm L in the set S of all finite sequences of scalars (real or complex), with the following property: for every $\epsilon>$ and every $a=\left(a_{1}, \ldots, a_{m}\right) \in S$ there exists $v \in$ Nsuch that, if $v \leq n_{1}<\ldots<n_{m}$, then

$$
\left|\left\|\sum_{i=1}^{m} a_{i} v_{n i}^{\prime m}\right\|-L(a)\right|<\varepsilon .
$$

If $\left(\begin{array}{ll}v & m \\ n\end{array}\right)$ has no Cauchy subsequence, the formula

$$
\left\|a_{1} v_{1}^{\prime 1}+\ldots+a_{m} v_{m}^{\prime m}\right\|_{E}=L(a), \quad a=\left(a_{1}, \ldots, a_{m}\right),
$$

defines a norm in the space spanned by vectors $v{ }_{m}^{\prime}$. Let E bethe completion of span $\left\{v{ }_{n}^{\prime m}\right\}$ under this norm. The space E is called the spreadingmodel of V built on $\left(v \begin{array}{c}m \\ n\end{array}\right)$. The sequence $\left(v{ }_{n}^{m}\right)$ is called the fundamental sequence of E.The norm of E is invariant under spreading; that is $\left\|a_{1} v_{1}^{\prime 1}+\ldots+a_{m} v_{m}^{\prime m}\right\|_{E}=\| a_{1} v_{n_{1}^{\prime}}^{\prime 1}+\ldots+$ amvnm'mEfor all
$n_{1}<\ldots<n_{m}$.
The next proposition will play a key role in our considerations. Its assertion is related to property (P_{1}^{\prime}) of [11 ,15]. In the proof, we follow the main line of the proof of Theorem II. 2 of [11].
Proposition 4. Let $\binom{v}{n}$ be double a bounded sequence in a Banach space X. Then for every $\epsilon>0$ there exist a sequence $\left(\begin{array}{ll}w & m \\ n\end{array}\right)$ of svsm for $\left(v v_{n}^{m}\right)$ and a $\operatorname{sequence}\left(v \begin{array}{l}m \\ n\end{array}\right)$ of $\operatorname{sam} \operatorname{for}\left(v \begin{array}{l}m \\ n\end{array}\right)$ such that for all finite subsets $A \subset \mathbb{N}$ and all sequences of $\operatorname{signs}\left(\epsilon_{n}\right)$,

$$
\left\||A|^{-1} \sum_{m, n \in A} \epsilon_{n} w \begin{array}{c}
m \\
n
\end{array}\right\| \leq \phi_{v s m}\left(\begin{array}{ll}
w & m \\
n
\end{array}\right)+\epsilon,\left\||A|^{-1} \sum_{m, n \in A} v{\underset{n}{m}}_{n}^{m}\right\| \leq \phi_{a m}\left(\begin{array}{ll}
v & m \\
n
\end{array}\right)+\epsilon
$$

Proof.We prove the assertion for the relation svsm. The proof for the relation sam is almost the same. Fix $\varepsilon>0$. First assume that $\left(v_{n}\right)$ contains a Cauchy subsequence $\left(v_{n}^{\prime m}\right)$.Letw ${ }_{n}^{m}=\frac{v_{2 n}^{\prime}-v_{2 n-1}^{\prime m}}{2}$. Ignoring a finite number of terms of $\left(\begin{array}{ll}w & m \\ n\end{array}\right)$, we see that $\left(\begin{array}{ll}w & m \\ n\end{array}\right)$ satisfies the assertion.Now assume that $\left(\begin{array}{ll}v & m \\ n\end{array}\right)$ has no Cauchy subsequence. Let a double subsequence $\left(v_{n}^{\prime m}\right)$ of $\left(v_{n}^{m} \begin{array}{l}m\end{array}\right)$ be the fundamental sequence of the spreading model Ebuilt on $\left(v \begin{array}{c}m \\ n\end{array}\right)$, givenby Proposition 3. Taking $\left(v_{n}^{\prime m}\right)$ in the norm $\|.\|_{E}$, we put $K=\phi_{v s m}\left(v_{n}^{\prime}\right)$. Thereexists $u=m^{-1} \sum_{i=1}^{m} \epsilon_{i}^{\prime} v_{n_{i}}^{\prime m}$, where $n_{1}<\ldots<n_{m}$ and $\epsilon_{1}^{\prime}, \ldots, \epsilon_{m}^{\prime}$ is a finite sequenceof signs, such that $K \leq\|u\|_{E} \leq$ $K+\frac{\varepsilon}{4}$. Let $u{ }_{n}^{m}=m^{-1} \sum_{i=1}^{m} \epsilon_{i}^{\prime} v_{(n-1) m+i}^{\prime m}$ for every $n \in \mathbb{N}$.Since $\|.\|_{E}$ is invariant under spreading,
$K \leq\left\|u{ }_{n}^{m}\right\|_{E} \leq K+\varepsilon / 4$. Clearly,
for all finite subsets $A \subset \mathbb{N}$ and all sequences of signs $\left(\epsilon_{n}\right)$,

$$
K \leq\left\||A|^{-1} \sum_{n \in A} \epsilon_{n} u \underset{n}{m}\right\|_{E} \leq K+\varepsilon / 4 .
$$

Let $k \in N$.By Proposition 3, we get n_{k} such that if $B \subset \mathbb{N}$ with $|B| \leq 2^{k}$ and $n_{k} \leq \min B$, then for all sequences of signs (ϵ_{n}),

$$
\left\||B|^{-1} \sum_{n \in B} \epsilon_{n} v \begin{array}{r}
m \\
n
\end{array}\right\|-\||B|^{-1} \sum_{m, n \in B} \epsilon_{n} v{\underset{n}{n} \|_{E}<\varepsilon / 4 . .4 .}
$$

We may assume that $n_{k}<n_{k+1}$ for all k. It follows that for the double sequence ($u_{k}^{\prime m}$) with $u_{k}^{\prime m}=u_{n_{k}}^{m}$, all $B \subset \mathbb{N}$ with $|B| \leq 2^{k}$ and $k \leq \min B$, and all sequences of signs $\left(\epsilon_{n}\right)$,

$$
K-\varepsilon / 4 \leq\left\||B|^{-1} \sum_{m, n \in B} \epsilon_{n} u_{n}^{\prime m}\right\| \leq K+\varepsilon / 2
$$

Let $A \subset \mathbb{N}$ be finite and $A_{0}=\left\{n \in A: n<\log _{2}|A|\right\}$. Then

$$
\left\|\sum_{m, n \in A_{0}} \epsilon_{n} u_{k}^{\prime m}\right\| \leq\left|A_{0}\right|(K+\varepsilon / 2) \text { and }\left\|\sum_{m, n \in A \backslash A_{0}} \epsilon_{n} u_{k}^{\prime m}\right\| \geq\left|A \backslash A_{0}\right|(K-\varepsilon / 4) .
$$

Of course, we assume that the sum over the empty set is 0 .Consequently,

$$
\left\||A|^{-1} \sum_{m, n \in A} \epsilon_{n} u_{k}^{\prime m}\right\| \geq\left\||A|^{-1} \sum_{m, n \in A \backslash A_{0}} \epsilon_{n} u_{k}^{\prime m}\right\|-\left\||A|^{-1} \sum_{m, n \in A_{0}} \epsilon_{n} u_{n}^{\prime}\right\|
$$

$$
\geq K-\varepsilon / 4-\left|A_{0}\right||A|^{-1}(2 K+\varepsilon / 4)
$$

There is an $m_{0} \in \mathbb{N}$ such that if $|A| \geq m_{0}$, then $\left|A_{0}\right||A|^{-1}(2 K+\varepsilon / 4) \leq \varepsilon / 4$. Then

$$
K-\varepsilon / 2 \leq\left\||A|^{-1} \sum_{m, n \in A} \epsilon_{n} u_{k}^{\prime m}\right\| \leq K+\varepsilon / 2
$$

Let $w_{n}=m_{0}^{-1} \sum_{i=1}^{m_{0}} z_{(n-1) m_{0}+i}^{\prime}$ for every $n \in \mathbb{N}$. Then for all finite subsets $A \subset \mathbb{N}$ and all sequences of signs $\left(\epsilon_{n}\right)$,

$$
\begin{aligned}
K+\varepsilon / 2 \geq & \left\||A|^{-1} \sum_{m, n \in A} \epsilon_{n} w{ }_{n}^{m}\right\| \geq\left|\left\||A|^{-1} m_{0}^{-1} \sum_{m, n \in A} \sum_{i=1}^{m_{0}} \epsilon_{n} u_{(n-1) m_{0}+i}^{\prime m}\right\|\right. \\
& \geq K \frac{\varepsilon}{2}
\end{aligned}
$$

Thus
$\left\||A|^{-1} \sum_{m, n \in A} \epsilon_{n} w{ }_{n}^{m}\right\| \leq \phi_{v s m}\binom{w}{n}+\varepsilon$ for all finite subsets $A \subset \mathbb{N}$ and all sequences of signs $\left(\epsilon_{n}\right)$. Of course, $\left(w_{n}^{m}\right)$ is boublea sequence of $\operatorname{svsmfor}\left(v{ }_{n}^{m}\right)$.
Definition 5. Let V, Y be Banach spaces and $T \in \mathcal{L}(V, Y)$. Define

$$
\Phi_{A B S}(T)=\sup \left\{\phi_{v s m}\left(T v{\underset{n}{m}}_{m}^{)}:\left(v{\underset{n}{m}}_{n}\right) \subset B(V)\right\}\right.
$$

Proposition 6. $\Phi_{A B S}$ is a seminorm in $\mathcal{L}(V, Y) . \Phi_{A B S}(T)=0$ if and only if $T \in A B S(V, Y)$.
Proof.Clearly, $\Phi_{A B S}(\lambda T)=|\lambda| \Phi_{A B S}(T)$ for all scalars λ. We show that for all $S, T \in \mathcal{L}(V, Y), \Phi_{A B S}(S+T) \leq$ $\Phi_{A B S}(S)+\Phi_{A B S}(T)$. Let $\varepsilon>0$ and $\left(v{ }_{n}^{m}\right) \subset B(V)$. By Proposition 4, there exists a sequence ($v_{n}^{\prime m}$) of svsm for $\left(v \begin{array}{l}v \\ n\end{array}\right)$ such that for thesequence $\left(S v_{n}^{m}\right)$ of svsm for $\left(S v l_{n}^{m}\right)$,

$$
\left\||A|^{-1} \sum_{m, n \in A} \epsilon_{n} S v_{n}^{\prime m}\right\| \leq \phi_{v s m}\left(S v_{n}^{\prime m}\right)+\varepsilon
$$

for all finite subsets $A \subset \mathbb{N}$ and all sequences of signs $\left(\epsilon_{n}\right)$. Alsoby Proposition 4, we get a sequence $\left(v_{n}{ }^{\prime \prime}\right)$ of svsm for $\left(v_{n}^{\prime m}\right)$, such that for all finite subsets $A \subset \mathbb{N}$ and all sequences of $\operatorname{signs}\left(\epsilon_{n}\right)$,

$$
\left\||A|^{-1} \sum_{m, n \in A} \epsilon_{n} T v_{n}^{\prime \prime m}\right\| \leq \phi_{v s m}\left(T v{\underset{n}{n}}_{m}^{n}\right)+\varepsilon .
$$

Since the relation svsm is transitive,

$$
\begin{gathered}
\phi_{v s m}\left((S+T) v \begin{array}{c}
m \\
n
\end{array}\right) \leq \phi_{v s m}\left((S+T) v_{n}^{\prime \prime m}\right) \leq\left\||A|^{-1} \sum_{m, n \in A} \epsilon_{n}(S+T) v_{n}^{\prime \prime m}\right\| \\
\leq\left\||A|^{-1} \sum_{m, n \in A} \epsilon_{n} S v_{n}^{\prime \prime m}\right\|+\left\||A|^{-1} \sum_{m, n \in A} \epsilon_{n} T v_{n}^{\prime \prime m}\right\| \\
\leq \phi_{v s m}\left(S v_{n}^{\prime m}\right)+\phi_{v s m}\left(T v_{n}^{\prime \prime m}\right)+2 \varepsilon \leq \Phi_{A B S}(S)+\Phi_{A B S}(T)+2 \varepsilon .
\end{gathered}
$$

By an arbitrary choice of $\varepsilon>0$ and $\left(v{ }_{n}^{m}\right) \subset B(V)$, we obtain the conclusion.
T has the ABS property if and only if for every bounded sequence $\left(v \begin{array}{c}m \\ n\end{array}\right)$ in X there exist a subsequence $\left(v_{n}^{\prime m}\right)$ of v_{n} and a sequence of signs $\left(\epsilon_{n}\right)$ such that the Cesàro means of $\left(\epsilon_{n} T v_{n}^{\prime m}\right)$ converge to 0 in Y. From this T has the ABS property if and only if for every bounded sequence $\left(v \begin{array}{c}m \\ n\end{array}\right)$ in $V, \phi_{v s m}\left(T v{\underset{n}{m}}_{n}^{m}\right)=0$. By positive homogeneity of $\Phi_{A B S}, T$ has the ABS property if and only if $\Phi_{A B S}(T)=0$.

III. Operators on invariant spaces and Banach-Saks property and $\boldsymbol{l}_{\boldsymbol{p}}(\boldsymbol{X})$ spaces

Let X be a Banach space, $1<p<\infty$ and let $\left(e_{i}\right)$ be the unit vector basis of l_{p}. We denote by $l_{p}(V)$ the Banach space of all sequences
$v=(v(i))$ such that $v(i) \in V$ for every $i \in \mathbb{N}$ and

$$
\|v\|_{l_{p}(V)}=\left\|\sum_{i=1}^{\infty}\right\| v(i)\left\|_{V} e_{i}\right\|_{l_{p}}<\infty .
$$

In the sequel, we also deal with $l_{p}(V)$ of the families $(v(i))_{i \in \mathbb{Z}}$ indexed by integers. Partington [6] proved that $l_{p}(V), 1<p<\infty$, has the BS property if and only if so has V (in fact, a more general setting of direct sums was used). We use similar arguments as in the proof of Theorem 3 of [6] to show the next lemma.
Lemma7. Suppose V be a Banach space and $\left(v \underset{n}{m}\right.$) a boundeddobule sequence in $l_{p}(\mathrm{X}), 1<p<\infty$. Then for every $\varepsilon>0$ there exist $m \in \mathbb{N}$ and double a sequence $\binom{w}{n}$ of sam for $\left(v{ }_{n}^{m}\right)$ such that for all finite subsets $\mathrm{A} \subset \mathbb{N}$ and all sequences of $\operatorname{signs}\left(\epsilon_{n}\right)$,

$$
\left\|\sum_{i=m+1}^{\infty}\right\||A|^{-1} \sum_{m, n \in A} \epsilon_{n} w_{n}^{m}(i)\left\|_{V} e_{i}\right\|_{l_{p}}<\varepsilon
$$

Proof.For $v{ }_{n}^{m}=\left(v{ }_{n}^{m}(i)\right) \in l_{p}(V)$, put $t{ }_{n}^{m}=\sum_{i=1}^{\infty}\left\|v{ }_{n}^{m}(i)\right\|_{V} e_{i} \in l_{p}$. Since l_{p} has the BS property, by ErdÖs-Magidor's theorem in [2], there exists a subsequence $\left(\begin{array}{l}{ }_{n}^{\prime}{ }_{n}^{m}\end{array}\right)$ of $\binom{t}{n}$ such that the Cesàro means of all subsequences of $\left(t{ }_{n}^{\prime m}\right)$ converge to the same limit t in l_{p}. Then $\phi_{a m}\left(s_{n}^{m}-t\right)=0$ for every sequence $\left(s_{n}^{m}\right)$ of sam for $\binom{t^{\prime} m}{n}$. By Proposition 4, there exists a sequence $\left(\begin{array}{ll}s & m \\ n\end{array}\right)$ of sam for $\left(\begin{array}{l}t_{n}^{\prime} m\end{array}\right)$ such that for everyfinite subset $A \subset \mathbb{N}$,

$$
\left\|\sum_{i=1}^{\infty}\binom{m}{n}-t\right\|_{l_{p}}<\varepsilon / 2 .
$$

There exist $k_{0} \in \mathbb{N}$ and a sequence $\left(A_{n}\right)$ of finite subsets of \mathbb{N} with $\max A_{n}<\min A_{n}+1$ and $\left|A_{n}\right|=k_{0}$ for all n such that
 subsequence $\left(v v_{n}^{\prime m}\right)$ of $\left(v \begin{array}{l}m \\ n\end{array}\right)$ such that
$t_{n}^{\prime m}=\sum_{i=1}^{\infty}\left\|v_{n}^{\prime m}(i)\right\|_{V} e_{i}$, and then we putw $w_{n}=k_{0}^{-1} \sum_{k \in A_{n}} v_{k}^{\prime}$.
Let $t=\sum_{i=1}^{\infty} \alpha_{i} e_{i}$ and let $m \in \mathbb{N}$ satisfy $\left\|\sum_{i=m+1}^{\infty} \alpha_{i} e_{i}\right\|_{l_{p}}<\varepsilon / 2$. Then for every finite subset $A \subset \mathbb{N}$,

$$
\left\|\sum_{i=m+1}^{\infty}\left(|A|^{-1} \sum_{n \in A} k_{0}^{-1} \sum_{k, m \in A_{n}}\left\|v_{k}^{\prime m}(i)\right\|_{V}-\alpha_{i}\right) e_{i}\right\|_{l_{p}}<\varepsilon / 2 .
$$

It follows that

$$
\left\|\sum_{i=m+1}^{\infty}\left(|A|^{-1} \sum_{n \in A} k_{0}^{-1} \sum_{k, m \in A_{n}}\left\|v_{k}^{\prime m}(i)\right\|_{V}\right) e_{i}\right\|_{l_{p}}<\varepsilon
$$

By hyperorthogonality of the basis $\left(e_{i}\right)$, for all sequences of signs $\left(\epsilon_{n}\right)$,

$$
\left\|\sum_{i=m+1}^{\infty}\right\||A|^{-1} \sum_{m, n \in A} \epsilon_{n} w{ }_{n}^{m}(i)\left\|_{V} e_{i}\right\|_{l_{p}}<\varepsilon
$$

Theorem 8. Put V, Y be Banach spaces and $1<p<\infty$. If
$T \in \mathcal{L}(V, Y)$ andif $\tilde{T} \in \mathcal{L}\left(l_{p}(V), l_{p}(Y)\right)$ is given by $\tilde{T} v=(T v(i))$ for everyv $=(v(i))$, then $\Phi_{A B S}(T)=$ $\Phi_{A B S}(\tilde{T})$.
Proof.Since $l_{p}(V)$ contains isometric copies of $V, \Phi_{A B S}(T) \leq \Phi_{A B S}(\tilde{T})$. Fix $\varepsilon>0$. There exists $\left(v_{n}\right) \subset$ $B\left(l_{p}(V)\right)$ such that $\Phi_{A B S}(\tilde{T})-\varepsilon \leq \emptyset_{v s m}\left(\tilde{T} v_{n}\right)$. By Lemma 7, there exist $m \in \mathbb{N}$ and a sequence $\left(v_{n}^{\prime m}\right)$ of samfor $\left(v{ }_{n}^{m}\right)$ such that for the sequence $\left(\tilde{T} v_{n}^{\prime}\right)$ of sam for $\left(\tilde{T} v_{n}\right)$, and for all finite subsets $A \subset \mathbb{N}$ and all sequences of signs $\left(\epsilon_{n}\right)$,

$$
\left\|\sum_{i=m+1}^{\infty}\right\||A|^{-1} \sum_{m, n \in A} \epsilon_{n} T v_{n}^{\prime m}(i)\left\|_{V} e_{i}\right\|_{l_{p}}<\varepsilon
$$

There exists a subsequence $\left(v_{n}^{\prime m}\right)$ of $\left(v_{n}^{\prime m}\right)$ such that for each $1 \leq i \leq m$ thelimit $\beta_{i}=$ $\lim _{m, n}\left\|v{ }_{n}^{" m}(i)\right\|_{V}$ exists and $\left\|v{ }_{n}^{" m}(i)\right\|_{V}<\beta_{i}+\frac{\varepsilon}{m}$ for every n. Putting $v_{n}(i)=\left(\beta_{i}+\frac{\varepsilon}{m}\right)^{-1} T v{ }_{n}^{" m}(i)$, we have $\left(v{ }_{n}^{m}(i)\right) \subset T(B(V))$ for every $1 \leq i \leq m$.By Proposition 4, there exists a sequence $\left(v_{n}^{m 1}\right)$ of svsm for $\left(v_{n}^{\prime \prime}{ }^{m}\right)$ such thatfor the sequence $\left(v_{n}^{m 1}(1)\right)$ of svsm for $\left(v_{n}^{m}(1)\right)$, where $v_{n}^{1}(i)=\left(\beta_{i}+\frac{\varepsilon}{m}\right)^{-1} T v_{n}^{1}(i), 1 \leq$ $i \leq m$, we have

$$
\left\||A|^{-1} \sum_{m, n \in A} \epsilon_{n} v_{n}^{m 1}(1)\right\|_{Y} \leq \emptyset_{v s m}\left(v_{n}^{m 1}(1)\right)+\varepsilon
$$

for all finite subsets $A \subset \mathbb{N}$ and all sequences of signs $\left(\epsilon_{n}\right)$.
Proceeding in this way consecutively for $i=2, \ldots, m$, in the $k t h$ step, we obtain a sequence (v_{n}^{k}) of svsm for $\left(v_{n}^{k-1}\right)$ such that for the sequence $\left(v_{n}^{k}(k)\right)$ of svsm for $\left(v_{n}^{k-1}(k)\right)$, where $v_{n}^{k}(i)=\left(\beta_{i}+\varepsilon / m\right)^{-1} T v_{n}^{k}(i), 1 \leq$ $i \leq m$, we have

$$
\left\||A|^{-1} \sum_{n \in A} \epsilon_{n} v_{n}^{k}(k)\right\|_{Y} \leq \emptyset_{v s m}\left(v_{n}^{k}(k)\right)+\varepsilon
$$

for all finite subsets $A \subset \mathbb{N}$ and all sequences of signs $\left(\epsilon_{n}\right)$. In this way, all sequences $\left(v_{n}^{m}(i)\right), 1 \leq i \leq m$, are built on the common sequence $\left(v_{n}^{m}\right)$ of svsm for $\left(v_{n}\right)$, and for all finite subsets $A \subset \mathbb{N}$ and all sequences of signs $\left(\epsilon_{n}\right)$,

$$
\left\||A|^{-1} \sum_{n \in A} \epsilon_{n} v_{n}^{m}(i)\right\|_{Y} \leq \emptyset_{v s m}\left(v_{n}^{m}(i)\right)+\varepsilon, 1 \leq i \leq m
$$

It follows that

$$
\begin{gathered}
\emptyset_{v s m}\left(\tilde{T} v_{n}\right) \leq \emptyset_{v s m}\left(\tilde{T} v_{n}^{m}\right) \leq\left\|\sum_{i=1}^{m}\right\||A|^{-1} \sum_{n \in A} \epsilon_{n} T v_{n}^{m}(i)\left\|_{Y} e_{i}\right\|_{l_{p}}+\varepsilon \\
=\left\|\sum_{i=1}^{m}\right\|\left(\beta_{i}+\varepsilon / m\right)|A|^{-1} \sum_{n \in A} \epsilon_{n} v_{n}^{m}(i)\left\|_{Y} e_{i}\right\|_{l_{p}}+\varepsilon \\
\left\|\sum_{i=1}^{m}\left|\beta_{i}+\varepsilon / m\right| e_{i}\right\|_{l_{p}} \max _{1 \leq i \leq m}\left\||A|^{-1} \sum_{n \in A} \epsilon_{n} v_{n}^{m}(i)\right\|_{Y}+\varepsilon \\
\leq\left(1+\varepsilon m^{1 / p-1}\right) \max _{1 \leq i \leq m}\left\{\emptyset_{v s m}\left(v_{n}^{m}(i)\right)+\varepsilon\right\}+\varepsilon .
\end{gathered}
$$

There exists $1 \leq j \leq m$ such that $\emptyset_{v s m}\left(v_{n}^{m}(j)\right)=\max _{1 \leq i \leq m} \emptyset_{v s m}\left(v_{n}^{m}(i)\right)$.
Since $\left(v_{n}^{m}(j)\right)$ is a sequence of svsm for $\left(v_{n}(j)\right)$, we have $\left(v_{n}^{m}(j)\right) \subset T(B(V))$ andconsequently,

$$
\Phi_{A B S}(\tilde{T})-2 \varepsilon \leq\left(1+\varepsilon m^{1 / p-1}\right)\left(\Phi_{A B S}(T)+\varepsilon\right)
$$

Letting $\varepsilon \rightarrow 0$, we get $\Phi_{A B S}(\tilde{T}) \leq \Phi_{A B S}(T)$.
Corollary 9. The space $l_{p}(V), 1<p<\infty$, has the ABS property if and only if V has the ABS property.

IV. Invariant spaces and Banach-Saks property and real interpolation

We recall briefly some basic definitions and facts concerning real interpolation. For a thorough treatment we refer to $[4,5,10]$.
If two Banach spaces A_{0} and A_{1} are linearly and continuously embedded in a common Hausdorff topological vector space V, we call $\vec{A}=\left(A_{0}, A_{1}\right)$ an interpolationpair. Then $\Delta(\vec{A})=A_{0} \cap A_{1}, \Sigma(\vec{A})=A_{0}+A_{1}$ are Banach spaces with norms

$$
\|a\|_{\Delta(\vec{A})}=\max \left\{\|a\|_{A_{0}},\|a\|_{A_{1}}\right\},\|a\|_{\Sigma(\vec{A})}=\inf \left\{\left\|a_{0}\right\|_{A_{0}}+\left\|a_{1}\right\|_{A_{1}}: a_{0}+a_{1}=a\right\} .
$$

We consider a discrete method of construction of the real interpolation spaces of Lions and Peetre [3]. For $0<\theta<1$ and $1<p<\infty$, let

$$
A_{\theta, p}=\left\{a \in \Sigma(A):\|a\|_{A_{\theta, p}}<\infty\right\},
$$

where

$$
\|a\|_{A_{\theta, p}}=\operatorname{infmax}\left\|\left(2^{i \theta} a_{0}(i)\right)\right\|_{l_{p}\left(A_{0}\right)},\left\|\left(2^{i(\theta-1)} a_{1}(i)\right)\right\|_{l_{p}\left(A_{1}\right)},
$$

the infimum being taken over all families $\left(a_{0}(i)\right) \subset A_{0}$ and $\left(a_{1}(i)\right) \subset A_{1}$ with $a_{0}(i)+a_{1}(i)=a$ for all $i \in \mathbb{Z}$. Then $\Delta(A) \subset A_{\theta, p} \subset \Sigma(A)$ with continuous embeddings. The Banach space $A_{\theta, p}$ with norm $\|.\|_{A_{\theta, p}}$
is called a real interpolation space with respect to $A=\left(A_{0}, A_{1}\right)$. If
$a \in A_{\theta, p}$, then

$$
\|a\|_{A_{\theta, p}} \leq 2^{\theta(1-\theta)}\left\|\left(2^{i \theta} a_{0}(i)\right)\right\|_{l_{p}\left(A_{0}\right)}^{1-\theta}\left\|\left(2^{i(\theta-1)} a_{1}(i)\right)\right\|_{l_{p}\left(A_{1}\right)}^{\theta}
$$

for all families $\left(a_{0}(i)\right) \subset A_{0}$ and $\left(a_{1}(i)\right) \subset A_{1}$ with $a_{0}(i)+a_{1}(i)=a$ for all $i \in \mathbb{Z}$ (see $\left.[1,5,7]\right)$.
Let $A_{\theta, p}$ and $B_{\theta, p}$ be two interpolation spaces with respect to the interpolation pairs $\quad \vec{A}=\left(A_{0}, A_{1}\right) \quad$ and $\vec{B}=\left(B_{0}, B_{1}\right)$, and let
$T: \Sigma(\vec{A}) \rightarrow \Sigma(\vec{B})$ be a linear operator. We write $T: \vec{A} \rightarrow \vec{B}$, if for
$j=0,1$,the restriction $T \mid A_{j}$ is a bounded operator into B_{j}.
For every $T: \vec{A} \rightarrow \vec{B}$,

$$
\left\|T: A_{\theta, p} \rightarrow B_{\theta, p}\right\| \leq 2^{\theta(1-\theta)}\left\|T: A_{0} \rightarrow B_{0}\right\|^{1-\theta}\left\|T: A_{1} \rightarrow B_{1}\right\|^{\theta} .
$$

we show that this classical inequality concerning boundedness has its counterpart for the ABS property.
Lemma 10 Let W be an invariant subspace of V under T. Then $m T W$ divides $m T$.
If $A=\left(\begin{array}{ll}B & C \\ O & D\end{array}\right)$, then $A^{k}=\left(\begin{array}{cc}B^{k} & C_{k} \\ O & D^{k}\end{array}\right)$.
Example 11 Let $W=W_{1}, \ldots . W_{K}$ be the space generated by all eigenvectors of T. Then W is invariant under T. Let $B^{\prime}=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ be the basis for W and extend it to a basis \mathcal{B} for V. Then

$$
[T]_{B}=\left(\begin{array}{ll}
B & C \\
O & D
\end{array}\right)
$$

and
$B=\left[T_{W}\right]_{B^{\prime}}=\operatorname{diag}\left(c_{1}, \ldots, c_{1}, c_{2}, \ldots, c_{2}, \ldots, c_{k}, \ldots, c_{k}\right)$.
Corollary 12. $\Phi_{\text {ABS }}$ isaseminorm in $\mathcal{L}(\mathrm{X}, \mathrm{Y}) . \Phi_{\mathrm{ABS}}(\mathrm{T})=0$ if and only if $\mathrm{T} \in \operatorname{ABS}(\mathrm{X}, \mathrm{Y})$.
Proof. Clearly, $\Phi_{\mathrm{ABS}}(\lambda \mathrm{T})=|\lambda| \Phi_{\mathrm{ABS}}(\mathrm{T})$ for all scalars λ. We show that for all $\mathrm{S}, \mathrm{T} \in \mathcal{L}(\mathrm{X}, \mathrm{Y}), \Phi_{\mathrm{ABS}}(\mathrm{S}+\mathrm{T}) \leq$ $\Phi_{\mathrm{ABS}}(\mathrm{S})+\Phi_{\mathrm{ABS}}(\mathrm{T})$. Let $\varepsilon>0$ and $\left(v_{n}+w_{n}\right) \subset B(V)$. By Proposition 4, there exists a sequence $\left(v_{n}^{\prime}+w_{n}^{\prime}\right)$ of svsm for $\left(v_{n}+w_{n}\right)$ such that for thesequence $\left(S\left(v_{n}^{\prime}+w_{n}^{\prime}\right)\right)$ of svsm for $\left(S\left(v_{n}+w_{n}\right)\right)$,

$$
\left\||A|^{-1} \sum_{n \in A} \epsilon_{n} S\left(v_{n}^{\prime}+w_{n}^{\prime}\right)\right\| \leq \phi_{v s m}\left(S\left(v_{n}^{\prime}+w_{n}^{\prime}\right)\right)+\varepsilon
$$

for all finite subsets $A \subset \mathbb{N}$ and all sequences of signs $\left(\epsilon_{n}\right)$. Again applying Proposition 4, we get a sequence $\left(v_{n}^{\prime \prime}+w_{n}^{\prime \prime}\right)$ of svsm for $\left(v_{n}^{\prime}+w_{n}^{\prime}\right)$, such that for all finite subsets $A \subset \mathbb{N}$ and all sequences of signs $\left(\epsilon_{n}\right)$,

$$
\left\||A|^{-1} \sum_{n \in A} \epsilon_{n} T\left(v_{n}^{\prime \prime}+w_{n}^{\prime \prime}\right)\right\| \leq \phi_{v s m}\left(T\left(v_{n}+w_{n}\right)\right)+\varepsilon
$$

Since the relation svsm is transitive,

$$
\begin{gathered}
\phi_{v s m}\left((S+T)\left(v_{n}+w_{n}\right)\right) \leq \phi_{v s m}\left((S+T)\left(v_{n}^{\prime \prime}+w_{n}^{\prime \prime}\right)\right) \leq\left\||A|^{-1} \sum_{n \in A} \epsilon_{n}(S+T)\left(v_{n}^{\prime \prime}+w^{\prime \prime}\right)_{n}\right\| \\
\leq\left\||A|^{-1} \sum_{n \in A} \epsilon_{n} S\left(v_{n}^{\prime \prime}+w_{n}^{\prime \prime}\right)\right\|+\left\||A|^{-1} \sum_{n \in A} \epsilon_{n} T\left(v_{n}^{\prime \prime}+w_{n}^{\prime \prime}\right)\right\| \\
\leq \phi_{v s m}\left(S\left(v_{n}^{\prime}+w_{n}^{\prime}\right)\right)+\phi_{v s m} T\left(v_{n}^{\prime \prime}+w_{n}^{\prime \prime}\right)+2 \varepsilon \leq \Phi_{A B S}(S)+\Phi_{A B S}(T)+2 \varepsilon .
\end{gathered}
$$

By an arbitrary choice of $\varepsilon>0$ and $\left(v_{n}+w_{n}\right) \subset B(V)$, we obtain the conclusion.
Corollary 13. Let $A_{\theta, p}$ and $B_{\theta, p}$ with $0<\theta<1$ and $\varepsilon>0$ be real interpolation spaces with respect to interpolation pairs
$\vec{A}=\left(A_{0}, A_{1}\right)$ and $\vec{B}=\left(B_{0}, B_{1}\right)$.Then for every $T: \vec{A} \rightarrow \vec{B}$,

$$
\Phi_{A B S}\left(T: A_{\theta, p} \rightarrow B_{\theta, p}\right) \leq 2^{\theta(1-\theta)} \Phi_{A B S}^{1-\theta}\left(T: A_{0} \rightarrow B_{0}\right) \Phi_{A B S}^{\theta}\left(T: A_{1} \rightarrow B_{1}\right)
$$

ProofFix $\varepsilon>0$. Let $\left(a_{n}\right)$ be a sequence in $B\left(A_{\theta, p}\right)$.For each a_{n} there exist $v_{j n}=\left(2^{i(\theta-j)} a_{j n}(i)\right)_{i \in \mathbb{Z}} \in$ $B\left(l_{p}\left(A_{j}\right)\right), j=0,1$, such that $a_{0 n}(i)+a_{1 n}(i)=a_{n}$ for all $i \in \mathbb{Z}$. Set $w_{j n}=\left(2^{i(\theta-j)} T a_{j n}(i)\right)_{i \in \mathbb{Z}}$ for
$j=0,1$ and every $n \in \mathbb{N}$. As in the proof of subadditivity of $\Phi_{A B S}$, by Proposition 4 , passing to a sequence of svsm built on a common sequence of svsm for $\left(a_{n}\right)$, we may assume that for all finite subsets
$A \subset \mathbb{N}$ and all sequences of signs $\left(\epsilon_{n}\right)$,

$$
\left\||A|^{-1} \sum_{n \in A} \epsilon_{n} w_{j n}\right\|_{l_{p\left(B_{j}\right)}} \leq \emptyset_{v s m}\left(w_{j n}\right)+\varepsilon, j=0,1 .
$$

Let $\widetilde{T}_{j}: l_{p}\left(A_{j}\right) \rightarrow l_{p}\left(B_{j}\right), j=0,1$, be defined as the operator \tilde{T} in Theorem 8. Then $w_{j n}=\tilde{T} v_{j n}$. It follows that

$$
\emptyset_{v s m}\left(T a_{n}\right) \leq\left\||A|^{-1} \sum_{n \in A} \epsilon_{n} T a_{n}\right\|_{B_{\theta, p}}
$$

$$
\begin{gathered}
\leq 2^{\theta(1-\theta)}\left\||A|^{-1} \sum_{n \in A} \epsilon_{n} w_{0 n}\right\|_{l_{p}\left(B_{0}\right)}^{1-\theta}\left\||A|^{-1} \sum_{n \in A} \epsilon_{n} w_{1 n}\right\|_{l_{p}\left(B_{1}\right)}^{\theta} \\
\leq 2^{\theta(1-\theta)}\left(\emptyset_{v s m}\left(w_{0 n}\right)+\varepsilon\right)^{1-\theta}\left(\emptyset_{v s m}\left(w_{0 n}\right)+\varepsilon\right)^{\theta} \\
\leq 2^{\theta(1-\theta)}\left(\Phi_{A B S}\left(\widetilde{T}_{0}\right)+\varepsilon\right)^{1-\theta}\left(\Phi_{A B S}\left(\widetilde{T}_{1}\right)+\varepsilon\right)^{\theta} .
\end{gathered}
$$

Since $l_{p}(V)$ with families indexed by integers is isometricallyisomorphic to $l_{p}(V)$ with sequences indexed by N, and $\varphi v s m$ is invariant under linear isometries, by Theorem $8, \Phi_{A B S}\left(\tilde{T}_{j}\right)=\Phi_{A B S}\left(T: A_{j} \rightarrow b_{j}\right), j=0,1$.
By an arbitrary choice of ε and

References

[1]. A.G. Garcia, M.A. Hern Jndez-Medina, G. Pérez-Villalón, Oversampling and reconstruction functions with compact support, J. Comput. Appl. Math. 227(2009) 245-253.
[2]. AndrzejKryczka, AlternateSignsBanach-SAKS Property and real Interpolation of Operators , http://www.ams.orgVolume 136, Number 10, October 2008, Pages 3529-3537 S 0002-239(08)09562-2
[3]. S. Heinrich, Closed operator ideals and interpolation, J. Funct. Anal., 35 (1130), 312-411.MR563562 (81f:47045)
[4]. A. Kryczka, S. Prus and M. Szczepanik, Measure of weak noncompactness and real interpolationof operators, Bull. Austral. Math. Soc., 62 (2000), 389-401. MR172942 (2001i:46116)
[5]. J.-L. Lions and J. Peetre, Sur uneclassed'espacesd'interpolation, Inst. Hautes 'Etudes Sci.Publ. Math., 19 (1114), 5-68. MR0165343 (29:2627)
[6]. J.R. Partington, On the Banach-Saks property, Math. Proc. Cambridge Philos. Soc., 82(1127), 369-374. MR0448036 (56:6346)
[7]. H.P. Rosenthal, Weakly independent sequences and the Banach-Saks property, in Durhamsymposium on the relations between infinite dimensional and finite-dimensional convexity,Bull. London Math. Soc., 8 (1126), 1-33.
[8]. H.-O. Tylli, The essential norm of an operator is not self-dual, Israel J. Math., 91 (125),93-110. MR1348307 (11f:47017)
[9]. P. Erd"os and M. Magidor, A note on regular methods of summability and the Banach-Saks property, Proc. Amer. Math. Soc., 59 (1126), 232-234. MR0430511 (55:3601)
[10]. F. Cobos and A. Mart'inez, Extreme estimates for interpolated operators by the real method, J. London Math. Soc. (2), 60 (129), 860-870. MR1753819 (2001e:46128)
[11]. B. Beauzamy, Banach-Saks properties and spreading models, Math. Scand., 44 (1129), 357-384. MR555227 (81a:46018)
[12]. B. Beauzamy, Espacesd'interpolationr'eels: Topologieetg'eom'etrie, Lecture Notes in Mathematics, 666, Springer, Berlin, 1978. MR513228 (80k:46080)
[13]. B. Beauzamy, Propri'et'e de Banach-Saks, Studia Math., 66 (1980), 227-235. MR579729 (81i:46020)
[14]. Adam Zakria and Ibrahim Elkhalil Multidimensional of gradually series band limited functions and frames International Journal of Scientific Research in Engineering Vol. 2, Issue 3, July -Sep 2017, pp.01-17
[15]. Adam zakria1, Ahmed Abdallatif2, Yousif Abdeltuif3,Sampling Expansion in a Series of Shift Invariant Spaces ,ISSN 23213361 © 2016 IJESC

