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Abstract: This article includes an automatic mesh generation scheme foran arbitrary convex domain 

constituted by straight lines or curves employing lower or higher-order quadrilateral finite elements.First, we 

develop the general algorithm for h- and p- version meshes, which require the information of sides of the 

domain and the choice of the order as well as the type of elements.The method also allows one to form the 

desired fine mesh by providing the number of refinements. Secondly, we develop the MATLAB program based 

on the algorithm that provides all the valuable and needful outputs of the nodal coordinates, relation between 

local and global nodes of the elements, and displays the desired meshes. Finally, we substantiate the suitability 

and efficiency of the scheme through the demonstration of several test cases of mesh generation. We firmly 

believe that the automatic h- and p- version mesh generation scheme employing the quadrilateral elements will 

find immense application in the FEM solution procedure. 
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I. Introduction 
Finite element method, the technique of structural analysis, was initially developed as an extension of 

the standard structural analysis procedure and was intended for application to the design of advanced aeroplane 

structures. Gradually the versatility of the method and its underlying rich mathematical basis for application in 

nonstructural areas was recognized by others. As its range of application was being extended rapidly in the early 

1960s, it became apparent that the finite element method is essentially a particular discretization procedure 

which can be employed in the solution of a wide range of field problems. Thus it has much greater importance 

than just as a tool for structural analysis [1]. Nowadays, in many industrial, medical, and economic applications, 

the modelling and numerical simulation of the complex system play a crucial role. Mathematically, such a 

system can be described by partial differential equations (PDEs). For example, heat flow in materials or human 

body parts, torsion beam suspension in a car, aerodynamic properties of an aeroplane, or determination of option 

prices in finance are the problems that can be described as PDE and further can be solved through finite element 

analysis. In contrast, most of these PDEs are likely unsolvable analytically. 

In FEM, the continuous domain of the problem is discretized by using a series of simple geometric 

forms, which are called finite elements. The governing relations on the entire continuous domain are valid on 

each of these elements. Under this supposition, the approximate solution for the entire continuous domain of the 

problem can be obtained by using trial functions, which are also called the shape function. FEM then transforms 

the governing differential equation of the problem domain into an algebraic system of equations, which can then 

be solved easily by known numerical methods. 

Discretization of whole problem domain into simpler parts has many advantages such as- Accurate 

representation of complex geometry, Inclusion of different material properties, Easy representation of the total 

solution, Capture of local effects et cetera. [2]. So, the discretization of the geometry of the problem domain, 

which is called meshing, is one of the essential steps in the procedure of solving PDEs that are described from 

various real-life problems. 

Two types of mesh refinements can be seen in general, h- and p- version mesh refinement. In contrast, 

h-version mesh refinement means that the size of elements is reduced in order to increase the accuracy of the 

solution. On the other hand, p-version mesh refinement increases the polynomial order of the element shape 

functions. It was illustrated based on a linear elastic fracture mechanics problem that sequences of finite element 

solutions based on the p-version converge faster than sequences based on the h-version bySzabóandMehta [3]. 

In the case of p-version meshes, based on having internal node/nodes, two types of elements are seen there, 

Lagrange type and serendipity type elements.  The necessity of meshing elements with any of the given types 

depends upon the purpose needed to serve to solve a real-life problem. Various studies [4, 5] show that the 

accuracy obtained using the Lagrange type element is higher than that of serendipity type elements. However, 

https://en.wikipedia.org/w/index.php?title=Barna_A._Szab%C3%B3&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Mehta_A._K.&action=edit&redlink=1
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due to longer time length, Lagrange type elements are not preferred to use for commercial purposes. Till today 

various mesh generation schemes have been developed [6-11]. Most of the techniques dealt with generating 

structured and unstructured h- version meshes.   According to a study conducted on the ins and outs of mesh 

generation, properties of a proper mesh are – (a) Filling the space (b) Non-overlapping (c) Conforming mesh (d) 

High-quality elements. Further,  since no mathematically sound procedure for obtaining the 'best' mesh 

distribution is available till now [12], more research is needed to obtain the best procedure.  

The necessity, as discussed above, motivates us to develop a new, more uncomplicated technique of 

generating all quadrilateral meshes. In our proposed automatic mesh generation scheme, we have provided an 

algorithm and developed a computer code following the algorithm to generate both h-version and p-version 

quadrilateral element meshes of any arbitrary convex domains according to user's choice. For the proposed 

scheme, the code uses a side-based mesh generation technique where only the coordinates of the vertices are 

needed to provide. Then other internal nodes of all the elements, element connectivity, are calculated, formed in 

the usual way. Finally, it provides all the nodal coordinates and displays the mesh of the domain. If the convex 

domain contains one or more curved sides, the functions that describe those sides should be provided along with 

the coordinates of vertices of that portion. It is anticipated that the code and its utilization are more 

straightforward, uncomplicated, and hence, it may satisfy the requirement of h- and p- version mesh generation 

with quadrilateral elements. 

 

II. Outline of the proposed mesh generation procedure 
In this section, we wish to illustrate the basic idea briefly for generating h- and p- version meshes with 

quadrilateral elements. 

 

 
Figure – 1: A simple diagram showing steps of meshing a domain 
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Let us consider any arbitrary convex domain CNenclosed with 𝐍number of sides, which may be straight 

or curve. Let 𝐌 be the number of curved sides, which can be expressed as functions𝐅𝟏,𝐅𝟐, ………  𝐅𝐌. Evaluation 

of the midpoints𝑴𝒆𝟏 ,𝑴𝒆𝟐 ,𝑴𝒆𝟑 ,…𝑴𝒆𝑵−𝑴 of 𝐍 −𝐌edges(straight sides) and points 𝑴𝑭𝟏 ,𝑴𝑭𝟐 ,…… .𝑴𝑭𝑴  of 

𝐌curved sides is done first, and then the centroid of the domainCNis calculated. Joining all the midpoints/points 

on the curve with the centroid, we get the domain mesh with 𝐍 number of quadrilateral elements. Continuing the 

process according to as the necessity, we will get a fine mesh refinement of the domain with more quadrilateral 

elements. Each refinement will give four times the number of quadrilateral elements than the previous mesh, as 

shown in Fig-1. Meshing with higher-order elements, i.e., p- version meshes, requires similar procedure and 

calculation of internal nodes of each element.  Accordingly, the element connectivity, relation between the local 

and global nodes are needed to form, and coordinates are calculated in the usual way.  

 

2.1 Algorithm for h-version & p-version mesh refinement of an arbitrary convex domain 

We present here an algorithm for meshing a convex polygonal domain CN  with N sides (i.e., N vertices) to 

develop a computer code in MATLAB. 

 

Algorithm.    

Input: 

NE←Required number of elements,       

OE← Required order of elements, 

QUAD← A1× 4 zero matrix (If the domain itself is a quadrilateral), otherwise QUAD is assigned with 1 × 4 

non-zero matrix. 

Nodes← A𝑁 × 2 non-zero matrix whose entries are the x- and y-coordinatesof vertices.   

Type← 1 (For Lagrange), 2(For Serendipity) 

MeshConvex (QUAD, Nodes, NE, OE, Type)  

 

Step 1: Assign RQ, CQ, RN, CN 

respectively row and column of  

QUAD and Nodes array. 

 

Step   2: Repeat step 3 to 5 for I=1 to RQ 

 

Step 3: Calculate the centroid of QUAD  

Furthermore, compare it with Nodes array. 

 

Step 4: Calculate I
th

QUAD  mid nodes 

 Furthermore, compare with Nodes array.  

  

Step 5: Calculation of nodal coordinates without repetition, i.e., if no  

repetition is found, increase the  index of arrayNodes by one. 

 

Step 6: Based on calculated centroid and  I
th

QUAD mid nodes, I
th

QUAD  

element is split into fourquadrilateral elements. 

 

Step 7: If the row of QUAD is less than NE go to step 1 

 

Step 8: If OE=2 and Type = Lagrange, call subroutine Mesh2L (QUAD,  

Nodes), else call subroutine  

Mesh2S (QUAD, Nodes), 

If OE=3 and Type = Lagrange, call subroutine Mesh3L (QUAD, 

Nodes) else call subroutine 

Mesh3S (QUAD, Nodes) 

 

Step 9:  Print QUAD and Nodes array  

Step 10: Draw the figure of the discretized domain  

Mesh2L(QUAD, Nodes) 

 

Step 1: Assign RQ, CQ, RN, CN 

 respectively row and column of QUAD and Nodes array. 
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Step 2: Repeat step 3 to 5 for I=1 to RQ 

 

Step 3: Temp ←Mid-node of QUAD(I).  

 

Step 4: If any entry of Temp belongs to   

Nodes array,        

            Return to Step 2. 

            Else Nodes will be updated with   

             new entry Tempand the index of  

Nodes will be increased by one. 

 

Step 5: Calculate the centroid of QUAD(I) 

 

Step 6: Based on calculated internal nodes from step 4 and 5, every 4-noded  

linear QUAD(I) becomes 9-noded quadratic element. 

 

Mesh3L(QUAD, Nodes) 

 

Step 1: Assign RQ, CQ, RN, CN 

 respectively row and column of  

QUAD and Nodes array. 

 

Step 2: Repeat step 3 to 5 for I=1 to RQ 

 

Step 3: Temp ←Nodes that divide edges of  

QUAD(I) into 1:2  and 2:1 proportion respectively.  

 

Step 4: If any entry of Temp belongs to   

Nodes array,        

            Return to Step 2. 

            Else Nodes will be updated with   new entry Tempand the index of  

Nodes will be increased by one. 

 

Step 5: Calculate the Nodes that divide the parallel lines (created by each 

corresponding internal nodes of QUAD(I)calculated in step 4) into  

1:2 and 2:1 proportion, respectively. 

 

Step 6: Based on calculated internal nodes from step 4 and 5, every 4-noded  

linear QUAD(I) becomes 16-noded cubic element.  

 

Based on the above algorithm, a complete computer code in MATLAB is developed for meshing the 

arbitrary convex domain. Two subroutines Mesh2S and Mesh3S, which mesh domain with serendipity type 

elements, are excluded due to its immense similarity with the other two subroutines Mesh2L and Mesh3L, 

respectively. Instead, in Mesh2L and Mesh3L, central internal nodes of an element are calculated, which are not 

necessary in case of the elements of serendipity type.   

 

2.2 Required input, output, and illustration  

To illustrate the application of the algorithm,  we consider some domains of convex types for 

experimental interest. So, some of the domains are convex with polygonal boundary, and others are convex 

domains having one or more curved sides. The nodal coordinates of vertices describe the straight sides, whereas 

the vertices and the curve functions can describe the curved sides. So, the required inputs for executing the 

MATLAB program for meshing domains of types discussed above are as follows –  

(a) For convex domains with polygonal boundary, required inputs are – Nodal coordinates of the domain's 

vertices, the order of the elements under consideration for meshing the domain, number of mesh refinements 

(user’s choice), type of elements, i.e., Lagrange or serendipity.  

(b) For convex domains with curve side boundary - Nodal coordinates of the domain's vertices, Number of 

curve sides, expression of curve functions, boundary nodes in the curvature part, the order of the elements under 

consideration, number of mesh refinements (user's choice), type of elements, i.e., Lagrange or serendipity. 
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The output of the program includes coordinates of nodes of the meshed domain, representation of elements 

using the connectivity of nodes, and a visual illustration of the meshed domain. We have demonstrated some 

cases of h- version (Figure – 2–6) and p- version (Figure – 7) meshing of convex domains acquired by executing 

the developed MATLAB code based on the technique discussed in the previous section. Convex domains of all 

types have been considered here. If the domain types are categorized, some categories can be seen as follows – 

(1) Convex domain with polygonal boundary (Figure – 2) 

(2) Convex domain having both straight and curved boundaries. (Figure – 3, Figure – 4) 

(3) Convex domain having only curved boundaries, i.e., the domain enclosed by curve/curves. (Figure – 5, 

Figure – 6) 

 

 
 

 
Figure-2: Mesh of a convex polygon (a) Initial domain (b) 1

st
(c) 5

th
(d) 6

th
 h-version mesh refinement 
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Figure-3: Mesh of a convex domain with 2 straight and one curve sides(a) Initial domain 

(b) 4th(c) 6thh- version mesh refinement 
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Figure-4: Meshof a convex domain with 2 straight sides and 2 curve sides of different function (a) Initial 

domain (b) 4th(c) 6thh- version mesh refinement 

 

 



Side based Automatic Mesh generation scheme for a general convex domain with quadrilaterals 

DOI: 10.9790/5728-1506046575                                     www.iosrjournals.org                                        72 | Page 

 
Figure-5: Mesh of a convex domain enclosed by curves(a) Initial domain (b)3rd  (c) 7th 

h- version mesh refinement 

 

 
 

 
Figure-6: Mesh of a convex domain enclosed by curves(a) Initial domain (b)4th 

(c) 7thh- version mesh refinement 
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Figure – 7: p-version meshes of convex domains 

 

III. Discussions 
The time demand and the necessity to develop a new, more straightforward technique of generating all 

quadrilateral meshes are entirely undertaken in this study. We tried to develop the algorithm for the said task to 

utilize all the useful features of MATLAB. Finally, we have developed an algorithm and a computer code in 

MATLAB to generate both h- and p-version quadrilateral element meshes of any arbitrary convex domains 

according to the user's choice. The developed code uses a side-based mesh generation technique where only the 

coordinates of the vertices are needed to provide. Then other internal nodes of the elements are duly calculated, 

and as a result, it provides all the necessary data and displays the desired mesh of the domain under 

consideration. If the convex domain contains one or more curved sides, the functions that describe those sides 

should be provided along with the coordinates of vertices of that portion. In many test cases, the code is tested 

and found very lovely meshes. For clarity and reference, we have included a few convex domains and their 

meshes with different types of quadrilaterals.It is anticipated that such domains and corresponding meshes will 

be sufficient for a clear understanding of the suitability and efficiency of the developed algorithm and 

MATLAB code of this study. 

 

IV. Conclusion 
We considered an automatic mesh generation scheme for an arbitrary convex domain constituted by 

straight lines or curves employing lower or higher-order quadrilateral finite elements. For this, we developed 

first the general algorithm for h- and p- version meshes with quadrilaterals. The algorithm requires only the 

information of sides, the choice of the order along with the type of elements. It also allows one to form the 

desired fine mesh byproviding the number of refinements. Secondly, we developed the computer code in 

MATLAB based on the algorithm that provides all the valuable and needful outputs of the nodal coordinates, 
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relation between local and global nodes of the elements, and displays the desired meshes. For the experimental 

interest, we considered some convex domains of which the boundary constituted (1) only with straight sides, (2) 

by straight and curved sides, and (3) only with curved sides. The suitability and efficiency of the scheme 

substantiated through the demonstration of several test cases of mesh generation. We strongly assert that the 

code for automatic h- and p- version mesh generation employing the quadrilateral elements will find immense 

application in the FEM solution procedure. 
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Appendix A 

In this section, we presentsample MATLAB commands to get meshes of various convex domains. The meshed 

domains generated through the execution of the codes are also presented.  

1. Meshing a convex domain with one curved side (of function  𝑦 =  𝑥2 ) 

 

https://en.wikipedia.org/wiki/Finite_element_method
https://doi.org/10.1002/(SICI)1099-0887(199705)13:5%3C343::AID-CNM60%3E3.0.CO;2-2
https://doi.org/10.1002/nme.1620030407
https://doi.org/10.1002/nme.1620150508
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https://courses.csail.mit.edu/18.337/2006/book/Lectures_2004.pdf
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2.  Meshing a convex domain enclosed two curves (function:𝑦1 =  
𝑥2

4
, 𝑦2 =  −

𝑥2

4
+ 8 ) 

 
 

 


