
IOSR Journal of Mathematics (IOSR-JM)  

e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 15, Issue 6 Ser. V (Nov – Dec 2019), PP 73-72 

www.iosrjournals.org 

 

DOI: 10.9790/5728-1506055372                                     www.iosrjournals.org                                        53 | Page 

Impact of Treatment and Isolation on the Dynamics of HIV 

Transmission  
 

Kumama Regassa Cheneke, Geremew Kenassa Edessa, Purnachandra Rao Koya 
Department of Mathematics, Wollega University, Nekemte, Ethiopia 

Corresponding Author: Kumama Regassa Cheneke 

 

Abstract: In this study, a dynamical system of ordinary differential equations has been formulated to describe 

to describe the dynamics of human population subjected to HIV disease. This study classifies human population 

into six compartments as susceptible class, primary class, asymptomatic class, symptomatic class, treatment 

class and AIDS (SPAJTV). A well-possedness of formulated dynamical system has been verified. Additionally, 

parametric expression of basic reproduction number has been constructed using next generation matrix method. 

The equilibrium points of formulated dynamical system are identified. Both Global stability and local stability of 

disease free equilibrium point has been analyzed. The local stability of endemic equilibrium point also analyzed 

using a reproduction number and Routh Hurwitz principle. A disease free equilibrium point is locally and 

globally stable for a reproduction number less than unity and unstable for greater than unity. Sensitivity 

analysis computation shows that death and recruitment rates are more sensitive in reproduction number. 

Finally, numerical solutions of the model equations are simulated using MATLAB. The results and observations 

have been included in the text of this paper lucidly. 
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I. Introduction 
HIV is an infectious disease that caused by a virus called  Human Immunodeficiency Virus that leads to 

the advanced and most severity stage called AIDS which stands for Acquired Immunodeficiency Syndrome. 

Starting from the beginning to the end the virus HIV and its advanced AIDS focus in weaking the immune 

system of the body that fight against antihuman body as natural defense. Starting from its discovery HIV disease 

has brought a great impact in terms of socially, economically, culturally, morally, and physically in all over the 

world. As serious diseases they are sources of discrimination and stigma around the world [1]. Whenever a 

person becomes infectious of HIV virus then his or her immune system becomes weaker and weaker. It leads to 

the poor and at the end it becomes hard for the immune system in order to fight over diseases and infections [1, 

2].  

According to WHO notification along GHO (Global Health Observatory) data in 2018 it is observed 

that since the beginning of the epidemic the total number of population infected by Fata disease HIV is 

estimated to about 75 million people gets infected with the HIV virus. According to the given data in 2018 by 

GHO it is estimated about 32 million human population have been died of HIV. Worldwide census survey of 

HIV infected people indicates that about 37.9 million [32.7-44.0 million] human populations were living with 

HIV at the end of 2018. The age categorical statistics of HIV infected human population estimation described as 

0.8% [0.6-0.9%] of adult aged human population in the range of 15-49 years are living with HIV infection 

worldwide. Although there is a difference in burden to carry out situation associated with the HIV epidemic 

considerably between regions and countries, African region remains as most fatal infected, with approximately 1 

in every 25 adults which constitutes about (3.9%) living with HIV and this accounts for more than two thirds of 

the total human population living with HIV worldwide. 

Based on WHO clinical staging of HIV/AIDS disease, the HIV infection is classified into four distinct 

stages viz.,(i) Primary/Acute stage(ii) Asymptomatic stage (iii) Symptomatic stage and (iv) Advanced AIDS 

stage [2, 4]. 

In our previous work given in [5] we have described the dynamics of human population  by dividing 

total human population into five compartments. In this study we extend the work done in [5] into six 

compartmental model. The procedures of the work are outlined as follows: In Section 2, assumptions of the 

model are stated and based on which a mathematical model for describing the population dynamics of human 

population related to HIV/AIDS disease is formulated. In section 3, well possedness of the model formulation, 

stability analysis of the equilibrium points and reproduction number are included. In Section 4, numerical 
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simulation studies of the model equations are performed by assigning various sets of numerical values to the 

model parameters. In Section 5 sensitivity analysis of model parameters towards the reproduction number is 

carried out. In section 6 Result and Discussion are presented. Finally, the paper ends with concluding remarks in 

Section 7. 

II. Model Formulation 
In this study the deterministic dynamical system of ordinary differential equations has been formulated 

to show the dynamics of human population in the presence of HIV (Human Immunodeficiency Virus) and ART 

as treatment. Here, human population under consideration is divided into six compartments. The descriptions of 

these compartments are as follows:  

(i) Susceptible compartment. It is denoted by   𝑆 𝑡 . These are humans who are free of HIV infection but are 

capable of becoming infected future in infectious environment (ii) Primary compartment. It is denoted 

by  𝑃(𝑡).This compartment includes all humans who infected with HIV for the first time and that do not know 

their HIV status but transmit the disease to others with effective contact (iii) Asymptomatic compartment. It is 

denoted by  𝐴 𝑡 . This compartment includes all humans who know that they are infected with virus but no 

signs of infections is visible and abstain from transmitting virus to others. They also do not want to take any 

treatment because of cultural trends in the society (iv) Symptomatic compartment. It is denoted by  𝐽 𝑡 . This 

compartment includes of infectious humans and they show signs of infections. Such humans manifest their 

weakness as they harmed by virus and abstain from transmitting virus to others and join treatment compartment 

at some rate (v) Treatment compartment. It is denoted by  𝑇 𝑡 . This compartment includes portion of 

symptomatic compartment that join it because of infection (vi) AIDS compartment. It is denoted by  𝑉 𝑡 . This 

compartment includes who are at last stage or advanced stage of HIV.  

Now, a mathematical model of Human Immunodeficiency virus (HIV) is formulated based on the stated 

assumptions on the human population as listed below:  

(i) The total size of human’s population under consideration is assumed to be constant. 

(ii)  The numbers of births and deaths of human population are assumed to be equal. 

(iii) Deterministic dynamical system in the presence of Human Immunodeficiency virus (HIV) classifies 

human population under observation into six compartments as SPAJTV at any time. 

(iv) Susceptible humans are recruited to the compartment 𝑆 𝑡  at some constant rate  𝜏. 

(v) Susceptible humans can be infected if they make effective contact with primary infected population 

whose status of HIV is not known yet and join primary infected compartment at a constant rate   𝛽. 

(vi) Primary infected humans transfer into asymptomatic compartment at a constant rate  𝜅. 

(vii) Asymptomatic humans transfer into symptomatic humans at a rate   𝜃. 

(viii) The symptomatic humans transfer into treatment compartment at the rate 𝜔. 

(ix) All categories of human compartments face the same natural mortality with a rate  𝜇. 

(x) Some treated group leave treatment compartment and transfer to asymptomatic compartment at a constant 

rate of  𝜙 . 
(xi) Some humans under treatment resist drugs and transfer to AIDS compartment at a constant rate  𝛾. 

(xii) All AIDS humans suffer disease induced death at a constant rate  𝛿.  

(xiii) All parameters used in the dynamical system are positive. 

 

Table 1 Notations and description of model variables 
Variable Description 

𝐒 𝐭  Population size of susceptible humans 

𝑷 𝒕  Population size of primary infected humans 

𝐀 𝐭  Population size of asymptomatic humans 

𝐉 𝐭  Population size of symptomatic humans 

𝐓 𝐭  Population size of humans under treatment 

𝐕 𝐭  Population size of AIDS humans 

 

Table 2 Model parameters notations and description 
Parameter Description 

𝜏 Recruitment rate of susceptible human population. With this constant rate new humans 

will born and enter into susceptible compartment 

𝜷 

 

Transmission rate of primary infected humans. With this rate primary infected humans 

transfer into   𝑃 

𝜿 Rate of humans transferring from compartment  𝑃 to  𝐴 

𝜽 Rate of humans transferring from compartment  𝐴 to  𝐽 
𝝎 Rate of humans transferring from compartment  𝐽 to  𝑇  
𝝓 Rate of humans transferring from compartment   𝑇  to 𝐴  

𝝁 Natural death rate. With this rate humans in all compartments die naturally 

𝜸 Rate of humans transferring from compartment   𝑇   to  𝑉. 
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 𝜹  Disease induced death rate of AIDS humans 

 

Now considering basic assumptions and description of both model variables and parameters given the 

schematic diagram of the formulated deterministic dynamical system is described in the Figure 1. 

 

 
Figure 1 Schematic diagram of compartmental structure of the model 

 

Based on the model assumptions, the notations of variables and parameters and the schematic diagram, 

the model equations are formulated and are given as follows:  

 𝑑𝑆 𝑑𝑡 = 𝜏 − 𝛽𝑆 𝑡 𝑃 𝑡 − 𝜇𝑆 𝑡                                       (1) 

  𝑑𝑃 𝑑𝑡 = 𝛽𝑆 𝑡 𝑃 𝑡 −  𝜅 + 𝜇 𝑃 𝑡                                     (2) 

    𝑑𝐴 𝑑𝑡 = 𝜅𝑃 𝑡 + 𝜙𝑇 𝑡 −  𝜃 + 𝜇 𝐴 𝑡                            (3) 

𝑑𝐽 𝑑𝑡 = 𝜃𝐴 𝑡 −  𝜔 + 𝜇 𝐽(𝑡)                                             (4) 

𝑑𝑇 𝑑𝑡 = 𝜔𝐽 𝑡 −  𝜙 + 𝛾 + 𝜇 𝑇(𝑡)                                     (5) 

𝑑𝑉 𝑑𝑡 = 𝛾𝑇 𝑡 − (𝛿 + 𝜇)𝑉                                                  (6) 

The non-negative initial conditions of the model equations (1) – (6) are denoted by   𝑆 0 ≥
0,    𝑃 0 ≥ 0, 𝐴 0 ≥ 0, 𝐽 0 ≥ 0, 𝑇 0 ≥ 0, 𝑉(0) ≥ 0. This system consists of six first order non-linear 

ordinary differential equations. 

 

III. Mathematical analysis of the model 
In this section we describe the mathematical analysis of the present improved and modified model. The 

analysis consists of the following points (i) existence, positivity and boundedness of solutions (ii) Equilibrium 

points (iii) disease free equilibrium points (iv) endemic equilibrium points (v) basic reproduction 

number(vi)stability analysis of the disease free equilibrium points(vii)local stability of disease free equilibrium 

point (viii) global stability of disease free equilibrium point. These mathematical aspects of the model are 

presented and discussed in the following sub-sections respectively. 

 

1.1 Existence, Positivity and Boundedness of solution 

In order to say that the formulated dynamical system is biologically valid and mathematically well-

posed, it is required to show that the solutions of the system of differential equations (1) – (6) exist, non-

negative and bounded for all time 𝑡 . It is done starting with proving Lemma 1. 

Lemma 1 (Existence) Solutions of the model equations (1) – (6) together with the initial conditions𝑆 0 ≥ 0,
𝑃 0 ≥ 0, 𝐴 0 ≥ 0, 𝐽 0 ≥ 0, 𝑇 𝑡 , 𝑉(0) ≥ 0 exist inℝ+

6 i.e. the model variables 𝑆 𝑡 ,   𝑃 𝑡 , 𝐴 𝑡 ,
𝐽 𝑡 ,   𝑇 𝑡  and   𝑉(𝑡)  exist for all  𝑡  and will remain inℝ+

6 . 

Proof: Let the right hand sides of the system of equations (1) – (6) are expressed as follows: 

𝑑𝑆 𝑑𝑡 = 𝜏 − 𝛽𝑆 𝑡 𝑃 𝑡 − 𝜇𝑆 𝑡 ≡ 𝑔1 𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑉  

  𝑑𝑃 𝑑𝑡 = 𝛽𝑆 𝑡 𝑃 𝑡 −  𝜅 + 𝜇 𝑃 𝑡 ≡ 𝑔2 𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑉  

 𝑑𝐴 𝑑𝑡 = 𝜅𝑃 𝑡 + 𝜙𝑇 𝑡 −  𝜃 + 𝜇 𝐴 𝑡 ≡ 𝑔3 𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑉  

𝑑𝐽 𝑑𝑡 = 𝜃𝐴 𝑡 −  𝜔 + 𝜇 𝐽(𝑡) ≡ 𝑔4 𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑉  
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𝑑𝑇 𝑑𝑡 = 𝜔𝐽 𝑡 −  𝜙 + 𝛾 + 𝜇 𝑇(𝑡) ≡ 𝑔5 𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑉  

𝑑𝑉 𝑑𝑡 = 𝛾𝑇 𝑡 − (𝛿 + 𝜇)𝑉 ≡ 𝑔6 𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑉  

According to Derrick and Groosman theorem, let 𝑅 denote the region𝑅 =    𝑆, 𝑃, 𝐴, 𝐽, 𝑉 ∈ ℝ+
6  ;    N ≤

τ𝛿+𝜇. Then equations (1) – (5) have a unique solution if 𝜕𝑔𝑖𝜕𝑥𝑗,  ∀  𝑖,  𝑗=1,  2,  3,  4,  5, 6  are continuous and 

bounded in𝑅 . Here, the notations𝑥1 = 𝑆,   𝑥2 = 𝑃, 𝑥3 = 𝐴, 𝑥4 = 𝐽,   𝑥5 = 𝑇,   𝑥6 = 𝑉, are employed. The 

Existence, continuity and the boundedness of𝑔1, 𝑔2 , 𝑔3 ,    𝑔4, 𝑔5 and 𝑔6are verified as here under: 

Table 3 Verification of Continuity and Boundedness of the Function 
Function Existence and Continuity Boundedness 

 

 

𝑔1 

 𝜕𝑔1  𝜕𝑆  = − 𝛽𝑃 𝑡 + 𝜇  
 𝜕𝑔1  𝜕𝑃  = −𝛽𝑆 𝑡  

 𝜕𝑔1  𝜕𝐴  = 0 
 𝜕𝑔1  𝜕𝐽  = 0 
 𝜕𝑔1  𝜕𝑇  = 0 
 𝜕𝑔1  𝜕𝑉  = 0 

  𝜕𝑔1  𝜕𝑆   =  − 𝛽𝑃 𝑡 + 𝜇  < ∞ 
  𝜕𝑔1  𝜕𝑃   =  −𝛽𝑆 𝑡  < ∞ 

  𝜕𝑔1  𝜕𝐴   = 0 < ∞ 
  𝜕𝑔1  𝜕𝐽   = 0 < ∞ 
  𝜕𝑔1  𝜕𝑇   = 0 < ∞ 
  𝜕𝑔1  𝜕𝑉   = 0 < ∞ 

 
 

𝑔2 

 𝜕𝑔2  𝜕𝑆  = 𝛽𝑃 𝑡  

 𝜕𝑔2  𝜕𝑃  = 𝛽𝑆 𝑡 −  𝜅 + 𝜇  
 𝜕𝑔2  𝜕𝐴  = 0 
 𝜕𝑔2  𝜕𝐽  = 0 
 𝜕𝑔2  𝜕𝑇  = 0 
 𝜕𝑔2  𝜕𝑉  = 0 

  𝜕𝑔2  𝜕𝑆   =  𝛽𝑃 𝑡  < ∞ 

  𝜕𝑔2  𝜕𝑃   =  𝛽𝑆 𝑡 −  𝜅 + 𝜇  < ∞ 
  𝜕𝑔2  𝜕𝐴   = 0 < ∞ 
  𝜕𝑔2  𝜕𝐽   = 0 < ∞ 
  𝜕𝑔2  𝜕𝑇   = 0 < ∞ 
  𝜕𝑔2  𝜕𝑉   = 0 < ∞ 

 
 
 
 

𝑔3 
 

 𝜕𝑔3  𝜕𝑆  = 0 
 𝜕𝑔3  𝜕𝑃  = 𝜅 

 𝜕𝑔3  𝜕𝐴  = − 𝜃 + 𝜇  
 𝜕𝑔3  𝜕𝐽  = 0 
 𝜕𝑔3  𝜕𝑇  = ∅ 
 𝜕𝑔3  𝜕𝑉  = 0 

  𝜕𝑔3  𝜕𝑆   = 0 < ∞ 

  𝜕𝑔3  𝜕𝑃   = 𝜅 < ∞ 
  𝜕𝑔3  𝜕𝐴   = 𝜃 + 𝜇 < ∞ 

  𝜕𝑔3  𝜕𝐽   = 0 < ∞ 
  𝜕𝑔3  𝜕𝑇   = ∅ < ∞ 
  𝜕𝑔3  𝜕𝑉   = 0 < ∞ 

 
 

𝑔4 
 

 

 𝜕𝑔4  𝜕𝑆  = 0 
 𝜕𝑔4  𝜕𝑃  = 0 
 𝜕𝑔4  𝜕𝐴  = 𝜃 

 𝜕𝑔4  𝜕𝐽  = − 𝜔 + 𝜇  
 𝜕𝑔4  𝜕𝑇  = 0 
 𝜕𝑔4  𝜕𝑉  = 0 

  𝜕𝑔4  𝜕𝑆   = 0 < ∞ 
  𝜕𝑔4  𝜕𝑃   = 0 < ∞ 
  𝜕𝑔4  𝜕𝐴   = 𝜃 < ∞ 

  𝜕𝑔4  𝜕𝐽   = 𝜔 + 𝜇 < ∞ 
  𝜕𝑔4  𝜕𝑇   = 0 < ∞ 
  𝜕𝑔4  𝜕𝑉   = 0 < ∞ 

 
𝑔5 

 𝜕𝑔5  𝜕𝑆  = 0 
 𝜕𝑔5  𝜕𝑃  = 0 
 𝜕𝑔5  𝜕𝐴  = 0 
 𝜕𝑔5  𝜕𝐽  = 𝜔 

 𝜕𝑔5  𝜕𝑇  = − 𝜙 + 𝛾 + 𝜇  
 𝜕𝑔5  𝜕𝑉  = 0 

  𝜕𝑔5  𝜕𝑆   = 0 < ∞ 

  𝜕𝑔5  𝜕𝑃   = 0 < ∞ 
  𝜕𝑔5  𝜕𝐴   = 0 < ∞ 
  𝜕𝑔5  𝜕𝐽   = 𝜔 < ∞ 

  𝜕𝑔5  𝜕𝑇   = 𝜙 + 𝛾 + 𝜇 < ∞ 

  𝜕𝑔5  𝜕𝑉   = 0 < ∞ 

𝑔6  𝜕𝑔5  𝜕𝑆  = 0 
 𝜕𝑔5  𝜕𝑃  = 0 
 𝜕𝑔5  𝜕𝐴  = 0 
 𝜕𝑔5  𝜕𝐽  = 0 
 𝜕𝑔5  𝜕𝑇  = 𝛾 

 𝜕𝑔5  𝜕𝑉  = −(𝛿 + 𝜇) 

  𝜕𝑔5  𝜕𝑆   = 0 < ∞ 
  𝜕𝑔5  𝜕𝑃   = 0 < ∞ 
  𝜕𝑔5  𝜕𝐴   = 0 < ∞ 
  𝜕𝑔5  𝜕𝐽   = 0 < ∞ 

  𝜕𝑔5  𝜕𝑇   = 𝛾 < ∞ 
  𝜕𝑔5  𝜕𝑉   = 𝛿 + 𝜇 < ∞ 

 

Thus, all the partial derivatives  𝜕𝑔𝑖  𝜕𝑥𝑗   :  𝑖, 𝑗 = 1, 2, 3, 4    exist, and are both continuous and 

bounded in𝑅. Hence, by Derrick and Groosman theorem, a solution for the model (1) – (6) exists and is unique. 

Lemma 2 (Positivity) Solutions of the model equations (1) – (6) together with the initial conditions𝑆 0 ≥ 0,
𝑃 0 ≥ 0, 𝐴 0 ≥ 0, 𝐽 0 ≥ 0, 𝑉(0) ≥ 0 are always non-negative (OR) the model variables 𝑆 𝑡 ,   𝑃 𝑡 ,
𝐴 𝑡 , 𝐽 𝑡 ,and 𝑉 𝑡 are non-negative for all 𝑡 and will remain inℝ+

6 .  

Proof: Positivity of the solutions of model equations is shown separately for each of the model variables  

𝑆 𝑡 , 𝑃 𝑡 , 𝐴 𝑡 , 𝐽 𝑡 , 𝑇 𝑡  and   𝑉(𝑡). 

Positivity of  𝑆 𝑡 : The model equation (1) given by 𝑑𝑆 𝑑𝑡 = 𝜏 − 𝛽𝑆 𝑡 𝑃 𝑡 − 𝜇𝑆 𝑡 can be expressed without 

loss of generality, after eliminating the positive term𝜏  appearing on the right hand side, as an inequality as 

𝑑𝑆 𝑑𝑡 ≥ − 𝛽𝑃 𝑡 + 𝜇 𝑆 𝑡 . Using variables separable method and on applying integration, the solution of the 

foregoing differentially inequality can be obtained as   𝑆 𝑡 ≥ 𝑆(0)𝑒−𝜇𝑡−𝛽  𝑃(𝑡)𝑑𝑡 . Recall that an exponential 

function is always non–negative irrespective of the sign of the exponent i.e. the exponential function 

𝑒−𝜇𝑡−𝛽  𝑃(𝑡)𝑑𝑡  is a non-negative quantity. Hence, it can be concluded that  𝑆 𝑡 ≥ 0.                               

Positivity of  𝑃 𝑡 : The model equation (2) given by 𝑑𝑃 𝑑𝑡 = 𝛽𝑆 𝑡 𝑃 𝑡 −  𝜅 + 𝜇 𝑃 𝑡 can be 

expressed without loss of generality, after eliminating positive term 𝛽𝑆 𝑡 𝑃 𝑡  which is appearing on the right 

hand side, as an inequality as𝑑𝑃 𝑑𝑡 ≥ −  𝜅 + 𝜇  𝑃 𝑡 . Using variables separable method and on applying 

integration, the solution of the foregoing differentially inequality can be obtained as    𝑃(𝑡) ≥ 𝑃(0)𝑒−  𝜅+𝜇  𝑡 . 
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Recall that an exponential function is always non–negative irrespective of the sign of the exponent i.e. the 

exponential function 𝑒−  𝜅+𝜇  𝑡  is a non-negative quantity. Hence, it can be concluded that  𝑃 𝑡 ≥ 0.  

Positivity of  𝐴 𝑡 : The model equation (3) given by     𝑑𝐴 𝑑𝑡 = 𝜅𝑃 𝑡 + 𝜙𝑇 𝑡 −  𝜃 + 𝜇 𝐴 𝑡 can be 

expressed without loss of generality, after eliminating the positive terms𝜅𝑃 𝑡 and 𝜔𝐽 𝑡  which are appearing on 

the right hand side, as an inequality as 𝑑𝐴 𝑑𝑡 ≥ − 𝜃 + 𝜇 𝐴 𝑡 . Using variables separable method and on 

applying integration, the solution of the foregoing differentially inequality can be obtained as  𝐴(𝑡) ≥

𝐴(0)𝑒− 𝜃+𝜇 𝑡 . Recall that an exponential function is always non–negative irrespective of the sign of the 

exponent i.e. the exponential function 𝑒− 𝜃+𝜇 𝑡  is a non-negative quantity. Hence, it can be concluded 

that  𝐴 𝑡 ≥ 0.   

Positivity of  𝐽 𝑡 : The model equation (4) given by𝑑𝐽 𝑑𝑡 = 𝜃𝐴 𝑡 −  𝜔 + 𝜇 𝐽 𝑡 can be expressed 

without loss of generality, after eliminating the positive term  𝜃𝐴 𝑡  which is appearing on the right hand side, 

as an inequality as 𝑑𝐽 𝑑𝑡 ≥ − 𝜔 + 𝜇 𝐽. Using variables separable method and on applying integration, the 

solution of the foregoing differentially inequality can be obtained as   𝐽(𝑡) ≥ 𝐽(0)𝑒− 𝜔+𝜇 𝑡 . Recall that an 

exponential function is always non–negative irrespective of the sign of the exponent i.e. the exponential 

function𝑒− 𝜔+𝜇 𝑡 is a non-negative quantity. Hence, it can be concluded that  𝐽 𝑡 ≥ 0.  

Positivity of  𝑇 𝑡 : The model equation (5) given by𝑑𝐽 𝑑𝑡 = 𝜔𝐽 𝑡 −  𝜙 + 𝛾 + 𝜇 𝑇 𝑡 can be 

expressed without loss of generality, after eliminating the positive term𝜔𝐽 𝑡  which is appearing on the right 

hand side, as an inequality as 𝑑𝑇 𝑑𝑡 ≥ − 𝜙 + 𝛾 + 𝜇 𝑇 𝑡 . Using variables separable method and on applying 

integration, the solution of the foregoing differentially inequality can be obtained as    𝑇(𝑡) ≥ 𝐽(0)𝑒− 𝜙+𝛾+𝜇 𝑡 . 

Recall that an exponential function is always non–negative irrespective of the sign of the exponent i.e. the 

exponential function𝑒− 𝜙+𝛾+𝜇 𝑡 is a non-negative quantity. Hence, it can be concluded that  𝑇 𝑡 ≥ 0.  

Positivity of  𝑉 𝑡 : The model equation (6) given by 𝑑𝑉 𝑑𝑡 = 𝛾𝑇 𝑡 −  𝛿 + 𝜇 𝑉 can be expressed 

without loss of generality, after eliminating the positive term𝛾𝑇 𝑡  which is appearing on the right hand side, as 

an inequality as 𝑑𝑉 𝑑𝑡 ≥ − 𝛿 + 𝜇 𝑉 . Using variables separable method and on applying integration, the 

solution of the foregoing differentially inequality can be obtained as   𝑉(𝑡) ≥ 𝑉(0)𝑒−(𝛿+𝜇)𝑡 . Recall that an 

exponential function is always non–negative irrespective of the sign of the exponent i.e. the exponential 

function𝑒−(𝛿+𝜇)𝑡 is a non-negative quantity. Hence, it can be concluded that  𝑉 𝑡 ≥ 0.  

Thus, the model variables 𝑆 𝑡 ,   𝑃 𝑡 , 𝐴 𝑡 , 𝐽 𝑡 , 𝑇 𝑡 and 𝑉(𝑡)  representing population sizes of 

various types of human population are positive quantities and will remain in ℝ+
 6for all𝑡. 

 

Lemma 2 (Boundedness) The non-negative solutions of the system of model equations (1) – (6) are bounded. 

That is the model variables𝑆 𝑡 , 𝑃 𝑡 , 𝐴 𝑡 , 𝐽 𝑡 , 𝑇 𝑡  and   𝑉(𝑡) are all bounded for all  𝑡 [4, 7, 9, 10]. 

Proof: Recall that each population size is bounded if and only if the total population size is bounded. Hence, in 

the present case it is sufficient to prove that the total population size 𝑁 𝑡 = 𝑆 𝑡 + 𝑃 𝑡 + 𝐴 𝑡 +  𝐽 𝑡 +
𝑇 𝑡  𝑉(𝑡) is bounded for all  𝑡. It can be begun by showing that all feasible solutions are uniformly bounded in a 

proper subset𝑅 ∈ ℝ+
6 where the feasible region 𝑅  is given by𝑅 =    𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑉 ∈ ℝ+

6   ;   N ≤
τ𝛿+𝜇.  

Now, summation of all the five equations (1) – (6) of the model gives  dN(t) dt = τ − μN t − 𝛿V 𝑡 .  

Again considering total population N t  and subpopulation V t  further we can write the equation as inequality 

of the formdN(t) dt  ≤   τ −  μ + 𝛿 N t  . Equivalently this inequality can be expressed as a linear ordinary 

differential inequality as  dN(t) dt  +    μ + 𝛿 N t   ≤  τ giving general solution upon solving asN t ≤
 τ  μ + 𝛿   + 𝑐𝑒− μ+𝛿 𝑡 . But, the term  𝑁(0) denotes the initial values of the respective variableN t =
N 0 at t = 0. Thus, the particular solution can be expressed 

asN t ≤  τ  μ + 𝛿   +   N 0 −  τ  μ + 𝛿    𝑒− μ+𝛿 𝑡 . Further, it can be observed that   𝑁 𝑡 →
 τ  μ + 𝛿   as   𝑡 → ∞. That is, total population size  𝑁 𝑡 takes off from a value N 0  at the initial time t = 0 

and ends up with a bounded value τ  μ + 𝛿   as the time  𝑡  progresses to infinity. Thus, it can be concluded 

that   𝑁 𝑡  is bounded within a pair of values as0 ≤ 𝑁 𝑡 ≤  τ  μ + 𝛿   . 
Therefore,  τ  μ + 𝛿   is an upper bound of  𝑁(𝑡). Hence, feasible solution of the system of model 

equations (1) – (6) remains in the region 𝑅 which is a positively invariant set. Thus, the system is biologically 

meaningful in the domain𝑅. Further, it is sufficient to consider the dynamics of the populations represented by 

the model system (1) – (6) in that domain. 

Therefore, it can be summarized the result of Lemma 2 as “the model variables  𝑆 𝑡 ,   𝑃 𝑡 , 𝐴 𝑡 ,   𝐽 𝑡  and  

 𝑉(𝑡) are bounded for all  𝑡”. 

Therefore, the formulated model is biologically meaningful and mathematically well-posed. 
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3.2 Equilibrium points 

 In order to understand the dynamics of the model, it is necessary to determine equilibrium points of the 

solution region. An equilibrium solution is a steady state solution of the model equations (1) – (6) in the sense 

that if the system begins at such a state, it will remain there for all times. In other words, the population sizes 

remain unchanged and thus the rate of change for each population vanishes. Equilibrium points of the model are 

found, categorized, stability analysis is conducted and the results have been presented in the following sub-

sections: 

 

3.2.1 Disease free equilibrium point 

Disease free equilibrium point is a steady state solution where there is no disease in the population. 

Now, absence of disease implies that 𝑃 𝑡 = 𝐴 𝑡 = 𝐽 𝑡 = 𝑇 𝑡 = 𝑉 𝑡 =  0 and also setting the right hand 

sides of the model equations (1) – (6) equal to zero results in giving  𝜏 − 𝜇𝑆 = 0, solution of which is the 

population size of the susceptible humans at the disease free equilibrium and is given by𝑆0 =  τ μ  .Thus, the 

disease free equilibrium point of the model equations(1) – (6) is given by 

𝐸0 =  𝑆0, 0, 0, 0, 0, 0 =   τ μ  , 0, 0, 0, 0, 0  

3.2.2 Endemic equilibrium point 

The endemic equilibrium point 𝐸1 = {𝑆1, 𝑃1 , 𝐴1, 𝐽1, 𝑇1 , 𝑉1} is a steady state solution when 

the disease persists in the population. The endemic equilibrium point is obtained by setting rates of changes of 

variables with respect to time of model equations (1) – (6) to zero. That is, setting 𝑑𝑆 𝑑𝑡 = 𝑑𝐴 𝑑𝑡 = 𝑑𝐽 𝑑𝑡 =
𝑑𝑇 𝑑𝑡 = 𝑑𝑉 𝑑𝑡 = 0 the model equations take the form as 

𝜏 − 𝛽𝑆 𝑡 𝑃 𝑡 − 𝜇𝑆 𝑡 = 0                                        (7) 

𝛽𝑆 𝑡 𝑃 𝑡 −  𝜅 + 𝜇 𝑃 𝑡 = 0                                       (8) 

𝜅𝑃 𝑡 + 𝜙𝑇 𝑡 −  𝜃 + 𝜇 𝐴 𝑡 = 0                                 (9) 

𝜃𝐴 𝑡 −  𝜔 + 𝜇 𝐽(𝑡) = 0                                           (10) 

𝜔𝐽 𝑡 −  𝜙 + 𝛾 + 𝜇 𝑇(𝑡) = 0                                    (11) 

𝛾𝑇 𝑡 − (𝛿 + 𝜇)𝑉 𝑡 = 0                                           (12) 

Here in (7) – (12), the quantities 𝑎,   𝑏,   𝑐  represent the parametric expressions as  𝑎 = 𝜅 + 𝜇,   𝑏 = 𝜃 + 𝜇,    𝑐 =
𝜔 + 𝜇,   𝑑 = 𝜙 + 𝛾 + 𝜇,   𝑒 = 𝛿 + 𝜇. Clearly, solutions of (7) – (12) will provide endemic equilibrium of the 

model equations and that is obtained as follows: 

(i) The equations (7) can be rearranged as  𝛽𝑆 − 𝑎 𝑃 = 0  leading to the solutions𝛽𝑆 − 𝑎 = 0  or   𝑃 = 0 or 

both. However, 𝑃 does not vanish since the disease is assumed to persist. Thus, it leads to the only 

meaningful solution𝛽𝑆 − 𝑎 = 0   or equivalently  𝑆 =  𝑎 𝛽  . That is, the  𝑆1 component of𝐸1is given by 

𝑆1 ≡  𝑆 =   𝑎 𝛽   =   𝜏 𝜇𝑅0                                     (13)   

(ii) Now the solution for  𝑃 can be obtained by substituting equation (13) into equation (7) and rewriting the 

resulting equation as 𝜏 − 𝛽 𝜏 𝜇𝑅0  𝑃 − 𝜇 𝜏 𝜇𝑅0  = 0 giving 

𝑃1 ≡ 𝑃 =  𝜇 𝛽   𝑅0 − 1                                              (14) 

(iii) Again the solution for 𝑇 can be obtained by substituting 𝑃 value from (14), A from (10), and J from (11) 

into equation (9). Now, the reduced expression has the form 

𝑇1 ≡ 𝑇 =    𝜅𝜇  𝑅0 − 1   𝛽  𝑏𝑐𝑑 𝜃𝜔  − ∅                                     (15) 

(iv) By substituting 𝑇 value  from (15) into equation (11) the solution for 𝐽 is given as  

𝐽1 ≡ 𝐽 =    𝑑𝜅𝜇  𝑅0 − 1   𝛽𝜔  𝑏𝑐𝑑 𝜃𝜔  − ∅                                  (16) 

(v) By substituting J value  from (16) into equation (10) the solution for 𝐴 is given as  

𝐴1 ≡ 𝐴 =    𝑐𝑑𝜅𝜇  𝑅0 − 1   𝜃𝛽𝜔  𝑏𝑐𝑑 𝜃𝜔  − ∅                             (17) 

(vi) Finally, using the value of 𝑇 from (15) and solving for 𝑉 from equation (12) we have 

𝑉 ′ ≡ 𝑉 =    𝛾𝜅𝜇  𝑅0 − 1   𝑒𝛽  𝑏𝑐𝑑 𝜃𝜔  − ∅                                    (18) 

 

3.3 Basic Reproduction Number 

           The basic reproduction number is denoted by 𝑅0 and is defined as the expected number of people getting 

secondary infection because of infected person enters into wholly susceptible population [4, 5]. This number 

determines the potential for the spread of disease within a population. When𝑅0 < 1   each infected individual 

produces on average less than one new infected individual so that the disease is expected to die out. On the other 

hand if 𝑅0 > 1  then each individual produces more than one new infected individual so that the disease is 

expected to continue spreading in the population. This means that the threshold quantity for eradicating the 

disease is to reduce the value of  𝑅0 to less than one.  

 The basic reproductive number 𝑅0 can be determined using the next generation matrix. In this 

method𝑅0is defined as the largest eigenvalue of the next generation matrix. The formulation of this matrix 

involves classification of all compartments of the model in to two classes: infected and non-infected. That is, the 
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basic reproduction number cannot be determined from the structure of the mathematical model alone but 

depends on the definition of infected and uninfected compartments.  

Assume that there are  𝑛  compartments in the model and of which the first   𝑚  compartments are with 

infected individuals [3, 4, 5].  From the system (1) – (6) the five equations of infected individuals are considered 

and decomposed into two groups: 𝐹  contains newly infected cases and   𝑣  contains the remaining terms. Let 

  𝑋 =  [𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑉]𝑡  be a column vector and the differential equations of the first four 

compartments are rewritten as   𝐹(𝑋) –𝑇(𝑋). 
Now, let   𝐹 𝑋 =   𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹5 

𝑡 . Here (i) 𝐹1 =   𝛽𝑆𝑃  denotes newly infected cases 

which arrive into primary infected compartment (ii) 𝐹2 = 0   denotes newly infected cases arrived into the 

infectious asymptomatic compartment (ii) 𝐹3 = 0   denotes newly infected cases arrived into the infectious 

symptomatic compartment, (iii) 𝐹4 = 0   denotes newly infected case from susceptible compartment into 

Treatment compartment, and (iv) 𝐹5 = 0   denotes newly infected case from susceptible compartment into AIDS 

compartment. Further, let    𝑇(𝑋)  = [𝑇1 , 𝑇2 , 𝑇3 , 𝑇4 , 𝑇5]𝑡 . Here   𝑇1 =  𝑎𝑃,   𝑇2 =  −𝜅𝑃 − ∅𝑇 + 𝑏𝐴, 𝑇3 =
 −𝜃𝐴 + 𝑐𝐽, 𝑇4 =  −𝜔𝐽 + 𝑑𝑇,  and  −𝛾𝑇 + 𝑒𝑉  . Here, the values of 𝑎, 𝑏, 𝑐, 𝑑, and  𝑒  are as defined above. 

The next step is the computation of square matrices  𝐹   and   𝑇  of order    𝑚 × 𝑚 , where  𝑚  is the 

number of infected classes, defined by   𝐹 =   𝜕𝐹𝑖 𝐸0 𝜕𝑥𝑗     and   𝑇 =  𝜕𝑇𝑖 𝐸0 𝜕𝑥𝑗     with 1 ≤ 𝑖, 𝑗 ≤ 𝑚  , 

such that 𝐹  is non-negative, 𝑉 is a non-singular matrices and 𝐸0 is the disease free equilibrium point 

DFE.If 𝐹 and 𝑇are non-negative and 𝑇 is non-singular then 𝑇−1  is non-negative and thus  𝐹𝑇−1is also non-

negative. Also, the matrix 𝐹𝑇−1 is called the next generation matrix for the model. Finally, the basic 

reproduction number 𝑅0is given by 𝑅0 = 𝜌(F𝑇−1). In general,  𝜌(𝐴) denotes the spectral radius of matrix  𝐴  
and the spectral radius is the biggest non-negative eigenvalue of the next generation matrix.  

The Jacobian of   𝐹  and  𝑇  at the disease free equilibrium point 𝐸0 takes the form respectively as 

 𝐹 ≡ 𝐽𝐹 𝐸0 =

 
 
 
 
 
 
 
 
 
𝛽𝜏 𝜇 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 
 
 
 
 
 
 
 
 

     and    𝑇 ≡  𝐽𝑇(𝐸0) =

 
 
 
 
 
 
 
 
 

𝑎 0 0 0 0

−𝜅 𝑏 0 −∅ 0

0 −𝜃 𝑐 0 0

0 0 −𝜔 𝑑 0

0 0 0 −𝛾 𝑒 
 
 
 
 
 
 
 
 

   (19)   

It can be verified that the matrix 𝐽𝑇 𝐸0 is non-singular as its determinant is non-zero and after some algebraic 

computations the next generation matrix is constructed as 

 𝐽𝐹 𝐸0   𝐽𝑇 𝐸0  
−1 = 

 
 
 
 
 
 
 
 
 
𝛽𝜏 𝜇 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

𝑎 0 0 0 0

−𝜅 𝑏 0 −∅ 0

0 −𝜃 𝑐 0 0

0 0 −𝜔 𝑑 0

0 0 0 −𝛾 𝑒 
 
 
 
 
 
 
 
 
−1

=

 
 
 
 
 
 
 
 
 
𝛽𝜏 𝜇 𝑎 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 
 
 
 
 
 
 
 
 

 

Now, it is possible to calculate the eigenvalues of the matrix     𝐽𝐹 𝐸0   𝐽𝑇 𝐸0  
−1   to determine the basic 

reproduction number 𝑅0 which is the spectral radius or the largest eigenvalue. Thus, the eigenvalues are 

computed by evaluating the characteristic equation   𝑑𝑒𝑡  𝐽𝐹 𝐸0   𝐽𝑇 𝐸0  
−1 − 𝜆𝐼 = 0   or equivalently solving 

 

 

 𝛽𝜏 𝜇 𝑎 − 𝜆 0 0 0

0 −𝜆 −𝜆 0

0 0 −𝜆 0

0 0 0 −𝜆

 

 

= 0 

It reduces to the equation as 𝜆3  𝛽𝜏 𝜇 𝑎 − 𝜆 = 0    giving the four eigenvalues as 

𝜆1 =  𝛽𝜏 𝜇 𝑎 ,     𝜆2 = 0,      𝜆3 = 0,       𝜆4 = 0 , 𝜆5 = 0    
  However, the largest eigenvalue here is and is the spectral radius or the threshold value or the basic 

reproductive number. Thus, the reproduction number of the model is 𝑅0 =  𝛽𝜏 𝜇 𝑎 . 

 



Impact of Treatment and Isolation on the Dynamics of HIV Transmission  

 

DOI: 10.9790/5728-1506055372                                     www.iosrjournals.org                                        60 | Page 

3.4 Stability analysis of the disease free equilibrium point 

In absence of the infectious disease, the model populations have a unique disease free equilibrium 

point𝐸0. To find the local stability of 𝐸0, the Jacobian method of the model equations evaluated at DEF 𝐸0is 

used.  Also, to determine the global stability at  𝐸0the mathematical procedures described in [10] is used. It is 

already shown that the DFE of model (1) – (6) is given by𝐸0 =  𝜏 𝜇 , 0, 0, 0, 0, 0 . Now, following 

[10] the stability analysis of DFE is conducted and the results are presented in the form of theorems and proofs 

in the following: 

 

3.4.1 Local Stability of Disease Free Equilibrium point 

Theorem 1: The DFE 𝐸0 of the system (1) – (6) is locally asymptotically stable if   𝑅0 < 1  and unstable 

if     𝑅0 > 1. 

Proof: Consider the right hand side expressions of the equations (1) – (6) as functions so as to find the Jacobian 

matrix as follows: 

𝑑𝑆 𝑑𝑡 = 𝜏 − 𝛽𝑆 𝑡 𝑃 𝑡 − 𝜇𝑆 𝑡 ≡ 𝑔1 𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑉  

  𝑑𝑃 𝑑𝑡 = 𝛽𝑆 𝑡 𝑃 𝑡 −  𝜅 + 𝜇 𝑃 𝑡 ≡ 𝑔2 𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑉  

 𝑑𝐴 𝑑𝑡 = 𝜅𝑃 𝑡 + 𝜙𝑇 𝑡 −  𝜃 + 𝜇 𝐴 𝑡 ≡ 𝑔3 𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑉  

𝑑𝐽 𝑑𝑡 = 𝜃𝐴 𝑡 −  𝜔 + 𝜇 𝐽(𝑡) ≡ 𝑔4 𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑉  

𝑑𝑇 𝑑𝑡 = 𝜔𝐽 𝑡 −  𝜙 + 𝛾 + 𝜇 𝑇(𝑡) ≡ 𝑔5 𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑉  

𝑑𝑉 𝑑𝑡 = 𝛾𝑇 𝑡 − (𝛿 + 𝜇)𝑉 ≡ 𝑔6 𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑉  

Let   𝐽 𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑉  be a Jacobian matrix of  𝑔1, 𝑔2, 𝑔3, 𝑔4 , 𝑔5  with respect 

to𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑉. Thus,  

𝐽 𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑉 =

 
 
 
 
 
 
 
−𝛽𝑃 − 𝜇 −𝛽𝑆 0 0 0 0

𝛽𝑃 𝛽𝑆 −  𝜅 + 𝜇 0 0 0 0

0 𝜅 − 𝜃 + 𝜇 0 ∅ 0

0 0 𝜃 − 𝜔 + 𝜇 0 0

0 0 0 𝜔 − ∅ + 𝛾 + 𝜇 0

0 0 0 0 𝛾 − 𝛿 + 𝜇  
 
 
 
 
 
 

               

(20) 

Now, the Jacobian matrix of  𝑔1 , 𝑔2, 𝑔3, 𝑔4, 𝑔5 , 𝑔6  with respect to 𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑉at the 

disease free equilibrium 𝐸0 is given by 

𝐽 𝐸0 =

 
 
 
 
 
 
 
−𝜇 − 𝜅 + 𝜇 𝑅0 0 0 0 0

0  𝜅 + 𝜇  𝑅0 − 1 0 0 0 0

0 𝜅 − 𝜃 + 𝜇 0 ∅ 0

0 0 𝜃 − 𝜔 + 𝜇 0 0

0 0 0 𝜔 − ∅ + 𝛾 + 𝜇 0

0 0 0 0 𝛾 − 𝛿 + 𝜇  
 
 
 
 
 
 

 

Now, to determine the signs of eigenvalues we use the concept of trace and determinant of a given matrix as 

mentioned in the [5]. 

(1) Trace of   𝐽 𝐸0 =  𝜅 + 𝜇  𝑅0 − 1 − 𝜇 − 𝜃 − 𝜇 − 𝜔 − 𝜇 − ∅ − 𝛾 − 𝜇 − 𝛿 − 𝜇 < 0 , if   𝑅0 < 1  

(2) Determinant of    𝐽 𝐸0 = 𝑎𝜇𝑒 ∅𝜃𝜔 –  𝑏𝑐𝑑  𝑅0 − 1 > 0 , Provided that either of the following two 

pairs of conditions are satisfied: (i) ∅𝜃𝜔 <  𝑏𝑐𝑑   and     𝑅0 < 1  or (ii)   ∅𝜃𝜔 >  𝑏𝑐𝑑   and 𝑅0 > 1 

Now, from trace and determinant obtained in (1) and (2) with the given conditions we conclude that all 

eigenvalues of a matrix 𝐽 𝐸0  are negative provided the mentioned conditions are satisfied. Thus, from Hurwitz 

– Routh principle disease free equilibrium point is locally asymptotically stable if 𝑅0 < 1 and unstable if𝑅0 > 1. 

 

3.4.2 Global Stability of Disease Free Equilibrium Point 

Here, we follow the procedure given in [11]. That is, let   𝑥 ∈ 𝑅𝑛 is disease compartment and   𝑦 ∈
𝑅𝑚 be disease free compartment the disease transmission model (1)-(6) can be written in the form: 

𝑥 = − 𝑇 − 𝐹 𝑥 − ℎ 𝑥, 𝑦                          (21) 

𝑦 = 𝑔 𝑥, 𝑦                                                  (22) 

Here in (21), the notations    𝐹 = 𝐽𝐹 𝐸0       and   𝑇 = 𝐽𝑇 𝐸0     given is (19) are used. 

Theorem 2: If  𝑇 − 𝐹  is a nonsingular M-matrix and   ℎ ≥ 0  then the disease-free equilibrium point of model 

equations (1) – (6) is globally asymptotically stable. 

Proof: Using the procedure given in [10] the rate of change of the variables in the model equations (1) – (5) can 

be rewritten as  

𝑥 = − 𝑇 − 𝐹 𝑥 −  
𝛽 𝑆0 − 𝑆 𝑃

0
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𝑆 = 𝜏 − 𝛽𝑆𝑃 − 𝜇𝑆 

Now, it is to be shown that  𝑇 − 𝐹 is nonsingular M-matrix. From the previous computations (19) we have 

𝐹 ≡ 𝐽𝐹 𝐸0 =

 
 
 
 
 
 
 
 
 
𝛽𝜏 𝜇 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 
 
 
 
 
 
 
 
 

 and   𝑇 ≡  𝐽𝑇(𝐸0) =

 
 
 
 
 
 
 
 
 

𝑎 0 0 0 0

−𝜅 𝑏 0 −∅ 0

0 −𝜃 𝑐 0 0

0 0 −𝜔 𝑑 0

0 0 0 −𝛾 𝑒 
 
 
 
 
 
 
 
 

 

𝑇 − 𝐹 =

 
 
 
 
 
 
 
 
 
𝑎 − 𝛽𝜏 𝜇 0 0 0 0

−𝜅 𝑏 0 −∅ 0

0 −𝜃 𝑐 0 0

0 0 −𝜔 𝑑 0

0 0 0 −𝛾 𝑒 
 
 
 
 
 
 
 
 

= 𝑠𝐼 −

 
 
 
 
 
 
 
 
 
𝛽𝜏 𝜇 0 0 0 0

𝜅 0 0 ∅ 0

0 𝜃 0 0 0

0 0 𝜔 0 0

0 0 0 𝛾 0 
 
 
 
 
 
 
 
 

= 𝑠𝐼 − 𝐵 

Here,  𝑠 = max 𝑎, 𝑏, 𝑐, 𝑑, 𝑒  and   𝐵 =

 
 
 
 
 
 
 
 
 
𝛽𝜏 𝜇 0 0 0 0

𝜅 0 0 ∅ 0

0 𝜃 0 0 0

0 0 𝜔 0 0

0 0 0 𝛾 0 
 
 
 
 
 
 
 
 

 

Now, det 𝑇 − 𝐹 =   e ∅θω −  bcd  𝛽𝜏 − 𝑎𝜇  𝜇  and  𝜌 𝐵 = 𝑚𝑎𝑥 𝛽 𝜏 𝜇  ,  ∅𝜃𝜇
3   and   𝑇 −

𝐹  is nonsingular matrix provided that the conditions  ∅θω ≠ bcd   and   𝛽𝜏 ≠ 𝑎𝜇  are satisfied. Further, off 

diagonal elements of  𝑇 − 𝐹  are non-positive numbers. Thus, 𝑇 − 𝐹  is non-singular M-matrix if  𝑠 ≥ 𝜌 𝐵 . 

Next, to show that the disease-free equilibrium is globally asymptotically stable for𝑅0 < 1 , it is 

sufficient to show that  𝑆 ≤ 𝑆0. The total population 𝑁 𝑡  =  𝑆 𝑡  +  𝑃 𝑡  +  𝐴 𝑡 + 𝐽 𝑡 + 𝑇 𝑡 +

𝑉 𝑡 satisfies𝑁 ′ =  𝛱 −  µ𝑁 − 𝛿𝑉 ≤ 𝛱 − 𝜇𝑁 , so that  𝑁 𝑡 ≤ 𝑆0 −  𝑆0 − 𝑁 0  𝑒−𝜇𝑡 , with𝑆0 = 𝜏 𝜇 . 

If  𝑁 0 ≤ 𝑆0 , then  𝑆 𝑡  ≤  𝑁 𝑡  ≤  𝑆0for all time, if, on the other hand, 𝑁 0 > 𝑆0, then 𝑁 𝑡 decays 

exponentially to 𝑆0, and either  𝑆 𝑡 → 𝑆0, or there is some time 𝑇 after which 𝑆 𝑡 < 𝑆0. Thus, from time 

𝑇′ onward, 𝑥 𝑡 is bounded above, in each component, by𝑒− 𝑡−𝑇′  𝑇−𝐹 𝑥 𝑇′  which decays exponentially to zero. 

Note that for the argument of global stability we are not concerned with the size of 𝑥 𝑡 . In fact, if 𝑁 0 > 𝑆0, 

 𝑥 𝑇′ may be much larger than 𝑥 0 . In this case the exponential bound on  𝑥 𝑡  concerns a decay following an 

epidemic, not an immediate elimination of the disease. In contrast, if  𝑁 0 < 𝑆0, then the bound on 

 𝑥 𝑡 is𝑒− 𝑡−𝑇′  𝑇−𝐹 𝑥 0 and no epidemic occurs. Therefore, from the above hypothesis disease-free equilibrium 

point of model equations (1) – (6) is globally asymptotically stable for𝑅0 < 1. 

 

3.5 Stability Analysis of Endemic Equilibrium Point 

By definition it is true that at the endemic equilibrium point   𝐸1 =  𝑆1, 𝑃1 , 𝐴1, 𝐽1, 𝑇1, 𝑉1  is 

the point where the disease persists or exists. To analyze the local stability of𝐸1, Jacobian matrix of the model 

that evaluated at this equilibrium point is used. Further, remember that the endemic equilibrium point   𝐸1 =
 𝑆1, 𝑃1 , 𝐴1 , 𝐽1, 𝑉1    of the given model (1) – (6) is already computed. 

 

3.5.1 Local Stability of Endemic Equilibrium Point 

 The local stability of endemic equilibrium point is stated and proved in Theorem 3. 

Theorem 3: The endemic equilibrium point is locally asymptotically stable if𝑅0 > 1 and unstable if𝑅0 < 1.  

Proof: The stability analysis of 𝐸1is conducted by following the similar procedure adopted as in the case of   𝐸0. 

Thus, the procedure starts with the construction of Jacobian matrix at𝐸1. Now, the Jacobian matrix of the model 

given in (20) at endemic equilibrium point 𝐸1 takes the form as 
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𝐽 𝑆, 𝑃, 𝐴, 𝐽, 𝑇, 𝑉 =

 
 
 
 
 
 
−𝛽𝑃 − 𝜇 −𝛽𝑆 0 0 0 0

𝛽𝑃 𝛽𝑆 − 𝑎 0 0 0 0
0 𝜅 −𝑏 0 ∅ 0
0 0 𝜃 −𝑐 0 0
0 0 0 𝜔 −𝑑 0
0 0 0 0 𝛾 −𝑒 

 
 
 
 
 

 

Hence,     𝐽 𝐸1 =

 
 
 
 
 
 
 
 
 

−𝜇𝑅0 −𝛽 𝜏 𝜇𝑅0  0 0 0 0

𝜇 𝑅0 − 1 0 0 0 0 0

0 𝜅 −𝑏 0 ∅ 0

0 0 𝜃 −𝑐 0 0

0 0 0 𝜔 −𝑑 0

0 0 0 0 𝛾 −𝑒 
 
 
 
 
 
 
 
 

 

 

Now the trace of   𝐽 𝐸1    is a negative quantity while determinant of  𝐽 𝐸1  computed 

as  −βτe  ∅θω − bcd  𝑅0 − 1 R0     and is a positive quantity provided that, 

(i)  ∅θω < 𝑏𝑐𝑑   and  𝑅0 > 1 

(ii) ∅θω > bcd   and  𝑅0 < 1 

 Hence, the endemic equilibrium point𝐸1is locally asymptotically unstable if    𝑅0 < 1    and stable 

if    𝑅0 > 1    provided that the afro mentioned conditions are satisfied. 

2. Numerical Simulation 

In this section, numerical simulations of model equations (1) – (6) have been carried out with the support of 

MATLAB software. To conduct the study, a set of physically meaningful values are assigned to the model 

parameters. These values are either taken from literature or assumed on the basis of reality. These sets of 

parametric values are given under figures. 

 

 
Figure 1 Dynamics of susceptible population with parametric 

values 𝜏 =  20,   µ =  0.02,   𝛽 =  0.0005,        𝜅 =  0.3,      𝜔 = 0.08,      𝜙 = 0.01,      𝜃 = 0.06,     𝛾 =
0.01,      𝛿 =  0.05 
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According to simulations given in Figure 1 above the followings can be observed. It can be observed 

that the susceptible populations are increased in the first hundred years as the numbers of primary infected 

patients are less or decreased for about hundred years. 

 

 
Figure 2Dynamics of primary patients with parametric values 𝜏 =  20,   µ =  0.02,   𝛽 =  0.0005,        𝜅 =

 0.3,      𝜔 = 0.08,      𝜙 = 0.01,      𝜃 = 0.06,     𝛾 = 0.01,      𝛿 =  0.05 

 

The simulation in Figure 2 shows that starting from the beginning the number of primary infected 

patient’s decreases as less number of susceptible population infected at the first hundred years. 

 

 

 
Figure 3 Dynamics of susceptible population with parametric 

values 𝜏 =  20,   µ =  0.02,   𝛽 =  0.0005,        𝜅 =  0.3,      𝜔 = 0.08,      𝜙 = 0.01,      𝜃 = 0.06,     𝛾 =
0.01,      𝛿 =  0.05 
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From Figure 3 we observe that the asymptomatic patients decrease for about hundred years as there less 

number of primary infected patients and increases as the number of primary infected and treated symptomatic 

patients who use herbal medicine increase. Finally, the populations continue with small changes.   

 

 
s 

Figure 4 Dynamics of AIDS patients with parametric values 𝜏 =  20,   µ =  0.02,   𝛽 =  0.0005,        𝜅 =
 0.3,      𝜔 = 0.08,      𝜙 = 0.01,      𝜃 = 0.06,     𝛾 = 0.01,      𝛿 =  0.05 

 

Figure 4 illustrates the simulation of symptomatic patients which decreases initially as the resultof less 

infected  patients for about a century and increases for the next fifty years. Finally, it continues with small 

alternative changes in the population.  

 

 
Figure 5 Dynamics of treatment class patients with parametric values 𝝉 =  𝟐𝟎,   µ =  𝟎. 𝟎𝟐,   𝜷 =

 𝟎. 𝟎𝟎𝟎𝟓,        𝜿 =  𝟎. 𝟑,      𝝎 = 𝟎. 𝟎𝟖,      𝝓 = 𝟎. 𝟎𝟏,      𝜽 = 𝟎. 𝟎𝟔,     𝜸 = 𝟎. 𝟎𝟏,      𝜹 =  𝟎. 𝟎𝟓 
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Figure 5 illustrates the simulation of treated patients that increase initially as syptomatic patients come in 

treatment class and decreases initially as the result of less infected  patients withdraw treatment class because of 

their healthy condition safe or because of the resistance of drugs which leads to AIDS class.   

 

 
Figure 6 Dynamics of AIDS patients with parametric values 𝜏 =  20,   µ =  0.02,   𝛽 =  0.0005,        𝜅 =

 0.3,      𝜔 = 0.08,      𝜙 = 0.01,      𝜃 = 0.06,     𝛾 = 0.01,      𝛿 =  0.05 

 

Figure 6 illustrates the simulation of AIDS patients that decreases initially as less number of infected 

patients  join it. Then increases because of patients under treatement class resist drugs and continue 

alternaatively with small changes.  

 

 
Figure 7 Dynamics of susceptible population with parametric 

values𝜏 =  20,   µ =  0.02,   𝛽 =  0.0005,        𝜅 =  0.3,      𝜔 = 0.08,      𝜙 = 0.01,      𝜃 = 0.06,     𝛾 =
0.01,      𝛿 =  0.05 

In Figure 7 the following can be observed: (i) initially the population size of susceptible compartment 

 𝑆 isincrease because of less number of primary patients. Then decreases followed by averagely constant in 
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number as there are more primary patients followed with constant in number(ii) Initially the population size of 

primary patient’s compartment  𝑃  decrease because of less number of infected susceptible populations. Then 

increase followed by alternative small changes that lead to constant in number as there is a balance in population 

dynamics (iii) the asymptomatic patient’s compartment decrease as initially as there are less number of patients 

that show no symptoms (iv) symptomatic compartment decreases initially as patients transfer to treatment class 

and. Then with small changes alternatively increases and decrease followed with constant as the result of 

balances in the transfer of patients(v) Treatment compartment increase initially as patients transfer to treatment 

class and. Then changes with small number that make alternatively increases and decrease followed with 

constant as the result of balances in the transfer of patients(vi) The AIDS compartment decrease initially 

because of fewer patients from treatment class joins it. Then increase followed with alternative changes with 

small amount that lead to constant number of patients as the result of balance of transfer in patients. 

 

 
Figure 8 Population dynamics of 𝑆𝑃𝐴𝐽𝑇𝑉 compartments with the parametric values  𝜏 =  2,   µ =  0.02,   𝛽 =

 0.0005,   𝜅 =  0.3,      𝜔 = 0.08,      𝜙 = 0.01,      𝜃 = 0.06,     𝛾 = 0.01,      𝛿 =  0.05 

 

In figure 8, it can be observed that (i) initially the susceptible compartment decrease because of 

infection enter the compartment and finally increases as the patients come out of the compartment. (ii) The 

Primary compartment decreases as people tested and know their result. (iii)The asymptomatic compartment 

increases initially as people enters it from primary patients and decreases as the number of patients enters 

symptomatic compartment (iv) the symptomatic compartment increases as asymptomatic patients shows 

symptoms of the disease and gets decrease as patients join treatment class from it (v) The treatment 

compartment individuals gets decrease as patients leaves the compartment willingly or because of severity of the 

disease that lead to AIDS stage (vi) AIDS compartment decrease as patients from treatment compartment 

decrease and disease induced death rate. 
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Figure 9 Population dynamics of susceptible compartment with the parametric values 𝜏 =  2,   µ =

 0.02,   𝛽 =  0.0005,    𝜅 =  0.3, 𝜔 = 0.08,   𝜙 = 0.01, 𝜃 = 0.06, 𝛾 = 0.01, 𝛿 =  0.05 

 

Figure 9 illustrates for about fifty years the susceptible population are decreasing as the result of 

contact with primary. Finally, they increased as the number of primary patients decreased. 

 

 
Figure 10 Dynamics of susceptible compartment with the parametric values 𝜏 =  2,   µ =  0.02,   𝛽 =

 0.0005,        𝜅 =  0.3,      𝜔 = 0.08,      𝜙 = 0.01,      𝜃 = 0.06,     𝛾 = 0.01, 𝛿 =  0.05 
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From Figure 10 we observe that the number of primary patients decrease as less number of susceptible 

humans is infected. 

 

 
Figure 11 Population dynamics of asymptomatic compartment with the parametric values 𝜏 =  2,   µ =  0.02,

𝛽 =  0.0005,   𝜅 =  0.3, 𝜔 = 0.08,   𝜙 = 0.01,   𝜃 = 0.06,   𝛾 = 0.01, 𝛿 =  0.05 

 

From figure 11above we observe that asymptomatic compartment gets increase initially as primary 

patients enters this compartment and others willingly come from treatment compartment. 

 

 
Figure 12 Population dynamics of symptomatic compartment with the parametric values 𝜏 =  2,   µ =  0.02,

𝛽 =  0.0005, 𝜅 =  0.3, 𝜔 = 0.08, 𝜙 = 0.01, 𝜃 = 0.06, 𝛾 = 0.01,   𝛿 =  0.05 
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Figure 12 Illustrate the fact that the number of symptomatic patients gets decrease as patients in asymptomatic 

patients decrease that lead to zero for a long interval of time. 

 

 
Figure 13 Population dynamics of treatment compartment with the parametric values 𝜏 =  2,   µ =  0.02, 𝛽 =

 0.0005, 𝜅 =  0.3, 𝜔 = 0.08,   𝜙 = 0.01, 𝜃 = 0.06, 𝛾 = 0.01, 𝛿 =  0.05 

       

From Figure 13 above it can be observed that initially the treatment class population increase as more 

symptomatic class patients joins the compartment. It gets decreasing as some patients leave the compartment 

willingly to join the asymptomatic compartment and some patients cells resist the medications and transferred to 

AIDS compartment class.   
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Figure 14Population dynamics of AIDS compartment with the parametric values 𝜏 =  2,   µ =  0.02, 𝛽 =

 0.0005, 𝜅 =  0.3, 𝜔 = 0.08, 𝜙 = 0.01, 𝜃 = 0.06, 𝛾 = 0.01, 𝛿 =  0.05 

Figure 14 shows that AIDS patients get decreasing as there be patients who did not fit with the 

treatment. Finally, as the number of patients decreased in all compartments, the AIDS compartment patients also 

get decreasing that leads to zero patients in long time. 

 

The differences and similarities between the existing and modified model are given respectively in the 

tables 4 and 5. 

Table 4 Differences of existing and modified model 
Differences 

SN Existing model [5] Modified (Present) model 

1 Has five compartments Has six compartments 

2 Has susceptible class, primary class, asymptomatic class, 

symptomatic class, AIDS  class 

Has susceptible class, primary class, asymptomatic class, 

symptomatic class , treatment class,  AIDS class 

3 Herbal medicine considered for separate class Herbal medicine and ART used in treatment class 

4 Asymptomatic class used treatment Asymptomatic class used no treatment  

 

Table 5 Similarities of existing and modified model 

Similarities 

Both existing [5] and modified (Present) model have the following similarities 

(i) Disease  induced death rate in AIDS patients 

(ii) Transmission rate 

(iii)  Natural mortality 

(iv) Transfer of patients from asymptomatic to asymptomatic 

 

IV. Sensitivity Analysis 
Sensitivity analysis is used to determine the sensitivity of the model with respect to the parameters 

involved in it.  That is, how changes in the value of the parameters of the model result in changing the dynamics 

of the infection. It is used to discover parameters that have a high impact on 𝑅0and should be targeted by 

intervention strategies. More precisely, sensitivity indices allow measuring the relative change in a variable 

when parameter changes [4]. If the result is negative then the relationship between the parameters and 𝑅0is 

inversely proportional. In this case, the modulus of the sensitivity index will be taken so that the size of the 

effect of changing that parameter can be deduced.  
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Definition The normalized forward sensitivity index of a variable 𝑅0 that depend differentially on a parameter 𝑝 

is defined by [12, 13, 14, 4] 

Υ𝑝
𝑅0 =

𝜕𝑅0

𝜕𝑝
×

𝑝

𝑅0

 

On the other hand, a positive sensitivity index means that both the function and the parameter are 

proportional to each other i.e. both of them grow or decay together. It is already shown that the explicit 

expression of 𝑅0is given by𝑅0 =   𝛽𝜏 𝜇 𝜅 + 𝜇    . Since,𝑅0depends only on four parameters, an analytical 

expression will be derived for its sensitivity to each of the parameters using the normalized forward sensitivity 

index as follows: 

Υ𝛽
𝑅0 =  𝜕𝑅0 𝜕𝛽  ×  𝛽 𝑅0   

Υ𝜇
𝑅0 =  𝜕𝑅0 𝜕𝜇  ×  𝜇 𝑅0   

Υ𝜅
𝑅0 =  𝜕𝑅0 𝜕𝜂  ×  𝜅 𝑅0   

Υ𝜏
𝑅0 =  𝜕𝑅0 𝜕𝜏  ×  𝜏 𝑅0   

 

Table 6 Sensitivity of  𝑅0 evaluated for the parametric values given under Figure 1 

 

 

From Table 6, it can be observed that the values of two parameters   𝝉  and    𝜷  are positive sensitivity 

indices and values of the remaining two parameters 𝜇  and 𝜅 get negative sensitivity indices.  

As it is observed from the table the parameter with large magnitude are     𝜇, 𝜏   and   𝛽. Hence, they 

are most sensitive parameter in the model equations. On the other hand an increase in these positive parameter 

values will cause an increasing𝑅0 this implies that disease transmission in human population. Similarly, a 

decrease in negative parameter values will cause a decrease in𝑅0 which means the disease transmission 

decreases in human population. 

 

V. Result and  Discussion 
In this study, a deterministic dynamical system consists of six equations has been formulated to 

describe the dynamics of human population subjected to HIV Human Immunodeficiency Virus (HIV) 

epidemics. A formulated dynamical system is biologically meaningful and mathematically well-posed. The 

computation of the sensitivity indices shows that increasing recruitment rate and transmission rate increases the 

transmission of the disease. It is also observed from the simulation that increasing recruitment rate make the 

disease to persist in the population and this concept is supported with performed Figures (1) – (7).On the other 

hand decreasing this parameter values decrease the transmission of the disease and this concept is supported by 

the simulation done in Figures (8) – (14). Additionally, the negatively computed values of indices show that 

increasing these parametric values decrease the transmission of the disease in the population. Further from 

sensitivity indices computation we observed that the three most sensitive parameters in the formulated 

dynamical system for human population subjected to the HIV epidemic are 𝜏,   𝜅,  and  𝜇 . The mathematical 

analysis has shown that if the reproduction number 𝑅0 < 1 then the disease free equilibrium point is locally and 

globally asymptotically stable implying that the disease transmission decreases with decreased recruitment rate 

value which is supported by the simulation results given in Figure 8-14. Also, if 𝑅0 > 1 then the disease free 

equilibrium point is unstable implying that the transmission of disease increases. These theoretical results have 

been supported by the simulation study as it is shown in Figure (1-7).  

 

VI. Conclusions 
The formulated deterministic dynamical system of human population subjected to HIV epidemics is 

biologically meaningful and mathematically well-posed which is supported with the work done in showing 

existence, positivity and boundedness of the formulated dynamical system (see Table 3). In formulated 

deterministic dynamical system it is important to significantly assume or carefully take the values of recruitment 

rate, transmission rate, and natural death rate.  The endemic equilibrium point is locally unstable for 

reproduction number less than unity. The stability analyses of the formulated model were investigated using the 

tools known as basic reproduction number and Routh Hurwitz criterion. The disease free equilibrium point is 

globally stable for reproduction number is less than unity and unstable for reproduction number is greater than 

unity. Also, the solution of the formulated model equations is numerically described with simulation and 

Parameter Sensitivity index 

𝝁 -1.3125 

𝜷 +1 

𝜿 -0.9375 

𝝉 +1 
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sensitivity analysis of the formulated model is conducted. Furthermore, results of the performed research work 

in this paper reveal that the formulated model effectively supports treatment for HIV disease. 
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