Conjugacy Classes and Action of $\Delta(3,4, k)$ on $P L\left(F_{q}\right)$

Tahir Imran ${ }^{1}$, Muhammad Ashiq ${ }^{1}$
${ }^{1}$ (Department of Humanities \& Basic Sciences, MCS Campus, National University of Sciences \& Technology, Islamabad, Pakistan)

Abstract

The triangle group $\Delta(3,4, k)$ can be defined as $\left\langle r, s: r^{3}=s^{4}=(r s)^{k}=1\right\rangle$, where r, s are the generators of the group. In this paper, we have discussed conjugacy classes that arises from the actions of $\Delta(3,4, k)$ on $P L\left(F_{q}\right)$. Here, F_{q} is a finite field for any prime q and $P L\left(F_{q}\right)=F_{q} \cup \infty$. A relation between conjugacy classes of a homomorphism and parameters of F_{q} has also drawn by using computer coding scheme.

Keywords: Conjugacy classes, Linear-fractional transformations, Parameterization and Non-degenerate homomorphism.

Date of Submission: 26-12-2019
Date of Acceptance: 11-01-2020

I. Introduction

It is well known $[2,3]$ that $\Gamma=G^{3,4}(2, Z)$ is the group of linear-fractional transformations of the form $z \rightarrow \frac{a z+b}{c z+d}$, where $a, b, c, d \in Z, a d-b c \neq 0$. This group is generated by r, s satisfying the relations

$$
\begin{equation*}
r^{3}=s^{4}=1 \tag{1.1}
\end{equation*}
$$

It is also proved in $[2,3]$ that if a linear-fractional transformation t inverts both r and s, that is, $t^{2}=(r t)^{2}=$ $(s t)^{2}=1$, then we get an extended group $\Gamma^{*}=G^{* 3,4}(2, Z)$ which is again a group of transformations having form

$$
z \rightarrow \frac{a z+b}{c z+d} ; a, b, c, d \in Z
$$

The defining relations of this extended group are:

$$
\begin{equation*}
\Gamma^{*}=<r, s, t: r^{3}=s^{4}=t^{2}=(r t)^{2}=(s t)^{2}=1>. \tag{1.2}
\end{equation*}
$$

Thus we can define the group $G^{* 3,4}(2, q)$ as the group of linear-fractional transformations of the form $z \rightarrow \frac{a z+b}{c z+d}$, where $a, b, c, d \in F_{q}$ and $a d-b c \neq 0$. We can also define a group $G^{3,4}(2, q)$ as a subgroup of $G^{* 3,4}(2, q)$ such that $a d-b c$ is a non-zero square in F_{q} [5]. It is well known in [7, 8] that triangle group $\Delta(k, l, m)$ is finite precisely when $\frac{1}{k}+\frac{1}{l}+\frac{1}{m}>1$, and infinite in case of $\frac{1}{k}+\frac{1}{l}+\frac{1}{m} \leq 1 . \Delta(2,4, k)$ is infinite for $k \geq 4$, whereas for $k=1,2,3$ triangle group $\Delta(2,4, k)$ is C_{2}, D_{8}, S_{4} respectively [8, 9]. A general description of triangle group $\angle(3,4, k)$ having representation $<r, s: r^{3}=s^{4}=(r s)^{k}=1>$ can be found in [1, 4, 6]. It is also known that by adjoining an involution t, which inverts both r and s, the groups $\angle(3,4, k)$ can be extended to the triangle groups $\Delta^{\prime}(3,4, k)=<r, s, t: r^{3}=s^{4}=(r s)^{k}=t^{2}=(r t)^{2}=(s t)^{2}=1>$. The triangle group $\Delta(3,4, k)$ is of index 2 in $\Delta^{\prime}(3,4, k)$ and so is normal in $\Delta^{\prime}(3,4, k)$.

II. Parameters of Conjugacy Classes for $\Gamma^{*}=G^{* 3,4}(2, Z)$

Let $\alpha G^{*}(2, Z) \rightarrow G^{*}(2, q)$ be a homomorphism. Choose $r=r \alpha, s=s \alpha$ and $t=t \alpha$, in $G^{*}(2, q)$ satisfying

$$
\underline{r}^{3}=\underline{s}^{n}=\underline{t}^{2}=(\underline{r} t)^{2}=(\underline{s t})^{2}=1
$$

This homomorphism α is termed as 'non-degenerate' if r and s have same orders as that of $(r) \alpha$ and (s) α respectively. It means none of the generators r, s lies in kernel of α so that their images $\underline{r}=r \alpha, s=s \alpha$ are of orders 3 and n respectively.

If a natural map $G L(2, q) \rightarrow G^{*}(2, q)$ maps matrix M to an element g of $G^{*}(2, q)$, then $\theta=$ $(\operatorname{trace}(M))^{2} / \operatorname{det}(M)$ is called invariant of conjugacy class of g. It can be pertained as parameter of element g or of conjugacy class. Actions of $G(2, Z)$ on $P L\left(F_{q}\right)$, via α, will be considered so that g be taken as $(r s) \alpha=\underline{r} \underline{s}$. Hence, θ is the parameter of the class containing $\underline{r} \underline{s}$. We can also establish a relation between α and $\theta \in F_{q}$. It can be proved very easily that if R and S are two non-singular 2×2 matrices corresponding to the generators \underline{r} and \underline{s} of Γ^{*} with $\operatorname{det}(R S)=I$ and $\operatorname{trace}(R S)=m_{2}$, then $R S$ satisfy the following characteristic equation:

$$
(R S)^{2}-m_{2} R S+I=0
$$

$$
\begin{equation*}
(R S)^{2}=m_{2} R S-I \tag{2.2}
\end{equation*}
$$

Multiplying both sides of this equation by S, we get:

$$
\begin{equation*}
(R S)^{3}=m_{2}(R S)^{2}-(R S) I \tag{2.3}
\end{equation*}
$$

By putting equation (2.2) in equation (2.3), we obtain

$$
(R S)^{3}=\left(m_{2}^{2}-1\right)-m_{2} I
$$

On recursion, we get

$$
\begin{equation*}
(R S)^{k}= \tag{2.4}
\end{equation*}
$$

$\left\{(k-10) m_{2}^{k-1}-(k-21) m_{2}^{k-3} \ldots\right\} R S-\left\{(k-20) m_{2}^{k-2}-(k-31) m_{2}^{k-4}+\ldots\right\} I$
Furthermore, if

$$
f\left(m_{2}\right)=\left\{(k-10) m_{2}^{k-1}-(k-21) m_{2}^{k-3} \ldots\right\} R S-\left\{(k-20) m_{2}^{k-2}-(k-\right.
$$

$31 m 2 k-4+\ldots\}(2.5)$
and substituting $m_{2}^{2}=\theta$ in the polynomial $f\left(m_{2}\right)$ if k is odd and $m_{2}=\sqrt{\theta}$ otherwise, we obtain a polynomial $f(\theta)$. We can find a minimal polynomial for positive integer k by using equation (2.5).

III. Main Results

Following important result is necessary to prove Theorem 3.2.
Lemma 3.1: For a non-singular 2×2 matrix, if its trace is zero then it represents an involution provided its entries are from F_{q}.

Theorem 3.2: Let $\underline{r}, \underline{s}$ be any two elements of $G^{* 3,4}(2, q)$ and R, S be their corresponding matrices respectively, then $m_{2}^{2}-\sqrt{2} m_{2}-1=0$, where m_{2} is the trace of matrix $R S$.
Proof: Consider two elements $\underline{r}, \underline{s}$ of $G^{* 3,4}(2, q)$, such that order of \underline{r} is 3 whereas that of \underline{s} is 4.Let $R=$ $\left[r_{1} r_{2} r_{3} r_{4}\right]$ and $S=\left[s_{1} s_{2} s_{3} s_{4}\right]$ be their corresponding matrices and are the elements of $G L(2, q)$. Since $\underline{r}^{3}=1$, so R^{3} will be a scalar matrix and its determinant will be a square in F_{q}. Since, for any matrix M, $\bar{M}^{3}=\lambda I$ if and only if $(\operatorname{trace}(M))^{2}=\operatorname{det}(M)$, so we may assume that $\operatorname{trace}(R)=r_{1}+r_{4}=-1$. Replacing R by a suitable scalar, we can also assume that $\operatorname{det}(R)=1$. Thus $R=\left[r_{1} r_{2} r_{3}-r_{1}-1\right]$. Therefore we have $\operatorname{det}(R)=-r_{1}^{2}-r_{1}-k r_{3}^{2}$. Since $\operatorname{det}(R)=1$, so

$$
1+r_{1}^{2}+r_{1}+k r_{3}^{2}=0
$$

As $\underline{r}^{3}=1$ and $\operatorname{trace}(R)=-1$, so every element of $G L(2, q)$ with trace equal to -1 has up to scalar multiplication, a conjugate of the form $[0 k 1-1]$. Therefore, we can assume that R has the form [0k11. Similarly, $S=s 1 k s 3 s 3-s 1-2$ giving $\operatorname{det}(S)=-s 12-2 s 1-k s 32=1$, so that

$$
\begin{equation*}
1+s_{1}^{2}+\sqrt{2} s_{1}+k s_{3}^{2}=0 \tag{3.2}
\end{equation*}
$$

Consider an invertible element \underline{t} in $G^{* 3,4}(2, q)$ such that it satisfies the relation:

$$
\begin{equation*}
\underline{t}^{2}=(\underline{r t})^{2}=(\underline{s t})^{2}=1 . \tag{3.3}
\end{equation*}
$$

Let $T=\left[t_{1} t_{2} t_{3} t_{4}\right]$ be a matrix representing \underline{t}. Then, since \underline{t} is an involution, therefore $t_{4}=-t_{1}$ yields $T=$ $\left[t_{1} t_{2} t_{3}-t_{1}\right]$. Let $R T$ be the matrix representing $\underline{r t}$ of $G^{* 3,4}(2, q)$. Then $R T=\left[k t_{3}-k t_{1} t_{1}-t_{3} t_{1}+t_{2}\right]$, which again by lemma 3.1, and $(\underline{r} \underline{t})^{2}=1$, implies that

$$
\begin{equation*}
t_{1}+t_{2}=-k t_{3} \tag{3.4}
\end{equation*}
$$

Similarly, if $S T$ is a matrix that represents an element $\underline{s t}$ of $G^{* 3,4}(2, q)$, then we get
$S T=\left[s_{1} t_{1}+s_{2} t_{3} s_{1} t_{2}-s_{2} t_{2} s_{3} t_{1}+t_{3}\left(\sqrt{2}-s_{1}\right) s_{3} t_{2}-t_{1}\left(\sqrt{2}-s_{1}\right)\right]$. Since $\underline{s t}$ is also an involution therefore by the arguments given above, we have $s_{1} t_{1}+s_{2} t_{3}+s_{3} t_{2}-t_{1}\left(\sqrt{2}-s_{1}\right)=0$, which together with equation (3.4) yields $2 s_{1} t_{1}+s_{2} t_{3}-s_{3} t_{1}-k s_{3} t_{3}-\sqrt{2} t_{1}=0$. That is,

$$
\begin{equation*}
t_{1}\left(2 s_{1}-s_{3}+\sqrt{2}\right)+t_{3}\left(s_{2}-k s_{3}\right)=0 \tag{3.5}
\end{equation*}
$$

Now for a non-singular matrix T, we must have $\operatorname{det}(T) \neq 0$, that is

$$
\begin{equation*}
-t_{1}^{2}+t_{1} t_{3}+k t_{3}^{2} \neq 0 \tag{3.6}
\end{equation*}
$$

Therefore, necessary and sufficient conditions for the existence of \underline{t} in $G^{* 3,4}(2, q)$ are the equations (3.4), (3.5) and (3.6). Hence t exists in $G^{* 3,4}(2, q)$ unless $k t_{3}^{2}-t_{1}^{2}+t_{1} t_{3}=0$. If both $2 s_{1}-s_{3}+\sqrt{2}$ and $s_{2}-k s_{3}$ are equal to zero, then the existence of \underline{t} is trivial. If not, then $t_{1} / t_{3}=-\left(s_{2}-k s_{3}\right) /\left(2 s_{1}-s_{3}-\sqrt{2}\right)$, and so equation (3.6) is equivalent to $\left(s_{2}-k s_{3}\right)^{2}-\left(2 s_{1}-s_{3}+\sqrt{2}\right)\left(2 k s_{1}+\sqrt{2} k-s_{2}\right) \neq 0$. Thus \underline{t} exists in $G^{* 3,4}(2, q)$ satisfying equation (3.3) unless $\left(s_{2}-k s_{3}\right)^{2}=\left(2 s_{1}-s_{3}+\sqrt{2}\right)\left(2 k s_{1}+\sqrt{2} k-s_{2}\right)$. Which after simplification gives

$$
\begin{equation*}
\left(s_{2}-k s_{3}\right)\left(s_{2}-k s_{3}+2 s_{1}+\sqrt{2}\right)=-4 k+s_{2} s_{3}-2 . \tag{3.7}
\end{equation*}
$$

Now $R S=\left[k s_{3} k\left(\sqrt{2}-s_{1}\right) s_{1}-s_{3} s_{2}-\sqrt{2}+s_{1}\right]$, this implies that the $\operatorname{tr}(R S)=s_{1}+s_{2}+k s_{3}-\sqrt{2}$. Let $\operatorname{tr}(R S)=m_{2}$. Also, using equation (3.7), we have $\operatorname{det}(R S)=k\left(s_{2} s_{3}-\sqrt{2} s_{1}+s_{1}^{2}\right)$. Since $\operatorname{det}(R S)=1$. So $k=-1$. Hence we have

$$
1=\sqrt{2} s_{1}-s_{1}^{2}-s_{2} s_{3}(3.8)
$$

Also, we have

$$
\begin{equation*}
m_{2}=s_{1}+s_{2}-s_{3}-\sqrt{2} \tag{3.9}
\end{equation*}
$$

Substituting $k=-1$ and values from equations (3.8) and (3.9) in equation (3.7), we get,

$$
\begin{align*}
& m_{2}^{2}-\sqrt{2} m_{2}+2=3 \\
& m_{2}^{2}-\sqrt{2} m_{2}-1=0 \tag{3.10}
\end{align*}
$$

Theorem 3.3: Let g be any non-trivial element of $G^{* 3,4}(2, q)$, such that order of both g and its dual not equal to 2 , then \underline{g} is the image of $r s$ under some non-degenerate homomorphism of Γ^{*} into $G^{* 3,4}(2, q)$.
Proof: To prove this result, we show by using theorem 3.2, that every non-trivial element of $G^{* 3,4}(2, q)$ is the product of two elements, one having order 3 whereas other of order 4 . In fact we must find elements $\underline{r}, \underline{s}$ and \underline{t} belong to $G^{* 3,4}(2, q)$ and satisfy the relations (2.1), too.
For this, consider the elements $\underline{r}, \underline{s}$ and \underline{t} of $G^{* 3,4}(2, q)$ represented by the matrices $R=\left[r_{1} k r_{3} r_{3}-r_{1}-1\right]$, $S=\left[s_{1} k s_{3} s_{3}-\sqrt{2}-s_{1}\right]$ and $T=\left[\begin{array}{lll}0 & -k & 1\end{array}\right]$, where $r_{1}, r_{3}, s_{1}, s_{3}, k$ are in F_{q}, with $k \neq 0$, so that

$$
1+r_{1}+r_{1}^{2}+k r_{3}^{2}=0 .(3.11)
$$

Further, let assume the determinant of S be equal to 1 , we have

$$
\begin{equation*}
1+k s_{3}^{2}+s_{1}^{2}+\sqrt{2} s_{1}=0 \tag{3.12}
\end{equation*}
$$

We take $\underline{r} \underline{s}$ in a given conjugacy class. A matrix representing $\underline{r} \underline{s}$ is given by

$$
R S=\left[r_{1} s_{1}+k r_{3} s_{3} k r_{1} s_{3}+k r_{3}\left(-\sqrt{2}-s_{1}\right) r_{3} s_{1}-s_{3}\left(r_{1}+1\right) k r_{3} s_{3}-r_{1}\left(-\sqrt{2}-s_{1}\right)+\sqrt{2}+s_{1}\right]
$$

Its trace, which we denote by m_{2}, is given by

$$
m_{2}=\operatorname{trace}(R S)=2 k r_{3} s_{3}+r_{1}\left(2 s_{1}+\sqrt{2}\right)+\left(s_{1}+\sqrt{2}\right)
$$

As determinant of R and S is 1 , therefore $\operatorname{det}(R S)=\operatorname{det}(R) \operatorname{det}(S)=1$, Hence, we have

$$
R S T=\left[k r_{1} s_{3}-\sqrt{2} k r_{3}-k r_{3} s_{1}-k r_{1} s_{1}-k^{2} r_{3} s_{3} k r_{3} s_{3}+\sqrt{2} r_{1}+r_{1} s_{1}+\sqrt{2}+s_{1}-k r_{3} s_{1}+k r_{1} s_{3}+k s_{3}\right]
$$

So, $\operatorname{trace}(R S T)=k\left(2 r_{1} s_{3}-2 r_{3} s_{1}+s_{3}-\sqrt{2} r_{3}\right)$. Let trace $(R S T)=k m_{3}$, then

$$
\begin{equation*}
m_{3}=2 r_{1} s_{3}-r_{3}\left(2 s_{1}+\sqrt{2}\right)+s_{3} . \tag{3.14}
\end{equation*}
$$

Hence, we have

$$
\begin{equation*}
m_{2}^{2}+k m_{3}^{2}-\sqrt{2} m_{2}-1=0 . \tag{3.15}
\end{equation*}
$$

Since $\underline{g}=\underline{r} \underline{s}$ (or its dual $\underline{r} \underline{s t}$) are not of order 2 , so we must have $(\underline{r} \underline{s})^{2} \neq 1$ and $(\underline{r} \underline{s t})^{2} \neq 1$. Thus by lemma 3.1, the traces of the matrices $R S$ and $R S T$ are not equal to zero. Hence $m_{2} \neq 0$, and $m_{3} \neq 0$, so that $\theta=m_{2}^{2} \neq$ 0 ; and it is sufficient to show that we can choose $r_{1}, r_{3}, s_{1}, s_{3}, k$ in F_{q} so that m_{2}^{2} is indeed equal to θ
From equation (3.15), we have $k m_{3}^{2}=1-m_{2}^{2}+\sqrt{2} m_{2}$. If $m_{2}^{2}-\sqrt{2} m_{2} \neq 1$, we can select the value of k as per same argument.

Theorem 3.4: For any non-degenerate homomorphism α and its dual α,

$$
\theta+\phi=1+\sqrt{2} m_{2}
$$

where θ and ϕ are the parameters of α and α respectively.
Proof: Consider a non-degenerate homomorphism $\alpha \cdot \Gamma^{*} \rightarrow G^{* 3,4}(2, q)$ satisfies the relations $r \alpha=\underline{r}, s \alpha=\underline{s}$ and $t \alpha=\underline{t}$ and $\dot{\alpha}$ is its dual. Consider the matrices $R=\left[r_{1} k r_{3} r_{3}-r_{1}-1\right], \quad S=\left[s_{1} k s_{3} s_{3}-\sqrt{2}-s_{1}\right]$ and $T=\left[\begin{array}{llll}0 & -k & 1 & 0\end{array}\right]$, representing the elements $\underline{r}, \underline{s}$ and \underline{t}, of $G^{* 3,4}(2, q)$ respectively. By lemma 3.1, $\operatorname{trace}(R S)=$ $\operatorname{trace}(R S T)=0$ if and only if $(\underline{r} \underline{s})^{2}=(\underline{r} \underline{s} t)^{2}=1$. As $\operatorname{det}(R S)=1$, so we can assume that parameter θ (say) of $\underline{r} \underline{s}$ equals to m_{2}^{2}. Also since $\operatorname{trace}(R S T)=k m_{3}$ and $\operatorname{det}(R S T)=k$ (since $\operatorname{det}(R)=1$, $\operatorname{det}(S)=1$ and $\operatorname{det}(T)=k$, we get the parameter ϕ of $\underline{r} \underline{s t}$ equals to $k m_{3}^{2}$. Therefore, we have $\theta+\phi=m_{2}^{2}+k m_{3}^{2}$.

Substituting the value of m_{2}^{2} from equation (3.15), we get $\theta+\phi=1+\sqrt{2} m_{2}$. Hence if θ is the parameter of the non-degenerate homomorphism α, then $\phi=1+\sqrt{2} m_{2}-\theta$ is the parameter of the dual α of α.

Corollary 3.5: If \underline{t} inverts both \underline{r} and \underline{s} then order of $\underline{r} \underline{s}$ is 12 .
Proof: From theorem 3.2, we have $m_{2}^{2}=1+\sqrt{2} m_{2}$. After rearranging this result, we get

$$
\begin{equation*}
m_{2}^{2}-1=\sqrt{2} m_{2} \tag{3.16}
\end{equation*}
$$

Taking square on both sides of equation (3.16), we get

$$
m_{2}^{4}-2 m_{2}^{2}+1=2 m_{2}^{2}
$$

Replacing m_{2}^{2} by θ in equation (3.17), we get

$$
\begin{equation*}
\theta^{2}-4 \theta+1=0 \tag{3.18}
\end{equation*}
$$

From table 1 given below, it is evident that this is the corresponding equation for $k=12$. Hence order of $\underline{r s}$ is 12.

Table 1: Minimal Equations satisfied by θ

Triangle Group $\triangle(3,4, k)$	Minimal Equation satisfied by θ
$\Delta(3,4,1)$	$\theta-4=0$
$\Delta(3,4,2)$	$\theta=0$
$\Delta(3,4,3)$	$\theta-1=0$
$\Delta(3,4,4)$	$\theta-2=0$
$\Delta(3,4,5)$	$\theta^{2}-3 \theta+1=0$
$\Delta(3,4,6)$	$\theta-3=0$
$\Delta(3,4,7)$	$\theta^{2}-5 \theta^{2}+6 \theta-1=0$
$\Delta(3,4,8)$	$\theta^{2}-4 \theta+2=0$
$\Delta(3,4,9)$	$\theta^{2}-6 \theta^{2}+9 \theta-1=0$
$\Delta(3,4,10)$	$\theta^{2}-5 \theta+5=0$
$\Delta(3,4,11)$	$\theta^{5}-9 \theta^{4}+28 \theta^{3}-35 \theta^{2}+15 \theta-1=0$
$\Delta(3,4,12)$	$\theta^{2}-4 \theta+1=0$
$\Delta(3,4,13)$	$\theta^{2}-11 \theta^{5}+45 \theta^{4}-84 \theta^{3}+70 \theta^{2}-21 \theta+1=0$
$\Delta(3,4,14)$	$\theta^{2}-7 \theta^{2}+14 \theta-7=0$
$\Delta(3,4,15)$	$\theta^{2}-9 \theta^{3}+26 \theta^{2}-24 \theta+1=0$

IV. Computational Approach to Calculate Conjugacy Classes

Flowchart and Algorithm

Following flowchart and algorithm help us to develop a computer coding scheme for drawing relation between homomorphism and parameters of conjugacy classes.

Figure 1: Flow Chart

1. Input integer values k, set $i=0$.
2. For $i<k$. If i is prime, calculate $g_{k}(\theta)=f(\theta)$
3. Otherwise calculate divisors for k
4. Calculate $g_{k}(\theta)=\frac{f(\theta)}{g_{k}\left(d_{1}, d_{2}, \ldots, d_{n}\right)(\theta)}$.
5. Add $\left.g_{k}(\theta)\right)$ to the list.
6. Display list in table form.

Coding Scheme

Following code written in Java programming language will generate the conditions in form of equations $f(\theta)=0$ for the existence of triangle groups $\angle(3,4, k)$ for $1 \leq k \leq n$ as shown in table 1 for $1 \leq k \leq 15$.

$$
\begin{gathered}
\quad(* \text { Get Input from user } *) \\
k=\operatorname{Input}[\text { Enter } \quad \text { t he value } \quad \text { of } K] ;
\end{gathered}
$$

```
(* InitializedenominatortobeusedwhenKisnoprime *)
mylist \(=\) Range \([k] ;\)
resultlist \(=\) List [];
```

denom = 1;

$$
\text { finalResult }=1 \text {; }
$$

$$
r=2
$$

(* Functionthatimplementstheformula *)

$$
r=\sqrt{\theta} ;
$$

$$
\text { Solver }\left[k_{-}\right]: \sum_{n=1}^{\frac{(k+1)}{2}}(-1)^{n+1}\left(\frac{(k-n)!}{((k-n)-(n-1))!(n-1)!}\right)(r)^{k-(2 n-1)}
$$

$$
(* \text { Loopfrom1toinputRange } *)
$$

$$
\operatorname{For}[i=1, i \leq k, i++,
$$

(* checkkforprimecondition.*)

$$
\text { If }[i==1, \text { finalResult }=\theta-4
$$

$$
\text { If }[\text { Prime } Q[i],
$$

$$
(* \text { If KisPrime } *)
$$

$$
\text { finalResult }=\operatorname{solver}[i],\left(* g_{k}(\theta)=f_{k}(\theta) *\right)
$$

$$
\text { divof } K=\text { Divisors }[i] ;(* \text { IfKisNotPrime } *)
$$

$$
\text { length }=\text { Length }[\text { divof } K] ;
$$

$$
\text { newlist }=\text { Delete }[\text { divof } K,\{\{1\},\{-1\}\}] ;(* \text { GetDivisorsof } K *)
$$

$$
\text { length } 2=\text { Length }[\text { newlist }] ;
$$

$\operatorname{Do}[$ denom $=$ denom $* \operatorname{solver}[\operatorname{Part}[$ newlist,$n]],\{n, 1$, length 2,1$\}] ;\left(* g_{k}(\theta)=f_{k} \frac{(\theta)}{g_{k|d 1, d 2, d 3, \ldots|}}(\theta) *\right)$

$$
\text { finalResult } \left.\left.=\frac{\text { solver }[i]}{\text { denom }} ;\right]\right]
$$

References

[1]. Anna Torstensson, Coset diagrams in the study of finitely presented groups with an application to quotients of the modular group, J. Commut. Algebra, 2, 4(2010), 501 - 514.
[2]. M. Ashiq, T. Imran, M.A. Zaighum, Actions of $\Delta(3, n, k)$ on projective line, Transactions of A. Razmadze Mathematical Institute, 172(2018), 1 - 6 .
[3]. M. Ashiq, T. Imran, M.A. Zaighum, Defining relations of a group $\Gamma=G^{3,4}(2, Z)$ and its action on real quadratic field, Bulletin of Iranian Mathematical Society (BIMS), 43(6)(2017), 1811 - 1820.
[4]. M. Ashiq, Q. Mushtaq and T. Maqsood, Parameterization of actions of a subgroup of the modular group, Quasigroups and Related System, 20(2012), 21-28.
[5]. M. Ashiq and Q. Mushtaq, Coset diagrams for a homomorphic image of $\Delta(3,3, k)$, Acta Mathematica Scientia,28B(2)(2008),363370.
[6]. M.Ashiq and Q. Mushtaq, Parametrization of $G^{*}(2, Z)$ on $P L\left(F_{q}\right)$, Proc. of ICM Sattellite Conference in Algebra and Related Topics

$$
(2002), 264-270
$$

[7]. M. D. E. Conder, Some results on quotients of triangle groups, Bull. Austral. Math. Soc. Vol., 29(1984), 73 - 90.
[8]. H.S.M. Coxeter and W.O.J. Moser, Generators and relations for discrete groups, 4th. ed.,Springer-Verlag, Berlin, 1980.
[9]. W.W.Stothers, Subgroups of finite index in (2,3,n) - triangle groups, Glasg.Math.J. 54(3)(2012),693-714.

[^0]
[^0]: Tahir Imran. "Conjugacy Classes and Action of $\Delta(3,4, \mathrm{k})$ on PL(F_q)." IOSR Journal of Mathematics (IOSR-JM), 16(1), (2020): pp. 23-28.

