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Abstract 
Background: Lassa fever disease is a fatal zoonotic hemorrhagic disease caused by Lassa virus and endemic in 

West African countries. The aim of this paper is the application of mathematical modeling and analyses in 

controlling the spread of this disease. 

Materials and Methods: In this paper, a mathematical model which represents the transmission and control 

processes of Lassa fever disease among human and vector hosts is developed. The model is developed as a 

coupled system of 7 ordinary differential equations using the compartmental disease modeling approach. Three 

control strategies are incorporated into the model and the model analyzed for the existence of a positively 

invariant region within which its solutions are uniformly bounded. The model equations are solved numerically 

using the MATLAB ode45 method and simulations performed to visualize the effects of each control parameter on 

the spread and control of the disease. Furthermore, local and global stability analyses of the model’s equilibrium 

point are performed using the next-generation matrix approach and the direct Lyapunov method respectively with 

sensitivity analyses carried out on the model parameters. 

Results: The stability analyses performed on the disease-free equilibrium state of the model indicate that the 

disease will not invade the studied population but can be controlled if the parameters of the model are 

implemented in such population. The sensitivity analyses results show the sensitiveness of each model parameter 

to the transmission of the disease. The numerical simulation of the model suggests that the availability of the three 

control strategies in an endemic area results in the eradication of the disease over time.  

Conclusion: It is concluded that the developed model is viable to represent the real-life situation being modeled, 

hence, it is recommended that the model and its results be implemented in an endemic area. 
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I. Introduction 

The greatest threat to human existence, apart from environmental hazards such as fire outbreaks and 

earthquakes, are infectious diseases, one of which is the deadly Lassa fever disease. Infectious diseases are caused 

by pathogenic micro-organisms, such as bacteria, viruses, parasites or fungi, and can spread directly or indirectly 

from one person to another (CDC, 2018). 

Lassa fever (LF) is an acute hemorrhagic viral disease caused by the Lassa virus (LASV) and 

predominantly spreading in West African countries. The major host of the LASV is the Autochthonous Mastomys 

natalensis rat specie. The mode of transmission of the LF disease is via contact with the bodily fluids and 

secretions of an infected person or animal. Lassa virus has an incubation period of about 6 to 21 days in human 

host, a period in which such an infected person do not exhibit any noticeable symptom of the infection. The 

fatality rate of the Lassa fever in symptomatic patients who are receiving treatment is between 15% and 20%. A 

total of 80% of humans infected with the LF disease are without symptoms, although they are infectious (Du-Toit, 

2018). According to the world health organization, there are about 300,000 to 500,000 cases of Lassa fever disease 

across West Africa which result in about 5,000 deaths per year (WHO, 2018). 

Onuorah et al. (2016a) developed a mathematical model for the spread of Lassa fever. The disease free 

equilibrium (DFE) was analyzed for its existence and stability. The results of this analysis showed that if the basic 

reproduction number, 𝑅0, is less than or equal to 1, and there do not exist an endemic equilibrium point (EEP) for 

the disease, then the disease will die out, otherwise the disease will persist in the population. James and Akinyemi 

(2015) performed the stability analysis of LF transmission, but with the assumption of the existence of quarantine 

for the infected human population and permanent immunity for the recovered human population. The results of 
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this investigation was that the disease can be easily controlled if these assumptions can be implemented into all LF 

endemic populations. This result was in agreement with the analysis of Bawa et al. (2013) in which the model that 

represented the Lassa fever disease incorporated standard incidence rate and it was assumed that this rate can be 

predetermined.  

Eze et al. (2010) analyzed and discussed the impact of Lassa fever in some endemic areas including the 

northern part of Edo State in Nigeria with high rate of infection on contact persons. According to this research, 

each year at least 32.26% (4,096) of patients with febrile illness that come to Irua specialist teaching hospital 

(ISTH) in Edo state has Lassa fever. This figure was said to be more than that of malaria, tuberculosis or 

HIV/AIDS. Adewale et al. (2016) developed a mathematical model for the transmission of Lassa fever with 

isolation of infected individuals and obtained the basic reproduction number, 𝑅0. The analysis of the model 

showed that the DFE is locally and globally asymptotically stable, with the threshold quantity,𝑅0, less than 1. It 

was also concluded that an EEP, a positive steady state solution for which the disease persists in the studied 

population, may exists for the developed model under certain conditions.  

Onuorah et al. (2016b) developed a mathematical model for the transmission of LF. The basic 

reproduction number which can be used to control the transmission dynamics of the disease was obtained and the 

conditions for local and global stabilities of the DFE was established. It was concluded that though the DFE is 

globally asymptotically stable (with 𝑅0 < 1), the disease will still continue to spread due to the unavailability of 

controls. Omale & Edibo (2017) modeled the transmission of Lassa fever virus between humans and rodents with 

control strategies as a six-dimensional ordinary differential equation. Stability analysis of the DFE was performed 

and the basic reproduction number obtained using the next generation operator approach. The existence of 

endemic equilibrium was further determined. The study, then, concluded that more awareness should be 

conducted in the affected areas so as to prevent more outbreaks of the disease.  

Subsequently, Obabiyi and Onifade (2017) developed a new mathematical model for LF disease. The 

maximum principle theorem was used to establish the positivity and the boundedness results of the model's 

solutions. Conditions were derived for the existence of disease free and endemic equilibrium points, and stabilities 

analyzed. The study concluded that a threshold parameter,𝑅0, exists and the disease can persist if and only if 𝑅0 

exceeds 1. The study further suggested that maintaining hygienic environment, use of new needle when taking 

injection and control of the rodent carrying the virus are effective strategies against the spread of the disease. 

Akinade et al. (2019) developed a mathematical model to represent the transmission processes of the LF 

disease in human and vector hosts. This model was used to incorporate the carrier human population, which caters 

for the asymptomatic patients, into the Lassa fever pandemic. The basic reproduction number obtained, 

0.46252994, coupled with the existence of an EEP for the model suggests that even though the disease may not 

invade the studied population, it may however persist in it. This research recommended that necessary control 

parameters, including the early diagnosis of the non symptomatic patients, be introduced in a Lassa fever model 

and analyzed for their significance on the spread and control of the disease. 

Despite the attempts by several researchers to combat the spread of the deadly Lassa fever disease, the 

disease still continues to spread and in fact at an increasing fatal rate. In this paper, we extended the work of 

Akinade et al. (2019) by incorporating three control parameters into the developed model. We also perform the 

sensitivity analyses of the model's parameters, including the controls, in other to measure their individual 

sensitivity index to the spread and control of the disease. Furthermore, we perform the numerical simulation of the 

developed control model in order to visualize the state solution of the developed model over time.  

 

II. Materials and Methods 
The method employed in developing the Lassa fever control model in this study is the compartmental 

disease modeling approach. In this new Lassa fever model, there are 7 state variables to indicate the various 

mutually exclusive human and vector populations as shown in Table 1 below. Similarly, there are 20 parameters 

which describe the transmission and control processes of the Lassa fever infection in human and vector hosts, as 

further described. 

The rate at which humans migrate into a Lassa fever endemic population so that they become susceptible 

to the infection is denoted by 𝛼ℎ  while that of the vector is denoted by 𝛼𝑣 . Similarly, 𝜇ℎ  and 𝜇𝑣  represent 

respectively the rate at which humans and vector die naturally. Meanwhile 𝛿ℎ  and 𝛿𝑣  represent the disease 

induced death rate for human and vector populations respectively.   

 

Table 1: The Model State Variables 
Variables  

Description  

𝑆ℎ(𝑡)  Susceptible Human Population 

𝐶ℎ(𝑡)  Carrier Human Population 

𝐼ℎ(𝑡)  Infected Human Population  

𝑇ℎ(𝑡)  Treated Human Population 
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𝑅ℎ(𝑡)  Recovered Human Population 

𝑆𝑣(𝑡)  Susceptible Vector Population 

𝐼𝑣(𝑡)  Infected Vector Population 

 

Furthermore, parameters 𝛽ℎ  and 𝛽𝑣  represent the rate at which humans contract the LF infection via 

contacts with another infected humans and via contact with an infected vector respectively. Similarly, 𝜔𝑣  

represents the rate at which the vectors become infected with the disease. For the developed model, treatment is 

given to the infected vector population at the rate 𝛾2 while the efficacy of this treatment is denoted by 𝛽. The 

recovery rate of the treated human population from the infection is denoted by 𝛾3 while the recovery rate of the 

infected human population from the infection by their own natural immunity is denoted by 𝛾4. In addition, the 

recovered human population looses their immunity against the disease and become susceptible again at the rate 

𝜔ℎ . 

In order to cater for the transmission and recovery processes of the newly incorporated carrier human 

population, new model parameters which were not in existence in previous literature were incorporated into 

themodel. These parameters are the contracting rate of the infection for susceptible human population via 

interaction with the carrier human population denoted by 𝛽𝑐 , the rate of progression from the carrier human 

population to the infected human population denoted by 𝜎ℎ  and the rate of recovery of the carrier human 

population by natural immunity denoted by 𝛾1. 

Lastly, the control strategies in the model are; early diagnosis (and treatment of the carriers) which 

results in their migration into the carrier human population, vaccination of the susceptible human population 

which leads to their migration into the recovered human population and the use of Rodenticide on the vector 

populations, efficacy of which leads to their death. These controls are denoted by 𝑢1, 𝑢2 and 𝑢3 respectively. 

Figure 1 below represents the schematic flow diagram of the Lassa fever control model.The following are the 

assumptions made in the development of the model: 

1.  The human-carriers are diagnosed and begin treatment before onset of symptoms.  

2.  Vaccinated humans are considered to have recovered from the infection. 

3.  The effect of the Rodenticide use is the death of the vectors, susceptible and infected alike.    

 

The Lassa Fever Control Model 

 
𝑑𝑆ℎ

𝑑𝑡
= 𝛼ℎ +𝜔ℎ𝑅ℎ − (𝑢1𝛽𝑐𝐶ℎ + 𝛽ℎ 𝐼ℎ + 𝑢3𝛽𝑣𝐼𝑣)𝑆ℎ − 𝑢2𝑆ℎ − 𝜇ℎ𝑆ℎ  (2.1) 

 
𝑑𝐶ℎ

𝑑𝑡
= (𝑢1𝛽𝑐𝐶ℎ + 𝛽ℎ𝐼ℎ + 𝑢3𝛽𝑣𝐼𝑣)𝑆ℎ − (𝑢1𝜎ℎ + 𝛾1 + 𝑢1𝛿ℎ + 𝑢1 + 𝜇ℎ)𝐶ℎ  (2.2) 

 
𝑑𝐼ℎ

𝑑𝑡
= 𝑢1𝜎ℎ𝐶ℎ − 𝛾2𝐼ℎ − 𝛾4𝐼ℎ − 𝛿ℎ𝐼ℎ − 𝜇ℎ𝐼ℎ  (2.3) 

 
𝑑𝑇ℎ

𝑑𝑡
= 𝑢1𝐶ℎ + 𝛾2𝐼ℎ − 𝛽𝛾3𝑇ℎ − (1 − 𝛽)𝛿ℎ𝑇ℎ − 𝜇ℎ𝑇ℎ  (2.4) 

 
𝑑𝑅ℎ

𝑑𝑡
= 𝑢2𝑆ℎ + 𝛾1𝐶ℎ + 𝛾4𝐼ℎ + 𝛽𝛾3𝑇ℎ − 𝜔ℎ𝑅ℎ − 𝜇ℎ𝑅ℎ  (2.5) 

 
𝑑𝑆𝑣

𝑑𝑡
= 𝛼𝑣 − 𝜔𝑣𝑆𝑣 − 𝑢3𝑆𝑣 − 𝜇𝑣𝑆𝑣  (2.6) 

 
𝑑𝐼𝑣

𝑑𝑡
= 𝜔𝑣𝑆𝑣 − 𝛿𝑣𝐼𝑣 − 𝑢3𝐼𝑣 − 𝜇𝑣𝐼𝑣  (2.7) 

 
Figure 1: Schematic Flow Diagram of the Lassa Fever Control Model 
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III. Results 
In this section, we present the three major analyses performed on the Lassa fever control model.  

3.1  The Invariant Region of the Control Model 

In other to justify that the model is epidemiologically visible, that is the model and its predictions make 

epidemiological sense, we present the basic qualitative property of the model. This involves finding the set within 

which the model can be sufficiently studied (i.e., the invariant region of the model). For the model, the total human 

population is denoted as 𝑁ℎ(𝑡) while that of the vector population is denoted by 𝑁𝑣(𝑡). 

Thus 𝑁ℎ(𝑡) = 𝑆ℎ(𝑡) + 𝐶ℎ(𝑡) + 𝐼ℎ(𝑡) + 𝑇ℎ(𝑡) + 𝑅ℎ(𝑡) and 𝑁𝑣(𝑡) = 𝑆𝑣(𝑡) + 𝐼𝑣(𝑡). 

From equations 2.1 to 2.7;  

 
𝑑𝑁ℎ

𝑑𝑡
= 𝛼ℎ − 𝜇ℎ𝑁ℎ − 𝑢1𝛿ℎ𝐶ℎ − 𝛿ℎ𝐼ℎ − (1 − 𝛽)𝛿ℎ𝑇ℎ  

 

 
𝑑𝑁ℎ

𝑑𝑡
≤ 𝛼ℎ − 𝜇ℎ𝑁ℎ  (3.1) 

 Similarly;  

 
𝑑𝑁𝑣

𝑑𝑡
= 𝛼𝑣 − 𝜇𝑣𝑁𝑣 − 𝛿𝑣𝐼𝑣 − 𝑢3𝑁𝑣  

 

 ≤ 𝛼𝑣 − 𝜇𝑣𝑁𝑣  (3.2) 

 By integrating both sides of (3.1), we have;  

  
𝑑𝑁ℎ

𝛼ℎ−𝜇ℎ𝑁ℎ
≤  𝑑𝑡 

Thus,  

 ln(𝛼ℎ − 𝜇ℎ𝑁ℎ) ≥ −(𝜇ℎ𝑡 + 𝐶) 
 

 (𝛼ℎ − 𝜇ℎ𝑁ℎ) ≥ 𝐴𝑒−𝜇ℎ 𝑡  
where C and A are constants of integration. 

Let 𝑁ℎ(0) = 𝑁0 ≥ 0, then;  

 (𝛼ℎ − 𝜇ℎ𝑁0) ≥ 𝐴 

Accordingly,  

 (𝛼ℎ − 𝜇ℎ𝑁ℎ) ≥ (𝛼ℎ − 𝜇ℎ𝑁0)𝑒−𝜇ℎ 𝑡  
 

 𝑁ℎ(𝑡) ≤
𝛼ℎ

𝜇ℎ
−

(𝛼ℎ−𝜇ℎ𝑁0)

𝜇ℎ
𝑒−𝜇ℎ 𝑡  

 

 𝑁ℎ(𝑡) →
𝛼ℎ

𝜇ℎ
    𝑎𝑠    𝑡 → ∞ 

Thus, 𝑁ℎ(𝑡) ∈ [0,
𝛼ℎ

𝜇ℎ
]. 

Similarly, by solving (3.2), we obtain; 

𝑁𝑣(𝑡) ∈ [0,
𝛼𝑣

𝜇𝑣
]. 

Hence, the region in which the solution to the model is bounded is:  

 Ω = {(𝑆ℎ ,𝐶ℎ , 𝐼ℎ ,𝑇ℎ ,𝑅ℎ) ∈ 𝑅+
5     𝑈    (𝑆𝑣 , 𝐼𝑣) ∈ 𝑅+

2 :𝑁ℎ(𝑡) ≤
𝛼ℎ

𝜇ℎ
,𝑁𝑣(𝑡) ≤

𝛼𝑣

𝜇𝑣
} (3.3) 

We therefore conclude that the region within which the solution to the model's equations are contained is 

positively invariant and hence the model is epidemiologically and mathematically well-posed. 

 

3.2  Stability Analysis of the Model 

In this section, we obtain the disease free equilibrium point of the model and test for its local and global 

asymptotic stabilities. A DFE point is a state solution to the model in which the studied population remains in the 

absence of the disease. In this solution, all state variables except the susceptible populations are equated to zero. 

The DFE of the model is defined as (𝑆ℎ
∗(𝑡),0,0,0,0, 𝑆𝑣

∗(𝑡),0) satisfying 
𝑑𝑆ℎ

𝑑𝑡
=

𝑑𝐶ℎ

𝑑𝑡
=

𝑑𝐼ℎ

𝑑𝑡
=

𝑑𝑇ℎ

𝑑𝑡
=

𝑑𝑅ℎ

𝑑𝑡
= 0 and 

𝑑𝑆𝑣

𝑑𝑡
=

𝑑𝐼𝑣

𝑑𝑡
= 0 

By equating equations (2.1) to (2.7) to 0 and substituting 𝐶ℎ = 𝐼ℎ = 𝑇ℎ = 𝑅ℎ = 𝐼𝑣 = 0,  

We obtain 𝑆ℎ
∗ =

𝛼ℎ

 𝑢2+𝜇ℎ  
 and 𝑆𝑣

∗ =
𝛼𝑣

 𝑢3+𝜇𝑣 
. 

Accordingly, the DFE is obtained as:  

 𝐸0 = (
𝛼ℎ

 𝑢2+𝜇ℎ  
, 0,0,0,0,

𝛼𝑣

 𝑢3+𝜇𝑣 
, 0) (3.4) 
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3.2.1  Local Asymptotic Stability Analysis of the DFE 

Here, we employ the principle of next generation matrix as described by Castillo and Song (2004). This principle 

states that, the disease free equilibrium point of an infectious disease model is locally asymptotically stable if the 

basic reproduction number, 𝑅0, is less than one. 

 

The Basic Reproduction Number 
According to the principle of next generation matrix, the basic reproduction number is the spectral radius of the 

next generation matrix 𝐹𝑉−1 of the system (2.1) to (2.7). 

We define: 𝑓𝑖 − 𝑣𝑖 =  

𝐶ℎ′
𝐼ℎ′
𝑇ℎ′

  

 =  

(𝑢1𝛽𝑐𝐶ℎ + 𝛽ℎ 𝐼ℎ + 𝑢3𝛽𝑣𝐼𝑣)𝑆ℎ − (𝑢1𝜎ℎ + 𝛾1 + 𝑢1𝛿ℎ + 𝑢1 + 𝜇ℎ)𝐶ℎ
𝑢1𝜎ℎ𝐶ℎ − (𝛾2 + 𝛾4 + 𝛿ℎ + 𝜇ℎ)𝐼ℎ
𝑢1𝐶ℎ + 𝛾2𝐼ℎ − (𝛽𝛾3 + (1− 𝛽)𝛿ℎ + 𝜇ℎ)𝑇ℎ

  (3.5) 

 Accordingly;  

 𝑓𝑖 =  
(𝑢1𝛽𝑐𝐶ℎ + 𝛽ℎ𝐼ℎ + 𝑢3𝛽𝑣𝐼𝑣)𝑆ℎ
0
0

  (3.6) 

 𝑣𝑖 =  

(𝑢1𝜎ℎ + 𝛾1 + 𝑢1𝛿ℎ + 𝑢1 + 𝜇ℎ)𝐶ℎ
(𝛾2 + 𝛾4 + 𝛿ℎ + 𝜇ℎ)𝐼ℎ − 𝑢1𝜎ℎ𝐶ℎ
(𝛽𝛾3 + (1 − 𝛽)𝛿ℎ + 𝜇ℎ)𝑇ℎ − 𝑢1𝐶ℎ − 𝛾2𝐼ℎ

  (3.7) 

Here, 𝑓𝑖  is defined as the rate of appearance of new infection(s) in compartment i and 𝑣𝑖  denotes the rate of 

transfer of individuals into compartment i, with 𝑖 ∈ [1,3]. 
The matrix F and V are defined as;  

 𝐹 =

 

 
 
 

𝜕𝑓1

𝜕𝐶ℎ

𝜕𝑓1

𝜕𝐼ℎ

𝜕𝑓1

𝜕𝑇ℎ
𝜕𝑓2

𝜕𝐶ℎ

𝜕𝑓2

𝜕𝐼ℎ

𝜕𝑓2

𝜕𝑇ℎ
𝜕𝑓3

𝜕𝐶ℎ

𝜕𝑓3

𝜕𝐼ℎ

𝜕𝑓3

𝜕𝑇ℎ

 

 
 
 

 

 =  
𝑢1𝛽𝑐𝑆ℎ 𝛽ℎ𝑆ℎ 0

0 0 0
0 0 0

  (3.8) 

 𝑉 =

 

 
 

𝜕𝑣1

𝜕𝐶ℎ

𝜕𝑣1

𝜕𝐼ℎ

𝜕𝑣1

𝜕𝑇ℎ
𝜕𝑣2

𝜕𝐶ℎ

𝜕𝑣2

𝜕𝐼ℎ

𝜕𝑣2

𝜕𝑇ℎ
𝜕𝑣3

𝜕𝐶ℎ

𝜕𝑣3

𝜕𝐼ℎ

𝜕𝑣3

𝜕𝑇ℎ 

 
 

 

 =  

(𝑢1𝜎ℎ + 𝛾1 + 𝑢1𝛿ℎ + 𝑢1 + 𝜇ℎ) 0 0
−𝑢1𝜎ℎ (𝛾2 + 𝛾4 + 𝛿ℎ + 𝜇ℎ) 0

−𝑢1 −𝛾2 (𝛽𝛾3 + (1 − 𝛽)𝛿ℎ + 𝜇ℎ)
  (3.9) 

 

Lastly, 𝑉−1 =  

 

 

  
 

1

𝛿ℎ𝑢1+𝜎ℎ𝑢1+𝛾1+𝜇ℎ+𝑢1
0 0

𝜎ℎ𝑢1

 𝛿ℎ𝑢1+𝜎ℎ𝑢1+𝛾1+𝜇ℎ+𝑢1  𝛿ℎ+𝛾2+𝛾4+𝜇ℎ  

1

𝛿ℎ+𝛾2+𝛾4+𝜇ℎ
0

𝛾2𝜎ℎ𝑢1
 𝛿ℎ 𝑢1+𝜎ℎ𝑢1+𝛾1+𝜇 ℎ+𝑢1  𝛿ℎ+𝛾2+𝛾4+𝜇 ℎ  

+
𝑢1

𝛿ℎ𝑢1+𝜎ℎ𝑢1+𝛾1+𝜇 ℎ+𝑢1

𝑏𝛿ℎ+𝛽𝛾3+𝜇ℎ
+

𝛾2

 𝑏𝛿ℎ+𝛽𝛾3+𝜇ℎ   𝛿ℎ+𝛾2+𝛾4+𝜇ℎ  
+

1

𝑏𝛿ℎ+𝛽𝛾3+𝜇ℎ 

  
 

 

where 𝑏 = (1 − 𝛽). 
Thus, the next generation matrix:  

 𝐺 = 𝐹𝑉−1 

 =  

𝑆ℎ𝛽𝑐𝑢1

𝛿ℎ𝑢1+𝜎ℎ𝑢1+𝛾1+𝜇ℎ+𝑢1
+

𝑆ℎ𝛽ℎ𝜎ℎ𝑢1

 𝛿ℎ𝑢1+𝜎ℎ𝑢1+𝛾1+𝜇ℎ+𝑢1  𝛿ℎ+𝛾2+𝛾4+𝜇ℎ  

𝑆ℎ𝛽ℎ

𝛿ℎ+𝛾2+𝛾4+𝜇ℎ
0

0 0 0
0 0 0

  (3.10) 

The basic reproduction number is computed as the largest eigenvalue of the matrix G above using the SageMath 

computational software as: 
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𝑅0

=
 𝛽𝑐𝛿ℎ + 𝛽𝑐𝛾2 + 𝛽𝑐𝛾4 + 𝛽𝑐𝜇ℎ + 𝛽ℎ𝜎ℎ 𝑢1𝑆ℎ

∗

 𝛿ℎ + 𝛾2 + 𝛾4 𝛾1 +  𝛿ℎ + 𝛾1 + 𝛾2 + 𝛾4 𝜇ℎ + 𝜇ℎ
2 +  𝛿ℎ

2 +  𝛿ℎ + 1  𝛾2 + 𝛾4 + 𝜇ℎ +  𝛿ℎ + 𝛾2 + 𝛾4 + 𝜇ℎ 𝜎ℎ + 𝛿ℎ 𝑢1

 

By substituting the expression for 𝑆ℎ
∗ from 3.4, we obtain;   

 𝑅0 =
 𝛽𝑐𝛿ℎ+𝛽𝑐𝛾2+𝛽𝑐𝛾4+𝛽𝑐𝜇ℎ+𝛽ℎ𝜎ℎ  𝑢1𝛼ℎ

  𝛿ℎ+𝛾2+𝛾4 𝛾1+ 𝛿ℎ+𝛾1+𝛾2+𝛾4 𝜇ℎ+𝜇ℎ
2 + 𝛿ℎ

2 + 𝛿ℎ+1  𝛾2+𝛾4+𝜇ℎ  + 𝛿ℎ+𝛾2+𝛾4+𝜇ℎ  𝜎ℎ+𝛿ℎ  𝑢1  𝑢2+𝜇ℎ  

 (3.11) 

 Accordingly, by substituting the values in table (2) below the basic reproduction number;  

 𝑅0 = 0.0238787 (3.12) 

The calculated value of 𝑅0 is significantly small and lesser than that obtained by [3] in which the analyzed model 

do not contain any control strategy. Since the basic reproduction number obtained is less than one, then the DFE is 

locally asymptotically stable and thus the disease cannot invade the studied population.   

 

Table 2: Table of Values for the Model's Parameters 
Parameters   

Values  

 

 Sources  

𝛼ℎ   0.080   Estimate  

𝜇ℎ   0.0000548  Afolabi and Sobowale (2017) 

𝜔ℎ   0.0085  NCDC (2019) 

𝛽𝑐   0.000062  Ogabi et al. (2012) 

𝛽ℎ   0.00012   Estimate  

𝛽𝑣  0.005  Afolabi and Sobowale (2017) 

𝛿ℎ  0.01710615  NCDC (2019) 

𝜇𝑣 0.000167   Estimate  

𝜎ℎ   0.10  NCDC (2019) 

𝛾2  0.2148541  NCDC (2019) 

𝛼𝑣  0.70  Akinpelu and Akinwande (2008) 

𝛿𝑣  0.05   Estimate  

𝜔𝑣  0.02   Estimate  

𝛾3  0.030  NCDC (2019) 

𝛾1  0.0315   Estimate  

𝛾4  0.0005   Estimate  

𝛽  0.612  NCDC (2019) 

𝑢1  0.0101231   Estimate  

𝑢2  0.11231   Estimate  

𝑢3  0.050   Estimate  

 

3.2.2 Global Asymptotic Stability Analysis 

For the global asymptotic stability analysis of the DFE, we employ the method implemented by [6]. The Lassa 

fever model is denoted by:  

  

𝑑𝑋

𝑑𝑡
= 𝐹(𝑋,𝑌)

𝑑𝑌

𝑑𝑡
= 𝐺(𝑋,𝑌)

  (3.13) 

Here, 𝑋 = (𝑆ℎ ,𝑅ℎ , 𝑆𝑣)  represents the uninfected population and 𝑌 = (𝐶ℎ , 𝐼ℎ ,𝑇ℎ , 𝐼𝑣)  represents the Infected 

population. The point 𝐸0 = (𝑋∗, 0) is said to be globally asymptotically stable if 𝑅0 < 1 and the following two 

conditions hold: 

C1: For 
𝑑𝑋

𝑑𝑡
= 𝐹(𝑋, 0) , 𝐸0 is globally asymptotically stable. 

C2: 𝐺(𝑋,𝑌) = 𝐴𝑌 − 𝐺∗(𝑋,𝑌) , 𝐺∗(𝑋,𝑌) ≥ 0 for (𝑋,𝑌) ∈ Ω 

C1: 

 𝐹(𝑋, 0) =  

𝛼ℎ + 𝜔ℎ𝑅ℎ − (𝑢2 + 𝜇ℎ)𝑆ℎ
𝑢2𝑆ℎ − (𝜔ℎ + 𝜇ℎ)𝑅ℎ
𝛼𝑣 − (𝜔𝑣 + 𝑢3 + 𝜇𝑣)𝑆𝑣

  (3.14) 

The equilibrium solution 𝐸0 = (
𝛼ℎ

(𝑢2+𝜇ℎ )
, 0,0,0,0,

𝛼𝑣

(𝑢3+𝜇𝑣)
, 0) is globally asymptotically stable for 

𝑑𝑋

𝑑𝑡
= 𝐹(𝑋, 0) 

as shown below: 

By solving equation (3.14) using the method of integrating factor, we have: 
𝑑𝑆ℎ
𝑑𝑡

= 𝛼ℎ +𝜔ℎ𝑅ℎ − (𝑢2 + 𝜇ℎ)𝑆ℎ  

𝐼.𝐹 = 𝑒 (𝑢2+𝜇ℎ )𝑑𝑡  
𝑑

𝑑𝑡
(𝑆ℎ𝑒

(𝑢2+𝜇ℎ )𝑡) = (𝛼ℎ − 𝜔ℎ𝑅ℎ)𝑒(𝑢2+𝜇ℎ )𝑡  
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Thus, 𝑆ℎ =
𝛼ℎ

(𝑢2+𝜇ℎ )
−

1

𝑒 (𝑢2+𝜇 ℎ )𝑡  𝜔ℎ𝑅ℎ𝑒
(𝑢2+𝜇ℎ )𝑡𝑑𝑡 

Accordingly, 𝑆ℎ(𝑡) →
𝛼ℎ

(𝑢2+𝜇ℎ )
 as 𝑡 → ∞ 

Similarly, 𝑆𝑣(𝑡) →
𝛼𝑣

(𝑢3+𝜇𝑣)
 as 𝑡 → ∞ 

which implies the global convergence of 𝐸0 for 𝐹(𝑋, 0). 

C2: 
 

 𝐺(𝑋,𝑌) =  

(𝑢1𝛽𝑐𝐶ℎ + 𝛽ℎ𝐼ℎ + 𝑢3𝛽𝑣𝐼𝑣)𝑆ℎ − (𝑢1𝜎ℎ + 𝛾1 + 𝑢1𝛿ℎ + 𝑢1 + 𝜇ℎ)𝐶ℎ
𝑢1𝜎ℎ𝐶ℎ − (𝛾2 + 𝛾4 + 𝛿ℎ + 𝜇ℎ)𝐼ℎ
𝑢1𝐶ℎ + 𝛾2𝐼ℎ − (𝛽𝛾3 + 𝑏𝛿ℎ + 𝜇ℎ)𝑇ℎ
𝜔𝑣𝑆𝑣 − (𝛿𝑣 + 𝑢3 + 𝜇𝑣)𝐼𝑣

  (3.15) 

 

 = 𝐴𝑌 − 𝐺∗(𝑋,𝑌) 
Here, 

𝐴 =  

 

 

−𝐻 0 0 0
𝑢1𝜎ℎ −(𝛾2 + 𝛾4 + 𝛿ℎ + 𝜇ℎ) 0 0

𝑢1 𝛾2 −(𝛽𝛾3 + 𝑏𝛿ℎ + 𝜇ℎ) 0

0 0 0 −(𝛿𝑣 + 𝑢3 + 𝜇𝑣)  

  

 where 𝑏 = (1 − 𝛽) and𝐻 =  (𝑢1𝜎ℎ + 𝛾1 + 𝑢1𝛿ℎ + 𝑢1 + 𝜇ℎ);  

 𝐺∗(𝑋,𝑌) =  

−(𝑢1𝛽𝑐𝐶ℎ + 𝛽ℎ 𝐼ℎ + 𝑢3𝛽𝑣𝐼𝑣)𝑆ℎ
0
0
−𝜔𝑣𝑆𝑣

  

 ≤ 0 

Since 𝐺∗(𝑋,𝑌) ≤ 0, then condition 2 is not satisfied. Thus, 𝐸0 = (𝑋∗, 0) may not be globally asymptotically 

stable for 𝑅0 < 1. 

 

3.3  Sensitivity Analysis of the Lassa Fever Control Model 

As we are interested in controlling the disease within the shortest possible time, we perform the 

sensitivity analysis of the model's parameters in order to obtain their rate of sensitiveness to the disease 

transmission and control. This analysis helps us to determine the parameters that have high (or low) 

impact/significance on the basic reproduction number value. We define the normalized forward sensitivity index 

of 𝑅0 with respect to a parameter p as; 

Γ𝑝
𝑅0 =

𝜕𝑅0

𝑅0

÷
𝜕𝑝

𝑝
 

=
𝜕𝑅0

𝜕𝑝
×
𝑝

𝑅0

 

where 𝑅0 is explicitly defined in equation 3.11.   

 

Table 3: Sensitivity Indices of the Basic Reproduction Number, 𝑅0 
Parameters   

Signs  

 

Values  

𝛼ℎ   +   0.52169  

𝜇ℎ   -   0.5  

𝛽𝑐   +   0.8  

𝛽ℎ   +   0.67590  

𝛿ℎ   -   0.40167 

𝜎ℎ   -   0.26543  

𝛾2  -   0.40923  

𝛾1  -   0.15560  

𝛾4  -   0.10578  

𝑢1  -   0.61478  

𝑢2  -   0.71146 

 

In table 3 above, we present the sensitivity index of the baseline parameters which affect the basic 

reproduction number directly as contained in the𝑅0  expression in equation 3.11. The sensitivity indices are 

obtained using the Maple software with parameter values for there calculations contained in table 2. A positive 

sensitivity index suggests that an increase in the value of such parameter by some percentage will increase the 

value of 𝑅0, and hence increase the spread of the disease, by a certain percentage and vice versa. For instance, 
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Γ𝛽𝑐
𝑅0 = 0.8 suggests that an increase in the value of 𝛽𝑐  by 10% will increase the value of 𝑅0 by 8% and vice 

versa.  

 

IV. Discussion and Conclusions 
In this section, we present the discussions of the results obtained in the numerical simulations of theLassa fever 

control model and then the conclusions of the research.  

 

4.1  Numerical Simulation of the Model 

We solve the control model's differential equations 2.1 to 2.7 numerically using the MATLAB ode45 method. We 

then present the solutions to the model's state variables in graphical form with the simulation done over a period of 

time = 365 days. The initial conditions for this numerical simulation are chosen theoretically as 𝑆ℎ(0) = 150, 

𝐶ℎ(0) = 40, 𝐼ℎ(0) = 30, 𝑇ℎ(0) = 25, 𝑅ℎ(0) = 25, 𝑆𝑣(0) = 60, and 𝐼𝑣(0) = 10.  

 

4.1.1  Susceptible Human Population 

Figure 2 depicts the behavior of the Susceptible human population, 𝑆ℎ , over a period of 365 days. During 

the first 20 days. This population experiences a reduction in size, associated majorly to the progression of its 

members into the Carrier population by the contraction of the infection. After this short duration, a continuous 

increase in the population size is experienced due to the loss of immunity of the recovered population and also the 

progression of new members into this population as the population is not closed. Figure 2(a) shows the effect of 

the contracting rate of the Susceptible human population via contact with the Infected human population, 𝛽ℎ , on 

the member of 𝑆ℎ . It is observed that an increase in 𝛽ℎ  results in a decrease in the Susceptible human population 

and a significantly large value of 𝛽ℎ  results in a significantly small value of 𝑆ℎ . Similarly, figure 2(b) depicts the 

effect of the control of vaccination, 𝑢2, on the Susceptible human population. It is observed that an increase in 𝑢2 

results in a decrease in 𝑆ℎ . Hence, the application of the vaccination control over time results in a consistent 

decrease in the number of humans susceptible to the Lassa fever disease.  

 

 
Figure  2(a): Variation of the values of parameter 𝛽ℎ   Figure 2(b): Variation of the values of parameter 

𝑢2 

Figure  2: Graphs of the Susceptible Human Population against Time 

 

4.1.2  Carrier Human Population 

We present the behavior of the Carrier human population, 𝐶ℎ , in figure 3. During the first 100 days of the 

numerical simulation, this population is seen to experience a rapid and continuous reduction in its initial member 

size. This reduction is associated majorly to the use of the control of early diagnosis and treatment of its members 

at the rate𝑢1. After this rapid decrease has been experienced, the Carrier population is seen to decrease slowly 

from 2 members and gradually approaches 0 member for the remaining days of the simulation. An increase in the 

value of the three controls of early diagnosis and treatment of the Carrier population, vaccination of the 

Susceptible human population and the use of Rodenticide on the vector populations result in a decrease in the 

members of the Carrier human population as depicted in figures 3(a), 3(b) and 3(c) respectively. Similarly, an 

increase in the recovery rate of the Carrier population by natural immunity, 𝛾1, results in a decrease in the size of 

the population as its members proceed into the Recovered human population as shown in figure 3(d). 
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Figure  3(a): Variation of the values of parameter 𝑢1  Figure  3(b): Variation of the values of parameter 

𝑢2 

 
Figure 3(c): Variation of the values of parameter 𝑢3  Figure 3(d): Variation of the values of parameter 

𝛾1 

Figure 3: Graphs of the Carrier Human Population against Time 

 

4.1.3  Infected Human Population 

Figure 4 depicts the behavior of the Infected human population, 𝐼ℎ , with respect to time. The infected 

human population experiences a rapid reduction in its member size at the beginning of the simulation until it 

converged at 0 members by the 100th day. This decrease is not only due to the treatment given to this population 

but also the early diagnosis and treatment of the Carrier human population which results in much lesser Carriers 

progressing to the fully blown infectious state. Figure 4(a) shows the effect of the control of vaccination, 𝑢2, on 

the members of this population. It is observed that an increase in the value of 𝑢2 results in a decrease in the size of 

the Infected human population and the larger the value of 𝑢2, the faster the infected population attain a 0 member. 

Similarly, the effect of changes in the rate of treatment of the Infected human population, 𝛾2, is shown in figure 

4(b). It is observed that the higher the value of 𝛾2, the much faster the Infected human population approach 0 as its 

members progress into the Treated class. The incorporation of the controls 𝑢1, 𝑢2 and 𝑢3 into the Lassa fever 

pandemic results in the complete eradication of the Infected human population over a period of time.  
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Figure 4(a): Variation of the values of parameter 𝑢2 Figure 4(b): Variation of the values of parameter 𝛾2 

Figure  4: Graphs of the Infected Human Population against Time 

 

4.1.4  Treated Human Population 

We present the behavior of the Treated human population, 𝑇ℎ , in figure 5. During the first 25 days of the 

numerical simulation, this population is seen to experience a rapid increase in its member size after which an 

inflection point is reached and then a decrease in the member size is experienced. The initial increase in the 

member size of this population is primarily associated with the progression of the Carrier and Infected human 

populations who are being treated into this population. As the members of this class become fully recovered, they 

proceed into the Recovered human population and hence a decrease in the size of the population after some time. 

It can be observed that an increase in the rate of early diagnosis and treatment of the Carrier human population, 

𝑢1, results in an initial increase in the member size of this population and then after some time a reduction is 

experienced as its members recover.  

 
Figure 5: Graph of the Treated Human Population against Time varying Parameter 𝑢1 

 

4.1.5  Recovered Human Population 

Figure 6 depicts the behavior of the Recovered human population, 𝑅ℎ , with respect to time. The 

Recovered human population experiences a continuous increase in its member size throughout the period of the 

numerical simulation. This increase is not only due to the introduction of vaccination which moves the Susceptible 

human population to the Recovered population but also due to the efficacy of the treatment being received by the 

Carrier and Infected human populations. It is observed that an increase in the treatment factor, 𝛽, results in an 

increase in the member of the Recovered human population. Similarly, since the Recovered human population 

never experience a decrease in its size at any point of the simulation, it can be inferred that even though there 

exists a loss of immunity for the recovered humans, this immunity loss is not significant enough to affect the 

efficiency of the treatment and controls being used in eradicating the disease.  
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Figure  6: Graph of the Recovered Human Population against Time varying Parameter 𝛽 

 

4.1.6  Susceptible Vector Population 

Figure 7 represents the behavior of the Susceptible vector population, 𝑆𝑣 , against time. The Susceptible 

vector population is seen to experience a continuous decrease in its member size during the first 50 days of the 

numerical simulation and then the population is maintained at a relatively low size afterwards. The initial 

reduction in the member size of this population is primarily associated with the use of the control of Rodenticide, 

𝑢3, which results in the death of its members. Since this population is not closed and more vectors could migrate 

from outside the population into it, it is observed that after about 50 days, an equilibrium state is attained between 

the number of vectors coming in and moving out of this population either to the Infected population or lost to 

death. Furthermore, an increase in the rate at which the Rodenticide control is administered results in an increase 

in the rate at which this population reduces in size.  

 
Figure 7: Graph of the Susceptible Vector Population against Time varying Parameter 𝑢3 

 

4.1.7  Infected Vector Population 

Figure 8 depicts the behavior of the Infected vector population, 𝐼𝑣 , against time. The Infected vector 

population experiences a continuous decrease in its member size during the first few and then the population is 

maintained at a relatively low size afterwards. It is observed that the higher the rate at which the control of 

Rodenticide is being administered, the faster the rate of reduction in the size of the population. In fact, if the 

control of Rodenticide is used at a significantly large rate, then the size of this population is seen to not only 

approach zero but also converge at zero before the 50th day of the simulation. Hence, this control is highly 

efficacious in preventing the spread of the LF disease among the vector hosts.  
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Figure  8: Graph of the Infected Vector Population against Time varying Parameter 𝑢3 

 

4.2  Conclusions 

This research has brought into limelight the invaluable significance of the three controls of early 

diagnosis of the human infection before onset of noticeable symptoms resulting in the treatment of the 

human-carriers, vaccination of the susceptible humans and the use of Rodenticide on the vector populations as 

effective means of limiting the spread of Lassa fever disease within an endemic population. An increase in the 

value of these three controls, as shown in the numerical simulations results, yields a rapid and continuous decrease 

in the members of the carrier human, infected human and vector populations and eventually results in the 

eradication of the disease from an endemic population. Similarly, the recovered population experiences a 

continuous increase and no decrease in its size for the entire simulation and this suggests that these controls are 

very efficacious in controlling the disease. 

The region within which the solution of the model's equations are contained, the model's invariant region, 

is positively invariant and hence the model is epidemiologically and mathematically well-posed. Hence, the 

implementation of the model into a LF endemic population will yield the desired results as demonstrated in this 

research. 

The stability analyses results show that the basic reproduction number, 𝑅0, obtained for the developed 

control model is significantly small and lesser than that obtained by Akinade et al. (2019) in which the analyzed 

model do not contain any control strategy. This implies that the incorporation of the controls 𝑢1 ,𝑢2  and 

𝑢3reduces the average number of secondary infections generated by a single infected individual during their entire 

infectious period. Hence, since the DFE is locally asymptotically stable, then the disease will not invade the 

population though it may persist for a short period of time, during which the controls are being implemented, due 

to its global instability. 

The sensitivity analyses results show the sensitiveness of each model parameter to the transmission of the 

disease and it was obtained that the rate at which the susceptible human population contracts the infection via 

contact with a human-carrier, 𝛽𝑐 , is the most sensitive parameter to the spread of the disease. This suggests that 

reducing this parameter value to a significantly small value will significantly reduce the value of 𝑅0 and result in 

a much lesser secondary infection. 

It can be concluded that the application of the findings of this research into a Lassa fever disease endemic 

population is not only significant but pertinent to eradicating the disease from such an area. 

 

4.3  Recommendations 

From the conclusions of this research work, it is highly recommended that early diagnosis of all 

suspected Lassa fever infections be carried out in order to determine those that are asymptomatically infected. 

Also, diagnostic kits should be made readily available by the government agencies, health organizations and 

policy makers to all Lassa fever endemic areas and an infected individual, even while without symptoms, should 

be provided with resources to commence and maintain treatment. 

Similarly, the government and health organizations are advised to make available effective vaccine(s) for 

the prevention of the disease just as it was recently made available for yellow fever in Nigeria and the result 

thereafter in terms of the control of the disease is priceless. Similarly, individuals living within the disease 

endemic areas are advised to continually make use of Rodenticide in their houses and environs, while ensuring 

that this Rodenticide do not come in contact with their household consumables, as this will help in preventing the 

invasion of the house/community by infected rodents. 
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4.4  Areas for Further Research 

In order to obtain which combination of control will yield the most cost effective optimal result, cost 

effectiveness analyses of each control should be carried out. Similarly, the effect of the unprecedented climate 

crisis on the spread and control of Lassa fever disease should be examined. 
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Appendix 

The following table contains some Lassa fever statistics in Nigeria for a period of 6 months (January to June, 

2019) as provided by the NCDC (2019). The data contained in this table were used in obtaining the parameter 

values for some of the parameters contained in table 2. 
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Table 4: Table of Values for the Control Model's Parameter Value Calculation 
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