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Abstract: The 0/1 knapsack problem is an example of the combinatorial optimization problem which is to 

maximize the value of the objects in the knapsack without passing its capacity, with the aim of obtaining the best 

solution among other solutions. Knapsacks problems appear in practical-world decision-making processes in a 

wide variety of fields. There are various ways to solve the knapsack problem. In this work, dynamic 

programming and branch and bound were presented to solve the knapsack problem, along with the analysis of 

its efficiency, effectiveness, accuracy, and time execution. The data were analysed with the help of a 

programming language MATLAB and general purpose mixed integer programming solver CPLEX was used for 

the analysis. The dynamic programming suffers the best execution of time. The two methods dynamic 

programming and branch and bound has the same optimal solution in term of accuracy which means they are 

both effective for the selection of items without exceeding its capacity. In other word, our best solution values 

match the optimal values obtained by the CPLEX mixed integer solver, except the fact that the time required for 

the dynamic problem is faster than that of the CPLEX mixed integer solver. 
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I. Introduction 
The 0/1 knapsack problem is an example of the combinatorial optimization problem which is to 

maximize the value of the objects in the knapsack without passing its capacity, with the aim of obtaining the 

best solution among other solutions. It is a real integer problem with single main constraints. In the past studies, 

it was clearly showed that knapsack problem was a wild and comprehensive problem and one of the most 

required and demanding in our society at large. According to Yang (2016) the knapsack name was derived from 

the difficulty faced by a hiker packing a backpack. The hiker must choose the objects that were of most valuable 

collection to acquired, subject to a volume or weight limit and the size of the pack  

In knapsack problem, several knapsacks are put into consideration. It is arranged in such a way that 

every member of the item has its own weight, value and the number of item to be included in the item is 

determine in a way that the total sum of the weights is more than its capacity Babaioff et. al (2007) The most 

common problem is solving the 0/1 knapsack problem, which limits the number xi of copies of each kind of item 

to zero or one. Given a set of n
th

 items numbered from 1 up to n, each with a weights wi and value vi along with 

a maximum capacity of W. 

Maximize 

 𝑣𝑖𝑥𝑖
𝑛
𝑖=1      1.1 

Subject to the constraint  

 𝑤𝑖𝑥𝑖 ≤ 𝑉
𝑛
𝑖=1     1.2 

And  

      0≤ 𝑋𝑖 ≤ 𝑍𝑖  
 

Levitin ( 2003 ) “If one or more of the 𝑍𝑖 is infinite, the knapsack problem is unbounded; else, the 

knapsack problem is unbounded”. The bounded knapsack problem can either be multiple constraint knapsack 

problem or 0/1 knapsack problems. 

Olayemi, (2017) Describe this as “Although good algorithms have been designed for solving simple 

data instances of the knapsack problem, little attention has been paid to the solution hard data instances. Such 

instances occur when transforming general integer programming problem to the knapsack problem, and are of 

great real life situation and theoretical interest.” 

The objectives of this research work is to have a comparative analysis study of the Dynamic 

Programming and Branch Bound (CPLEX).  
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II. Literature Review 
The study on knapsack model is broad. This section gives an overview of the Knapsack problem. The different 

methodologies in Knapsack problem such as dynamic programming and branch and bound are discussed.   

 

Multidimensional Knapsack Problem (MDKP) 

The multidimensional 0/1 knapsack problem using Dynamic programming can be explained as follows: 

Given a Knapsack with m-dimensions, with the capacity of the i
th

 dimension being𝑏𝑖 , i= 1, 2,….,m. There are n 

different items and let𝑊𝑗be the number of copies items j; j = 1; 2,., n: The j
th

 item requires 𝑤𝑖𝑗  units of the i
th

 

dimension of the knapsack. The reward of including a single copy of item j in the knapsack𝑣𝑗  The purpose is to 

maximize the total units of the selected items. Therefore, the problem can be formulated as an integer program 

as seen below: 

Maximize 

 𝑣𝑗   
𝑛
𝑖=1       2.1 

Subject to the constraint 

 𝑤𝑖𝑗 ≤ 𝑏𝑖
𝑛
𝑖=1      2.2 

𝑖 = 1,2, … ,𝑚  
𝑥𝑗 ≤ 𝑊𝑗  𝑎𝑛𝑑 𝑥𝑗 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑗 = 1,2, … , 𝑛 2.3 

 

When the decision variables (𝑊𝑗 = 1 𝑎𝑛𝑑 𝑥𝑗 ∈ 0,1, 𝑗 = 1,2, … . , 𝑛), the problem above is known and 

referred to as 0/1 multidimensional knapsack problem, but when it is unrestricted to {0,1}, it is then the general 

multidimensional knapsack problem. Equation (2.1) computes the profit to select subset items with maximum 

total profit. Equation (2.2) ensures that the Knapsack constraint is enforced where by the selected subset does 

not exceed the capacity. The Equation (2.3) meets the binary selection for criteria. According to Levitin (2000) 

multidimensional knapsack problem is an NP-hard. A comprehensive research has been carried out on 0/1 

multidimensional Knapsack problem, but solution techniques for general multidimensional knapsack problem 

are few. As per some school of thought, “a problem is NP-hard if an algorithm in solving it can be express into 

one for solving any NP-problem (nondeterministic polynomial time) problem”. NP-hard, therefore, means "at 

least Table [i, 0] = 0 for 𝑖 ≥ 0 as hard as any NP-problem,” although it might, in fact, be harder. Examples of 

NP-complete problems include the Hamiltonian cycle and traveling salesman problems. A problem is said to be 

"NP-hard if the existence of polynomial time solution for it implies the existence of polynomial-time solution 

for every problem in NP. An NP-hard problem is NP-complete if it also belongs to the class NP. The first NP-

complete problem was discovered by S. Cook in 1971.” Knapsack problem looks simple but it is a very hard 

problem, it is not known to have efficient solution. So it might give you something which is not quite optimum 

but good enough to practice and that is why is called NP-hard”. 

 Akçay et. al (2007) says, In general, multidimensional Knapsack problem has been broadly applied to 

model real life problems. Such as Inventory allocation in an assemble-to-order system (Akcay and Xu, 2004), 

Capital budgeting (Lu, Chiu, and Cox, 1999), Combinatorial Auctions (dc Vries and Vohra, 2003), Stock 

cutting (Caprara et al.,2000) among others. The family of Knapsack problems all need a subset of some given 

items to be selected such that the corresponding cost sum is maximized without passing the capacity of the 

Knapsack(s). Different types of Knapsack problem occur, depending on the distribution of the items and 

backpacks: in 0/1 Knapsack problem, each item may be chosen at most once, while in the Bounded knapsack 

problem, we have a limited amount of each item type. The multidimensional knapsack problem happens when 

items are expected to be chosen from classes of disjoint items and, if several knapsacks are to be filled 

simultaneously, we get the multidimensional knapsack problem. Multi-Constrained knapsack problem which is 

the most general integer programming (IP) with positive integer coefficients. All knapsack problems belong to 

the family of NP-hard problems, which mean that it is very unlikely that polynomial algorithm can ever be 

devised for these problems.  

 

Related Work 

Knapsack problems have been intensively studied over the decades. Knapsack techniques were 

modified to enhance performance and new techniques are proposed. Munapo (2008) enhanced the performance 

of Branch and bound. The author achieved this, by generating and adding function and single constraint to 

Knapsack model. The Branch and the bound is then applied and the total numbers of sub problems were 

reduced.   

Researchers have applied Dynamic programming and Branch and Bound to solve 0/1 Knapsack 

problems. Different Knapsack methodologies have been compared in other to evaluate performance using 

specific metrics.  

Pushpa et. al (2016) carried out an empirical experiment to evaluate the performance of Greedy 

algorithm, Dynamic programming, Branch and Bound techniques of Knapsack problem. The experiment 
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showed that Dynamic programming is most efficient for Knapsack with small capacities. It was also observed 

that Dynamic programming utilized very high memory resources. Greedy algorithm did not give an optimal 

solution. However, Recursive Branch and Bound was the most simple and efficient irrespective of the 

circumstances.  

Shaheen and Sleit (2016). compared Greedy, Dynamic programming, Branch and Bound and Genetic 

algorithms based on time and accuracy. The algorithms were implemented using C++. The data size used for the 

experiment ranged from 100,000 to 600,000. Dynamic programming and Branch and Bound Outperformed 

Genetic and Greedy algorithm in terms of accuracy of values. Branch and bound had the worst execution time 

followed by Dynamic programming, then Greedy algorithm and Genetic respectively.  

Hristakeva and Shrestha (2005) compared several algorithms such as brute force, dynamic 

programming, memory functions, branch and bound, greedy, and genetic algorithms based on complexities of 

the algorithms and the execution of time. The algorithms were implemented. The data size was of two categories 

one with constant capacity for all the population sizes increases and the other was a constant item as 500 with 

increases capacity. Dynamic and genetic algorithms outperformed the other approaches, but dynamic was being 

considered as the best among the two methods because of the complexity and rigorous situation involve in 

understanding and written genetic algorithms and codes.  

Yanghong et. al (2017) “carried out an empirical experiment to evaluate solving 0/1 knapsack problem 

by a novel binary monarch butterfly optimization (BMBO) method. Two tuples, consisting of real-valued vector 

and binary vector were used to represent the monarch butterfly individuals in binary monarch butterfly 

optimization (BMBO). It was discovered that monarch butterfly optimization works directly on real-valued 

vectors, while binary vectors represent solutions. For a better result to be obtained three kinds of individual 

allocation schemes were tested. In order the revised the infeasible solutions and optimizing the feasible 

solutions, based on greedy strategy, a novel repaired operator was employed. Complete numerical 

experimentations on three types of 0/1 knapsack problem instances were carried out, the binary monarch 

butterfly optimization (BMBO) showed a better result in team of accuracy, convergence capacity and stability in 

solving 0/1 knapsack problem”. 

Stephen and Evans (2016) compared Greedy, Dynamic programming and branch and bound using 

memory request and programming effort required to implement the three algorithms as metrics. The study 

algorithm showed that the programming effort required for implementing each algorithm varies. The 

comparative study showed that memory utilizedby Dynamic programming increased exponentially, branch and 

bound increased slightly with increased while Greedy had optimal memory utilization. 

Vikas and Shivali (2014) carried out an experiment to solve the non-fractional knapsack problem in 

stochastic, tournament selections and the likes. The results were compared to greedy and dynamic programming 

techniques of 0/1 knapsack problem. The authors varied the selection function and results were captured. The 

result showed that dynamic programming technique required more time and less efficient for selection problem. 

Sajjan  et. al (2014) carried out an experiment to research on the on a new approach to solve knapsack 

problem. In their argument a new approach for solving knapsack problem and testing the performance was 

presented. The algorithm used was originated from a common continued fraction approach and tested in 

polynomial time of the input length. It was discovered that the result obtained seemed not to be working perfect 

in term of generalization of the method.  

Truong et. al (2013) researched on chemical reaction optimization with greedy (CROG) strategy for the 

0/1 knapsack problem. The authors argued that, 0/1 knapsack problem was an NP- hard problem that takes a 

crucial parts in computing the theory and practical situation of life’s. The authors say that the technique was a 

new optimization frame work. Truong et. Al (2013) also proposed a new chemical reaction optimization with 

greedy strategy algorithm. The results showed that the proposed algorithm outperformed when compared with 

Ant colony algorithm (ACO), genetic algorithm (GA), and quantum-inspired evolutionary algorithm (QEA) for 

all proposed test cases. The authors say new approach solution was only better for a short time and they intends 

to have full studies on the parameter values to improve the performances of the algorithm and implementation in 

future. 

Rahajoe and Winarko (2012) carried out an experiment on Optimal Solution of MinMax 0/1 Knapsack 

Problem Using Dynamic Programming. The result of the experiment showed that  MinMax 0/1 knapsack 

problem can be solved using dynamic programming in such a way that without passing the maximum capacity 

while a minimum limit is required the total value of items is optimal (in the case of minimal). The authors also 

said that MinMax 0/1 knapsack problem can also be applicable to the problem of loading commodities into the 

containerthe capacity requirement of a containers is met as well as the total weights is minimum without passing 

the given capacity of the container. 

Da Silva et. al (2008) carried out an experiment on the concept of core problem in  bi-criteria {0, 1}-

knapsack problem. However, Da Silva et. al (2008) “it was discovered in the research that this augmentation is 

not of little value, since many cores can be defined for each productive solution. The experiments were 

conducted on five types of instances revealed that the attributes of the single criterion case also hold true for the 
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bi-criteria instances: they both have small size cores that increase slightly with the size of the problem. The 

results showed that even in the worst cases of bi-criteria core size, very few variables of the continuous solution 

were changed”.  

Rong and Figueira (2013) carried out an experiment on a reduction dynamic programming algorithm 

for the bi-objective integer knapsack problem. The authors developed the algorithm in order to reduce the 

problem built after applying variables fixing techniques based on the core concept. “A new backward state 

reduction RDP algorithm for bi-objective integer knapsack problem were presented based on based on the 

construction of a mixed network containing items with different upper bound”. The result showed that, the 

proposed RDP algorithm has a better response to the problem reduction as compared with the benchmark 

algorithm. Also the RDP algorithm showed significant solution time advantage over the benchmark for both the 

original and the reduced problem. 

 

III. Methodologies And Algorithm 
Introduction 

As earlier discussed there are several approaches in which can be used to solve 0/1 knapsack problems. 

However, for this work dynamic programming and branch and bound algorithms were used to solve the 0/1 

Knapsack problem. This chapter presents how the testing of the methodologies was carried out. 

Environment Setup and Hardware 

The program and data were implemented on a window 7 computers with 8 GBRAM and intel(R) core (TM) i5 

2005 CPU 3.30GHz processor. 

 Data Set 

In this work, self-integer data were randomly generated through MATLAB. They will be used as weights and 

values of some certain items, this aimed at maximizing the values of those items. The data were analysed with 

the help of a programming language MATLAB and general purpose mixed integer programming solver CPLEX 

was used for the analysis. 

Dynamic programming algorithm 

The Dynamic programming is an algorithm for solving problems that are classify as optimization problems with 

the aim of calculating the solutions to sub-problems once and then store it results in a table to be able to recall 

and used in the future. 

1) Describe the arrangement of an optimal solution by extract the problem into small problems, and look about a 

connection between the arrangement of the optimal solution of the real problem and the solutions of the smaller 

problems. 

2) Define the optimal solution Recursively by express the solution of the first (real) problem in terms of optimal 

solutions for smaller problems. 

3) Calculate the value of an optimal solution in a bottom-up approach by using a table. 

4) Construct an optimal solution from computed information 

Dynamic Programing pseudo code for solving knapsack problem 

Input: 

1. Array of Value (v). 

2. Array of Weights (w). 

3. Number of items (n) 

4. Capacity (W) 

Dynamic Programming (w.v.W){ 

for i = 0 to W do 

B[0,i] = 0 

end for 

for i = 1 to n do 

for wk = 0 to W do 

if v[i] ≤ wk then 

B[i,wk] = max (B[i-1,wk],B[i-1,wk-v[i]] +c[i]) 

else 

B[i,wk] = B[i-1,wk] 

end if 

end for 

end for 

} 

Return Max Value  
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Descriptions of cplexbilp for solving 0/1 knapsack problem (maximization problem) 

 

f= - double column vector for the objective function, that is the values 

Aeq = double matrix for linear equality constraints 

beq = double column vector for linear equality constraints 

Aineq = double matrix for linear inequality constraints 

bineq = double column vector for linear inequality constraints that is capacity 

x = cplexbilp(f,Aineq,bineq,Aeq,beq); 

 

IV. Analysis And Discussion 
Analysis of Result 

For testing two different algorithms, files were generated with different sizes where each record 

consists of a pair of randomly generated integers representing the value and weight of each item. In this testing, 

different capacity was chosen for each of the population depending on the size of the population as the 

population size increases so also the capacity of each population size increases, but e of the capacity is more 

than the sum of the weight in each of the population sizes. Time execution: The execution time metric measures 

to what extent do the algorithm take to finish. To obtained the required time to be estimated, time complexity is 

the worst to solve the 0/1 knapsack problem as a function of input data size. The time execution played a large 

part in the enhancement of the performance of the system. 

 

Summary of the output of dynamic programming using MATLAB 

Table 1 
Population size Capacit

y 
Maximum values & 
weights found 

Items chosen  Time ( seconds) 

10 173 462 & 132 2, 3, 8, 9, 10 0.037495 

50 102 409 & 101 1, 4, 14, 21, 25, 26, 41 0.050923 

100 120 745 & 119 3, 7, 10, 19, 45, 56, 58, 60, 63, 80, 92 0.036539 

200 250 1519 & 249 10, 29, 39, 41, 57, 61, 78, 79, 85, 97, 125, 141, 145, 
148, 155, 158, 159, 160, 161, 167, 171, 173, 184, 199 

0.057846 

500 600 4084 & 600 7, 19, 20, 24, 30, 43, 48, 55, 57, 59, 64, 78, 86, 90, 

106, 120, 122, 126, 139, 140, 143, 144, 148, 152, 165, 
166, 177, 191, 206, 208, 231, 241, 259, 265, 276, 278, 

308, 329, 368, 382, 387, 393, 398, 408, 412, 421, 430, 

431, 433, 434, 436, 453, 461, 471, 472, 480, 494, 496, 
497 

0.070535 

600 600 4656 & 600 9, 25, 35, 36, 43, 46, 49, 53, 61, 66, 73, 75, 78, 82, 

110, 120, 126, 132, 142, 144, 156, 158, 162, 167, 173, 
189, 196, 197, 198, 204, 226, 234, 240, 251, 260, 270, 

272, 277, 279, 282, 305, 313, 332, 344, 348, 350, 360, 

363, 371, 383, 426, 432, 447, 449, 454, 498, 503, 507, 
516, 527, 528, 538, 540, 587, 595 

0.092876 

700 800 6135 & 800 1, 21, 23, 31, 44, 49, 68, 78, 99, 103, 106, 120, 123, 

124, 136, 144, 158, 160, 179, 180, 181, 193, 219, 224, 

229, 234, 241, 264, 265, 272, 273, 274, 279, 280, 283, 
290, 304, 307, 342, 344, 353, 354, 356, 366, 375, 377, 

386, 397, 406, 409, 413, 414, 420, 433, 438, 445, 447, 

454, 460, 468, 480, 492, 496, 503, 510, 512, 516, 530, 
534, 538, 542, 552, 555, 561, 567, 571, 575, 577, 581, 

596, 598, 621, 649, 653, 659, 662, 668, 698, 700 

0.080616 

800 850 6293 & 850 5, 11, 15, 24, 25, 36, 39, 41, 43, 49, 64, 75, 78, 88, 
104, 118, 124, 153, 159, 183, 192, 199, 207, 231, 233, 

236, 237, 240, 241, 247, 248, 251, 264, 270, 277, 279, 

289, 292, 328, 330, 341, 367, 374, 379, 404, 417, 427, 
430, 446, 454, 472, 480, 516, 517, 527, 534, 538, 546, 

549, 558, 561, 568, 575, 580, 584, 592, 596, 601, 610, 

611, 619, 620, 629, 663, 668, 677, 679, 686, 687, 688, 
694, 695, 698, 701, 709, 711, 714, 733, 761, 765, 768, 

769, 775, 779, 791,795 

0.077180 

900 1000 7289 & 1000 13, 14, 17, 26, 50, 63, 73, 77, 80, 82, 84, 91, 96, 98, 
101, 109, 121, 128, 131, 144, 146, 149,  178, 199, 203, 

206, 217, 220, 224, 244, 258, 260, 267, 268, 269, 271, 

275, 280, 293, 319, 324, 329, 334, 341, 354, 362, 364, 
365, 372, 379, 380, 383, 386, 390, 433, 442, 444, 466, 

477, 481, 486, 497, 506, 509, 510, 513, 514, 515, 520, 

531, 533, 545, 547, 565, 580, 600, 612, 616, 622, 630, 
633,634, 638, 642, 652, 655, 656, 662, 667, 681, 696, 

698, 723, 749, 753, 759, 798, 800, 819, 829, 849, 856, 

0.088933 
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872, 877, 888, 890, 896, 898 

1000 1200 9232 & 1200 6, 22, 30, 34, 35, 40, 55, 68, 69, 92, 96, 99, 101, 105, 
112, 123, 127, 146, 148, 152, 170, 174, 175, 190, 216, 

224, 241, 244, 261, 265, 271, 281, 294, 296, 301, 303, 

304, 306, 310, 319, 321, 325, 333, 336, 357, 361, 376, 
396, 402, 408, 409, 440, 448, 452, 460, 461, 475, 488, 

506, 518, 519, 520, 532, 545, 556, 578, 584, 592, 594, 

600, 609, 635, 636, 643, 648, 651, 653, 661, 672, 673, 
678, 682, 692, 699, 720, 721, 723, 732, 739, 742, 744, 

752, 756, 758, 762, 763, 772, 773, 784, 789, 790, 798, 

805, 816, 824, 834, 841, 860, 865, 869, 870, 871, 872, 
877, 880, 881, 882, 884, 893, 894, 905, 932, 948, 951, 

956, 969, 971, 999 

0.107365 

 

Summary of the output of branch and bound using CPLEXBILP in MATLAB 

Table 2. 
Population 
size 

Capacity Maximum 
values & 

weights 

found 

Items chosen Time 
(seconds) 

Number 
of item 

generated 

10 173 462 & 132 2, 3, 8, 9, 10 0.593699 5 

50 102 409 & 101 1, 4, 14, 21, 25, 26, 41 0.468606 7 

100 120 745 & 119 3, 7, 10, 19, 45, 56, 58, 60, 63, 80, 92 0.500475 11 

200 250 1519 & 249 10, 29, 39, 41, 57, 61, 78, 79, 85, 97, 125, 141, 145, 148, 155, 158, 
159, 160, 161, 167, 171, 173, 184, 199 

0.394070 24 

500 600 4084 & 600 7, 19, 20, 24, 30, 43, 48, 55, 57, 59, 64, 78, 86, 90, 106, 120, 122, 

126, 139, 140, 143, 144, 148, 152, 165, 166, 177, 191, 206, 208, 231, 

241, 259, 265, 276, 278, 308, 329, 368, 382, 387, 393, 398, 408, 412, 
421, 430, 431, 433, 434, 436, 453, 461, 471, 472, 480, 494, 496, 497 

0.157893 59 

600 600 4656 & 600 9, 25, 35, 36, 43, 46, 49, 53, 61, 66, 73, 75, 78, 82, 110, 120, 126, 

132, 142, 144, 156, 158, 162, 167, 173, 189, 196, 197, 198, 204, 226, 
234, 240, 251, 260, 270, 272, 277, 279, 282, 305, 313, 332, 344, 348, 

350, 360, 363, 371, 383, 426, 432, 447, 449, 454, 498, 503, 507, 516, 

527, 528, 538, 540, 587, 595 

0.313513 63 

700 800 6135 & 800 1, 21, 23, 31, 44, 49, 68, 78, 99, 103, 106, 120, 123, 124, 136, 144, 
158, 160, 179, 180, 181, 193, 219, 224, 229, 234, 241, 264, 265, 272, 

273, 274, 279, 280, 283, 290, 304, 307, 342, 344, 353, 354, 356, 366, 

375, 377, 386, 397, 406, 409, 413, 414, 420, 433, 438, 445, 447, 454, 
460, 468, 480, 492, 496, 503, 510, 512, 516, 530, 534, 538, 542, 552, 

555, 561, 567, 571, 575, 577, 581, 596, 598, 621, 649, 653, 659, 662, 

668, 698, 700 

0.569219 89 

800 850 6293 & 850 5, 11, 15, 24, 25, 36, 39, 41, 43, 49, 64, 75, 78, 88, 104, 118, 124, 

153, 159, 183, 192, 199, 207, 231, 233, 236, 237, 240, 241, 247, 248, 

251, 264, 270, 277, 279, 289, 292, 328, 330, 341, 367, 374, 379, 404, 
417, 427, 430, 446, 454, 472, 480, 516, 517, 527, 534, 538, 546, 549, 

558, 561, 568, 575, 580, 584, 592, 596, 601, 610, 611, 619, 620, 629, 

663, 668, 677, 679, 686, 687, 688, 694, 695, 698, 701, 709, 711, 714, 
733, 761, 765, 768, 769, 775, 779, 791,795 

0.498768 96 

900 1000 7289 & 1000 13, 14, 17, 26, 50, 63, 73, 77, 80, 82, 84, 91, 96, 98, 101, 109, 121, 

128, 131, 144, 146, 149,  178, 199, 203, 206, 217, 220, 224, 244, 
258, 260, 267, 268, 269, 271, 275, 280, 293, 319, 324, 329, 334, 341, 

354, 362, 364, 365, 372, 379, 380, 383, 386, 390, 433, 442, 444, 466, 

477, 481, 486, 497, 506, 509, 510, 513, 514, 515, 520, 531, 533, 545, 
547, 565, 580, 600, 612, 616, 622, 630, 633,634, 638, 642, 652, 655, 

656, 662, 667, 681, 696, 698, 723, 749, 753, 759, 798, 800, 819, 829, 

849, 856, 872, 877, 888, 890, 896, 898 

0.535026 108 

1000 1200 9232 & 1200 6, 22, 30, 34, 35, 40, 55, 68, 69, 92, 96, 99, 101, 105, 112, 123, 127, 
146, 148, 152, 170, 174, 175, 190, 216, 224, 241, 244, 261, 265, 271, 

281, 294, 296, 301, 303, 304, 306, 310, 319, 321, 325, 333, 336, 357, 

361, 376, 396, 402, 408, 409, 440, 448, 452, 460, 461, 475, 488, 506, 
518, 519, 520, 532, 545, 556, 578, 584, 592, 594, 600, 609, 635, 636, 

643, 648, 651, 653, 661, 672, 673, 678, 682, 692, 699, 720, 721, 723, 

732, 739, 742, 744, 752, 756, 758, 762, 763, 772, 773, 784, 789, 790, 
798, 805, 816, 824, 834, 841, 860, 865, 869, 870, 871, 872, 877, 880, 

881, 882, 884, 893, 894, 905, 932, 948, 951, 956, 969, 971, 999  

0.281075 128 
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The plot of the population size and maximum values obtained for the branch and bound algorithm. 

 

Figure 1. 

 
 

The plot of the population size and time (seconds) obtained for the branch and bound algorithm. 

Figure 2. 
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The plot of the capacity and maximum weights obtained for the branch and bound algorithm. 

Figure 3. 

 
 

The plot of the population size and time (seconds) obtained for the dynamic programming algorithm. 

Figure 4. 
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V. Discussion of Result 
The analysis includes the following parameters; execution time and their efficiency to get the 

maximum value into the knapsack. 

The aim of any algorithm solving knapsack problem is to present high-yielding solution in the 

minimum possible time. 

For branch and bound (CPLEX), as seen in the table 2 above the highest population size randomly 

generated is 1000 with the highest optimum solution of 9232 with full capacity of 1200 which has 128 selected 

items and it run only in 0.281075 seconds. The running time lies between 0.157893 seconds and 0.593699 

seconds. From table 1 above, it shows clearly that the size of the population does not determine how high or low 

the time will be. As shown in table 2 above where the least population size 10 is having the highest time as 

0.593699 seconds where the highest population size 1000 with time as 0.281075 seconds.   

In figure 1 above It clearly shows that as the population size is increases show also the there is more 

chance to obtained higher optimal solution in as much as the capacity for the next population size increasing as 

well. In figure 2 It shows that the timing is fluctuating against the population size, but highest time it takes to 

run code for the CPLEX mixed integer solver is 0.593699 seconds which is less than a minute. That shows how 

good and efficient the code is and that will generate an effective output as seen in the summary table in table 2. 

If the capacity of the knapsack is less than the size of population, as the capacity is increases show also the 

maximum weights will be increases. The maximum weight will never exceed the capacity but they could be 

equal, and then it will end up with a straight line (that is, the higher the capacity, the higher the maximum 

weight obtained) as seen in figure 2. 

 From the output of the dynamic programming it is clearly shows that the optimum solution for all the 

population sizes are the same as that of the branch and bound CPLEX mixed integer solver the number of the 

selected item are the same as well. But the highest time to run the data of 1000 population size is 0.107305 in 

seconds; this implies that it is a good result. Provided the capacity of the knapsack is greater than size of the 

population, the dynamic programming and branch and bound number of operations will be higher as well. Our 

best solution values match the optimal values obtained by the CPLEX mixed integer solver, except the fact that 

the time required for the dynamic problem is faster than that of the CPLEX mixed integer solver 

 

VI. Conclusion 
The dynamic programming and CPLEX have been presented. The comparisons of the analysis performed and 

conducted have been presented, and compared to experiment result obtained from applying these algorithms on 

0/1 knapsack problem.  

 

Table 3: CPLEX V.s Dynamic 
Population size CPLEX Dynamic programming 

10 462 462 

50 409 609 

100 745 745 

200 1519 1519 

500 4084 4084 

600 4656 4656 

700 6135 6135 

800 6293 6293 

900 7289 7289 

1000 9232 9232 

 

The comparative study of the branch and bound (CPLEX mixed integer programming solver) and 

dynamic programming shows while the complexities of these algorithms are known. The results demonstrate the 

effectiveness of the algorithms, in terms of execution of time. 

The two method are effective and efficient to use, but the nature of the problem make one suitable than 

the other in the aspect of time and the complexities in understanding the algorithm. The best approximation 

approach around time execution is dynamic programming, although the optimal solution obtained for the two 

algorithms are the same but the time required for dynamic to execute the data is less than that of branch and 

bound (CPLEX mixed integer programming solver). In other word branch and bound (CPLEX mixed integer 

programming solver) suffered worst execution of time while dynamic programming suffers the best execution of 

time. However, one may choose branch and bound (CPLEX mixed integer programming solver) over dynamic 

programming algorithms in other circumstance, because it is easy and straightforward to code. In contrast, 

dynamic programming algorithms require a lot more time in term of understanding the concepts of the pattern 

and in term of programming effort. 
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For future work, we intend to implement more 0/1 knapsack problems techniques. Apply the techniques to solve 

mathematical or real life problems. Comparison will be made to discover the most suitable technique for the 

selected problem. 
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