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ABSTRACT 
An industrial application of extended surfaces occurs in electric motors, which are of vital importance in the 

industry, as they are used in machines of all types. In this work, one-dimensional models are used to define 

physical and thermal characteristics to be applied to extended surfaces. Results for temperature, heat transfer 

rate, efficacy, and efficiency are obtained to compare one-dimensional radial fin model, "Frobenius Method," 

with the mathematical model already established and validated, called "Improved One-dimensional Classic 

Radial Fin" in the literature. The results obtained by the one-dimensional models, for effectiveness and 

efficiency, were compared numerically with the results of the two-dimensional model for the radial fin. The 

finned electric motor, with an aspect ratio of 5.82, is used to generate the numerical and graphical results. The 

equivalence of one-dimensional models is evident, considering the Reynolds number range and the aspect ratio 

value. 
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I. Introduction 

Recently, a one-dimensional model to predict the heat transfer rate from continuous fin-and-tube heat 

exchangers was presented. It has been shown that the one-dimensional model presented makes it possible to 

estimate the fin efficiency with a higher level of precision than any other known alternative[1]. 

R.J. Moitsheki,  M.M. Rashidi,  A. Basiriparsa, andA. Mortezaei[2] consider a model describing the 

temperature profile in a longitudinal fin with rectangular, concave, triangular, and convex parabolic profiles.An 

optimal homotopy analysis method (OHAM) is employed to analyze the problem. The solutions are obtained, 

and the validity of obtained solutions is verified by the Runge–Kutta fourth‐ order method and numerical 

simulation. Analytical and numerical results are in excellent agreement. 

A. Aziz, Mohsen Torabi, and KailiZhang [3] study a radial fin of uniform thickness with convective 

heating at the base and convective–radiative cooling at the tip. The fin is assumed to experience uniform internal 

heat generation. The differential transformation method is used to generate results, andthe effects on the 

dimensionless parameters on the thermal performance of the fins are illustrated. 

Marcus V. F Soares & Élcio Nogueira [4,5] presents developed analytical solutions for determining the 

temperature variations in the fins, performance, and electric motor efficiency, considering heat flow constant at 

the base of the fins and the possible differences intemperature of surround media.The results obtained 

characterize a range of values for the internal and external coefficients of heat convection. 

The two-dimensional straight radial fin was used as a reference for comparison with the generalized 

one-dimensional radial fin, where the expansion in modified power series, the Frobenius Method, is applied. 

The authorsconclude the smaller the value of the aspect ratio, the higher the range of Biot number in which the 

one-dimensional model works correctly. The one-dimensional model is suitable for compact fins systems, where 

the aspect ratio is relatively low (K ≤ 6) [6]. 

Élcio Nogueira [7] presents an exact analytical solution of two-dimensional, steady-state heat 

conduction in an extending rectangular surface and the improved classic one-dimensional model for radial fins. 

He concludes, enters others that the effect of cross-heat exchange can be better observed for higher aspect ratio 

values, and low aspect ratio value,  the results obtained for the models almost coincide. There is also a 

qualitative difference between the results presented in the highest aspect ratio. The one-dimensional model 

responds late to the elevation of the fin height, and the two-dimensional model effects of cross-heat exchange, 

for relatively low Biot numbers, areconsiderable. 

 

 

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Moitsheki%2C+RJ
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Rashidi%2C+MM
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Basiriparsa%2C+A
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Mortezaei%2C+A
https://www.sciencedirect.com/science/article/pii/S019689041300294X#!
https://www.sciencedirect.com/science/article/pii/S019689041300294X#!
https://www.sciencedirect.com/science/article/pii/S019689041300294X#!
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II. Objective 
Validate the one-dimensional radial fin model, “Frobenius Method,” using an already established and validated 

mathematical model, called “Improved classic one-dimensional radial fin” in the literature. 

 

To present and compare results for heat transfer rate, efficiency, and effectiveness in an electric motor with fins. 

 

III. Methodology 
Frobenius Method 

Consider steady-state, one-dimensional heat conduction through a radial fin, with constant conductivity, k, and 

subjected an ambient temperature, 𝑇∞ . 

 

 
Figure 01 – Geometric Representation of the consider one-dimensional Radial Fin 

 

The differential Equation 01 represents the Classical One-dimensional Radial Fin problem: 

 

1

𝑅

𝑑

𝑑𝑅
 𝑅

𝑑𝜃 𝑅 

𝑑𝑅
 − 𝐵𝑖2𝐾

2𝜃 𝑅 = 0 ;   0 ≤ R ≤ 1                                                                                            01 

 

And the boundary conditions for prescribed temperature on the base and convection at the tip of the fin are: 

 

𝜃 0 = 1                                                                                                                                                                01.1 

 
𝑑𝜃(1)

𝑑𝑅
+ 𝐵𝑖2𝐾𝜃 1 = 0                                                                                                                                      01.2 

 

Then, we have the following altered equation: 

 

ℙ(𝑅)
𝑑2𝜃 𝑅 

𝑑𝑅2
+ ℚ(𝑅)

𝑑𝜃 𝑅 

𝑑𝑅
− 𝕎(𝑅)𝜃 𝑅 = 0                                                                                            02 

 

At where 

 

ℙ 𝑅 = 𝑃1 𝑅
2;  ℚ 𝑅 = 𝑄1𝑅;  𝕎 𝑅 = 𝑊1𝑅

2                                                                  03 
 

and 

 

𝑃1 = 1.0; 𝑄1 = 1.0; 𝑊1 = 𝐵𝑖2𝐾
2                                                                  04 

 

with dimensionless groups defined as: 
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𝑅 =
𝑟

𝑟𝑜 − 𝑟𝑖
;  𝐾 =

2𝐿𝑜

𝑤
; 𝐿𝑜 = 𝑟𝑜 − 𝑟𝑖 ;  𝐵𝑖2 =

ℎ2w

2𝑘
;    θ =

𝑇 𝑟 − 𝑇∞

𝑇 𝑟𝑖 − 𝑇∞

                       05 

 

In this work, the equation 02 is more convenient because the interest is in obtaining the solution by the 

expansion in the modified series of power, called the "Frobenius Method." Then, we have 

 

𝑅2
𝑑2𝜃 𝑅 

𝑑𝑅2
+ 𝑅

𝑑𝜃 𝑅 

𝑑𝑅
− 𝑊1𝑅

2𝜃 𝑅 = 0                                                                                                                            06 

 

For convenience, was defined 

 

𝛽2 = 𝑊1   𝑎𝑛𝑑  𝑅′ = 𝛽𝑅                                                                                                                                                           07 
 

In this case, 

 

𝑅′ 2 𝑑2𝜃 𝑅 

𝑑𝑅2
+ 𝑅′

𝑑𝜃 𝑅 

𝑑𝑅
− 𝑅′ 2

𝜃 𝑅 = 0                                                                                                                              08 

 

The equation 08 has a singular regular point in R
’
=0 and By Georg Frobenius (1849-1917), Boyce & Diprima 

[8, pag.243], Erwin Kreyzig [9, pag.190], Arpaci [10, pag.231], Hildebrand [11, pag.143], Schneider [12, 

pag.46-59], Carslaw and Jaeger[13, pag.374-376]: 

 

𝜃 𝑅′ =  𝑎𝑛𝑅
′ 𝑛+𝑠

                                                                                                                                                                09

∞

𝑛=0

 

 

𝜃′ 𝑅′ =
𝑑𝜃(𝑅′)

𝑑𝑅′
=  𝑎𝑛−1 𝑛 + 𝑠 − 1 𝑅′ 𝑛+𝑠

                                                                                                                 10

∞

𝑛=1

 

 

𝜃′′  𝑅′ =
𝑑2𝜃(𝑅′)

𝑑𝑅′ 2 =  𝑎𝑛−2 𝑛 + 𝑠 − 2  𝑛 + 𝑠 − 3 𝑅′ 𝑛+𝑠
                                                                                        11

∞

𝑛=2

 

 

Then 

 

𝑅′ 2
 𝑎𝑛 𝑛 + 𝑠  𝑛 + 𝑠 − 1 𝑅′ 𝑛+𝑠−2

+ 𝑅′  𝑎𝑛 𝑛 + 𝑠 𝑅𝑛+𝑠−1

∞

𝑛=0

− 𝑅′ 2
 𝑎𝑛𝑅

𝑛+𝑠  = 0

∞

𝑛=0

∞

𝑛=0

                                    12 

 

and the following indicial equation was obtained: 

 

𝑎0  𝑠
2 − 𝑠 + 𝑠 𝑅′ 𝑠 = 0             𝑤𝑖𝑡ℎ             𝑎0 ≠ 0  𝑎𝑛𝑑 𝑠 = 0                                                                                    13 

 

The recurrence rule is given by 

 

𝑎𝑛 =
𝑎𝑛−2

𝑛2
                                                                                                                                                                                  14  

or 

𝑎2 =
𝑎0

22
;  𝑎4 =

𝑎0

2242
 ;  𝑎6 =

𝑎0

224262
…                                                                                                                                15 

 

For the situation in analysis, two equal roots, there are two linearly independent solutions, which constitute a 

fundamental system of solution Kreyszig [9]. The first one is: 

𝜃1 𝑅 = 1 +  𝑎2𝑚 (𝛽𝑅)2𝑚

∞

𝑚=1,2,3..

;    𝑎2𝑚 =
1

22𝑚 (𝑚!)2
                                                                                                    16 

 

The second linearly independent solution contains a logarithmic term and has a form: 
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𝜃2 𝑅 =  ln 𝛽𝑅  𝜃1 𝑅 +  𝐴𝑚  𝛽𝑅 𝑚

∞

𝑚=1,2,3…

                                                                                                                  17 

 

By Carslaw and Jaeger[13], and Boyce & Diprima [8] the more convenient expression is 

 

𝜃2 𝑅 = − ln  
𝛽𝑅

2
 + 𝛾 𝜃1 𝑅 +  𝑎2𝑚𝐻𝑚  𝛽𝑅 2𝑚

∞

𝑚=1,2,3…

                                                                                       18 

At where 

 

𝐻𝑚 =
1

𝑚
+

1

𝑚 − 1
+ ⋯ +

1

2
+ 1    𝑎𝑛𝑑 𝛾 ≅ 0.5772                                                                                                          19 

 

𝛾 is known as the Euler-Mascheroni Boyce & Diprima [8, pag.247] constant.  

 

Then 

 

𝜃 𝑅 = 𝑎0𝜃1 𝑅 + 𝑎1𝜃2 𝑅                                                                                                                                                    20 
 

𝜃 𝑅 = 𝑎0[1 +  𝑎2𝑚  𝛽𝑅 2𝑚 ]

∞

𝑚=1,2,3..

+ 𝑎1[− ln  
𝛽𝑅

2
 + 𝛾 𝜃1 𝑅 +  𝑎2𝑚𝐻𝑚  𝛽𝑅 2𝑚

∞

𝑚=1,2,3…

 ]                           21 

 

or 

𝜃 𝑅 = 𝑎0[1 +  𝑎2𝑚  𝛽𝑅 2𝑚 ]

∞

𝑚=1,2,3..

− 𝑎1   ln  
𝛽𝑅

2
 + 𝛾  1 +  𝑎2𝑚  𝛽𝑅 2𝑚

∞

𝑚=1,2,3..

 −  𝑎2𝑚𝐻𝑚  𝛽𝑅 2𝑚

∞

𝑚=1,2,3…

 23 

 

The first boundary condition is defined by Cotta and Mikhailov [14]: 

 

𝜃 0 = 1   →     𝑎0 = 1 + 𝑎1  ln  
𝛽𝑅𝑏

2
 + 𝛾                                                                                                                     24 

 

Finally, 

 

𝜃 𝑅 = 𝜃1 𝑅 + 𝑎1   ln  
𝛽𝑅𝑏

2
 + 𝛾 𝜃1 𝑅 + 𝜃2 𝑅                                                                                                    25 

 

𝜃′ 𝑅 = 𝜃1
′ 𝑅 + 𝑎1   ln  

𝛽𝑅𝑏

2
 + 𝛾 𝜃1

′ 𝑅 + 𝜃2
′(𝑅)                                                                                             26 

 

where (Figure 01) 

 

𝑅𝑏 = 𝑅 → 0                                                                                                                                                                                 27 

 

For the second boundary conditions: 

 

𝜃′ 1 = −𝐵𝑖2𝐾𝜃 1                                                                                                                                                                   28 

 

Then, 

 

− 𝜃1 1 + 𝐵𝑖2𝐾𝜃1
′  1  = 𝑎1  ln  

𝛽𝑅𝑏

2
 + 𝛾  𝜃1 1 + 𝐵𝑖2𝐾𝜃1

′  1  +  𝜃2 1 + 𝐵𝑖2𝐾𝜃2
′  1                                29 

 

In this case, 
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𝑎1 =
−[𝜃1 1 + 𝐵𝑖2𝐾𝜃1

′  1 ]

 ln  
𝛽𝑅𝑏

2
 + 𝛾  𝜃1 1 + 𝐵𝑖2𝐾𝜃1

′  1  + [𝜃2 1 + 𝐵𝑖2𝐾𝜃2
′  1 ]

                                                                            30 

 

The total exchange heat transfer is given by 

 

𝑞 =
−𝑘𝐴𝑏(𝑇𝑏 − 𝑇∞)𝜃′(0)

𝐿0

                                                                                                                                                        31
 

 

 

The dimensionless heat transfer rate is, by definition 

 

𝑄𝑏 =
𝑞 

ℎ2𝐴𝑏(𝑇𝑏 − 𝑇∞)
      →       𝑄𝑏 =

−1

𝐵𝑖2𝐾
(
𝑑𝜃

𝑑𝑅
)𝑅=0                                                                                                          32 

 

𝐴𝑏   𝑎𝑛𝑑 𝑇𝑏   𝑎𝑟𝑒 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒 𝑎𝑟𝑒𝑎 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦                      
 

Efficiency is given by 

 

𝜂 =
−1

𝐵𝑖2𝐾 1 + 𝐾 
(
𝑑𝜃

𝑑𝑅
)𝑅=0                                                                                                                             33 

 

 

Improved Classical Radial Fin 
The classical solution of the one-dimensional radial fin problem is represented by the equationCotta and 

Mikhailov [14]: 

 

𝜃 𝑅 = 𝐶1𝕀𝜈 𝑅 + 𝐶2𝕂𝜈  𝑅                                                                                                                             34 

 

Where 𝕀𝜈  and 𝕂𝜈  are modified Bessel functions of order 𝜈 of the first and second kind, respectively. The 

functions  𝕀𝜈 𝑅  and 𝕂𝜈  are two linearly independent solutions of Equation 01 and are valid for all values of  𝜈. 

Figure 02 shows a plot of zero endsfirst-order modified Bessel functions. It is be noted that 𝕂𝜈  functions 

become infinite as R goes to zero, whereas 𝕀𝜈 𝑅  functions become infinite as R goes to infinity.  

 

 
Figure 02 – Zero and first-order modified Bessel functions 
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Can be proven, Boyce & Diprima [8], Hildebrand [10], the equation 01 is a case of the modified Bessel 

equation, whose solution is given by Butkov [15],M. N. Özisik [16], M. D. Mikhailov and M. N. Özisik [17]: 

 

𝜃𝐴𝑣 𝑅 

=
 𝕂0  𝐵𝑖2

+𝐾𝑅 [𝐵𝑖2
+𝕀0  𝐵𝑖2

+𝐾 +  𝐵𝑖2
+𝕀1  𝐵𝑖2

+𝐾 ] − 𝕀0  𝐵𝑖2
+𝐾𝑅 [[𝐵𝑖2

+𝕂0  𝐵𝑖2
+𝐾 −  𝐵𝑖2

+𝕂1  𝐵𝑖2
+𝐾 ] 

 𝕂0  𝐵𝑖2
+𝐾𝑅𝑏 [𝐵𝑖2

+𝕀0  𝐵𝑖2
+𝐾 +  𝐵𝑖2

+𝕀1  𝐵𝑖2
+𝐾 ] − 𝕀0  𝐵𝑖2

+𝐾𝑅𝑏 [[𝐵𝑖2
+𝕂0  𝐵𝑖2

+𝐾 −  𝐵𝑖2
+𝕂1  𝐵𝑖2

+𝐾 ] 
    35 

 

and 

 

𝑄𝑏 =
𝐾

4
 𝐵𝑖2

+
 𝕂1  𝐵𝑖2

+𝐾𝑅𝑏  𝐵𝑖2
+𝕀0  𝐵𝑖2

+𝐾 +  𝐵𝑖2
+𝕀1  𝐵𝑖2

+𝐾  + 𝕀1  𝐵𝑖2
+𝐾𝑅𝑏 [[𝐵𝑖2

+𝕂0  𝐵𝑖2
+𝐾 −  𝐵𝑖2

+𝕂1  𝐵𝑖2
+𝐾 ] 

 𝕂0  𝐵𝑖2
+𝐾𝑅𝑏 [𝐵𝑖2

+𝕀0  𝐵𝑖2
+𝐾 +  𝐵𝑖2

+𝕀1  𝐵𝑖2
+𝐾 ] − 𝕀0  𝐵𝑖2

+𝐾𝑅𝑏 [[𝐵𝑖2
+𝕂0  𝐵𝑖2

+𝐾 −  𝐵𝑖2
+𝕂1  𝐵𝑖2

+𝐾 ] 
                             36 

 

where the improved solution, extending the range for the Biot number, is obtained with the following defined 

parameter Aparecido and Cotta [18;19]: 

 

𝐵𝑖2
+ =

𝐵𝑖2

1.0 +
𝐵𝑖2

4

                                                     37 

𝜂 =
𝑄𝑏

𝐵𝑖2𝐾
2

                                                                                                  38 

 

𝕂0  , 𝕂1  , 𝕀0 , 𝕀1𝑎𝑟𝑒 modified Bessel functions of the first and second kind: 

 

where, 

 

𝕀𝜇  𝑥 =  
1

𝑘! Γ 𝜇 + 𝑘 + 1 2𝜇+2𝑘
𝑥𝜇+2𝑘                                                                                 39

∞

𝑘=0

 

 

And 

 

𝕂𝑚  𝑥 =
(−1)𝑚

2
 
𝜕𝕀−𝜇 (𝑥)

𝜕𝜇
−

𝜕𝕀𝜇 (𝑥)

𝜕𝜇
 
𝜇=𝑚

                                                                                    40 

 

For small R [Özisik; 9]: 

 

𝕀𝑛 𝑅 ≅
1.0

2𝑛𝑛!
𝑅𝑛                                                                                                                      41 

 

𝕂𝑛 𝑅 ≅ −𝑙𝑛𝑅𝑓𝑜𝑟𝑛 = 0  𝑎𝑛𝑑𝕂𝑛 𝑅 ≅
2𝑛−1 𝑛 − 1 !

𝑅𝑛
𝑓𝑜𝑟𝑛 ≠ 0                                                     42 

 

For 𝑅 ≥ 10 [Ö𝑧𝑖𝑠𝑖𝑘; 9]: 
 

𝕀0 𝑅 ≅
0.3989𝑒𝑅

𝑅
1

2

 1 +
1

8𝑅
+

9

128𝑅2
+

75

1024𝑅3
                                                               43 

 

𝕀1 𝑅 ≅
0.3989𝑒−𝑅

𝑅
1

2

 1 +
3

8𝑅
−

15

128𝑅2
+

105

1024𝑅3
                                          44 

𝕂0 𝑅 ≅
1.2533𝑒−𝑅

𝑅
1

2

 1 −
1

8𝑅
+

9

128𝑅2
−

75

1024𝑅3
                                    45 

𝕂1 𝑅 ≅
1.2533𝑒−𝑅

𝑅
1

2

 1 +
3

8𝑅
−

15

128𝑅2
+

105

1024𝑅3
                                              46 

 

For large R (Özisik): 
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𝕀𝑛 𝑅 ≅
𝑒𝑅

 2𝜋𝑅
                              47 

𝕂𝑛 𝑅 ≅  
𝜋

2𝑅
𝑒−𝑅                                                                                                          48 

 

Despite the relative simplicity of the equations approximated above, it is difficult to define the limits of the 

application of each of them. A solution found to solve the problem of application ranges, and facilitate the use of 

modified Bessel Functions, was to implement polynomial interpolations that satisfy the equations within 

specific ranges of the variable Élcio Nogueira [6;7]. 

 

IV. Results And Discussion 

The Rb value, defined by equations (24 - 27), has a fundamental importance in the solution by the 

Frobenius method presented in this work. Rb depends heavily on the value of the aspect ratio and the Biot 

number. In Figure 03, we show the variation of Rb as a function of the number of Biot for the aspect ratio 

analyzed in this work (Figure 08, Table 01 and Equation 49), that is, for K = 5.82. A more in-depth analysis of 

the dependence of Rb onBiot number and aspect ratio should be the object of deeper mathematical analysis and 

is beyond the scope of this work. 

Figure 04 shows the dimensionless temperature versus the radial position of the fin, with the Biot 

number as a parameter, for the two models analyzed in this work. For a wide range of Biot numbers, a 

satisfactory equivalence between models can be observed. The most unfavorable result occurs for a Biot value 

equal to 0.05. 

The results for the dimensionless heat transfer rate are shown in Figure 05, for an aspect ratio of 5.82. 

Equivalently to that observed for the values of radial temperature, Figure 04, the models present close results, 

within the range of Biot number analyzed. 

 

 
Figure 03 - Rb versus Biot number for aspect relation fin K=5.82 

 

The results for efficiency are shown in Figure 06. Equivalently to that observed for the values of radial 

temperature, in Figure 04, the models present close results, within the range of the analyzed Biot number. 
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The results for the efficacy are shown in Figure 07. The models present close results, within the range of Biot 

number analyzed. 

 

 
Figure 04–Comparison of dimensionless temperature versus radial positionfor the two considered models 

 

 
Figure 05–Comparisonofdimensionlessheat transfer rate versus Biot number  for the two considered models 
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Figure 06–Comparison of efficiency versus Biot number for the two considered models 

 

 
Figure 07 – Comparison of efficacy versus Biot number for the two considered models 
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Application 

 
Figure 08 – Representation of an Electric Motor with Fins 

 

A well-dimensioned fin and ventilation system can contribute to significant energy savings in Electric Motor. 

The data below, Table 01, refer to the quantities associated with the fins and to some operational conditions 

used in this work. 

 

Table 01 – Data for finned Electric Motor DC 

Essential information for the fin system 

Engine width - 𝑳𝑴 130,13 mm 

Width of fin base - 𝒘 5,84 mm 

Fin height - 𝑳𝒐 17,00 mm 

Conductivity - k 80W/(m.K) 

Maximum base Temperature - 𝑻𝒃 98ºC 

Maximum external Temperature - 𝑻∞  40ºC 

 

In this case, we have for the aspect relation of the fin: 

 

𝐾 =
𝐿𝑜

𝑤/2
=

34.00

5.84
⟶ 𝐾 = 5.82                                                                                                                         49 

 

Table 02 – Comparison of efficiency and the effectiveness with bidimensional and  

improved classical solutions 
Bi2 h2 

W/(m2K) 
𝜼 % 
2D 

ε 
2D 

𝜼%/Error% 
Frobenius 

ε/Error% 
Frobenius 

𝜼%/Error% 
Classical 

ε/Error% 
Classical 

10-3 27.4 97.35 13.63 96.71/0.7 15.31/12 87.69/10 11.96/12 

10-2 274 77.17 10.91 50.22/35 6.07/44 48.11/38 6.56/40 

10-1 27400 18.80 2.63 10.76/43 1.06/60 8.45/55 1.14/57 

 

Table 02 presents the results of efficiency and effectiveness for the fin system in Figure 08, considering the 

variation in the number of Biot and the aspect ratio equal to 5.82.  

 

For relatively low values of the Biot number, less than 0.05 (see Figure 04), the efficiency and 

effectiveness justify the placement of the fins and use of one of the two one-dimensional models. The results 

obtained by the one-dimensional models presented in this work were compared with the results of the two-

dimensional model in Table 02. The two-dimensional model was implemented by Élcio Nogueira [7]. 
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V. Conclusions 

The comparison between the one-dimensional radial fin model, “Frobenius Method,” with the 

mathematical model already established and validated, called “Improved Classical Radial Fin” in the literature, 

was presented. 

The physical quantities used to compare the models are the dimensionless temperature, heat transfer 

rate, the efficiency, and the effectiveness of an electric motor with fins and an aspect ratio of 5.82. 

The results obtained for efficiency and the effectiveness of the one-dimensional models presented in 

this work were compared with the two-dimensional model, and for a wide range of Biot numbers, a satisfactory 

equivalence between one-dimensional models can be observed.  

The equivalence of the one-dimensional models presented in this work is evident, considering the 

Reynolds number range and the value of the aspect ratio considered for analysis.In fact, for relatively low values 

of the Biot number, less than 0.05, the efficiency and effectiveness justify the placement of the fins and use of 

one of the two one-dimensional models. 
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