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Abstract: It is true that several probability distributions exist for modeling lifetime data; however, some of 

these lifetime data do not follow any of the existing and well known standard probability distributions (models) 

or at least are inappropriately described by them. Therefore, in this paper, we derived maximum likelihood 

estimate of the parameters of both Rayleigh and Burr distributions and compared their performances with 

Weibull distribution in order to find an alternative to the Weibull computation. Random samples of different 

sizes with different shape parameter settings were drawn from the Weibull distribution and the parameters are 

estimated using both Rayleigh, Burr with Weibull serving as reference. The estimate of the parameters of the 

considered distributions alongside with the model selection criteria (AIC and BIC) for the simulated data as 

well as the wind data were tabulated and presented in graphs for the comparison of  the model selection criteria 

under different sample and parameter settings were displayed. Based on our findings with respect to the model 

selection criteria, we concluded that two parameters Burr XII can be used as an alternative that best described 

the considered Weibull distribution and wind data. 
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I. Introduction 
Inferential statistics is the branch of statistics which is concerned with using concept of probability to 

deal with uncertainty in decision making. It refers to drawing conclusion about the unknown population 

characteristics on the basis of information on the sample characteristics. Arun et al. (2017) has derived the 

probability density function of the size p-dimensional Rayleigh distribution and presented its properties. They 

discussed it's suitability as a survival model by obtaining its survival and hazard functions. They also discussed 

Bayesian estimation of the parameter of the size based p-dimensional Rayleigh distribution, the Bayes 

estimators were obtained by taking quisi prior and the loss functions used are squared error and precautionary 

loss functions. In a similar study, Faton and Ibrahim (2015) studied a three parameters life model, called the 

Waibull Rayleigh distribution; they obtained the mathematical properties of this distribution and some structural 

properties. The method of maximum likelihood and the least squares were used in obtaining the model 

parameters. The Fisher's information matrix for the distribution were derived and finally applied to real data for 

illustrating its performance. Saima et al.(2016) also presented a paper titled generalized Rayleigh distribution; 

they obtained Bayesian estimation of the shape parameter for the two parameters generalized Rayleigh 

distribution using single and double priors. R software was used to conduct a simulation study in order to 

compare the different priors. However, Mkolesia et al. (2016) presented a technique for estimating the scale 

parameter for Rayleigh distribution through minimizing a goal function using differential method. They 

proposed difference least square method (DLSM) and compare the performance of the proposed method with 

maximum likelihood method graphically using Monte Carlo simulation. Several classical distributions have 

been widely used over the past decades for modelling lifetime data in many areas such as reliability, 

engineering, economics, biological studies, environmental actuarial, environmental and medical sciences, 

demography, and insurance. However, in many applied areas such as lifetime analysis, finance, and insurance, 

there is a clear need for extended forms of these distributions. This is because there still remain many important 

problems where the real data does not follow any of the classical or standard probability models. For that 

reason, numerous methods for generating new families of distributions have been considered (Bourguignon et 

al., 2014). To handle this, there is a strong need to propose useful models for the better study of the real-life 

marvel. Introducing new probability models or their classes is an old practice and has ever been considered as 

valuable as many other practical problems in statistics. According to Tahir and Cordeiro (2016), the idea simply 

started with defining different mathematical functional forms, and then adding of location, scale or shape 

parameter(s).  
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This study therefore determines the distribution alternatives to Weibull distribution at various sample 

sizes and parameter. It is true that several probability distributions exist for modeling lifetime data; however, 

some of these lifetime data do not follow any of the existing and well known standard probability distributions 

(models) or at least are inappropriately described by them. This, therefore, creates room for developing new 

distributions or finding alternative among the existing one, which could better describe some of these 

phenomena and therefore provide greater flexibility and wider acceptability in the modeling of lifetime data. 

This paper considered performance of Rayleigh and Burr XII distribution and compared them with Weibull in 

order to deal with such requirements. 

 

1.1 Rayleigh distribution 
Rayleigh distribution (RD) is considered to be a very useful life distribution. Rayleigh distribution is an 

important distribution in statistics and operational research. It is applied in several areas such as health, 

agricultural, biology and other sciences. One major application of this distribution is used in analyzing wind 

data. (Afaq, 2015).A continuous random variable 𝑌 is said to have Rayleigh distribution with parameter δ if its 

probability density function (𝑝𝑑𝑓)given by; 

𝑓 𝑦, 𝛿 =
𝑦

𝛿2 𝑒
−

𝑦2

2𝛿2     For    𝑦 ≥ 0  (Mkolesia, 2016)             (1) 

Where δ is the scale parameter of the distribution. The cumulative distribution function  (𝑐𝑑𝑓) is given by; 

𝐹 𝑦, 𝛿 = 𝑝 𝑌 ≤ 𝑦 = 1 − 𝑒
−

𝑦2

2𝛿2         for   0 < 𝑦 ≤ ∞        (2) 

 

 

1.2 Burr XII Distribution 

The burr XII distribution is also a continuous probability distribution often used by many researchers to model a 

wide variety of lifetime data including crop price, household income, risk insurance and travel time. 

A continuous random variable  𝑌 is said to have Burr XII distribution if its probability density function 𝑝𝑑𝑓 can 

be expressed as; 𝑓 𝑦,𝛼,𝛽 =
𝛼𝛽 𝑦𝛼−1

(1+𝑦𝛼 )𝛽+1 ,   𝑦 > 0            3  

Where 𝛼 > 0>0 and 𝛽 > 0 are the shape parameters  

If we put 𝛼 = 1 in equation (3), then the density function will become unimodal.  (Muhammad and 

Muhammad, 2014) 

The cumulative distribution function (𝑐𝑑𝑓) for the Burr XII distribution is given  

as;  𝐹 𝑦,𝛼,𝛽 = 𝑝 𝑌 ≤ 𝑦 = 1 −  1 + 𝑦𝛼 −𝛽     𝛼 > 0,𝛽 > 0                                                                            (4) 

 

 

II. Methodology 
Definition (Likelihood Function) 

Let 𝑌1 ,𝑌2 ,… ,𝑌𝑛  independent, identically distributed (𝑖𝑖𝑑) random sample of a random variable 𝑌 with 𝑝𝑑𝑓 

given by 𝑓(𝑦/𝛿), then the likelihood function 𝐿(𝛿:𝑦) of  𝑌1 ,𝑌2 ,… ,𝑌𝑛  is the joint density function when 

regarded as a function of the parameter. That is  

𝐿 𝛿:𝑦 = 𝛱𝑖=1
𝑛 𝑓 𝑦𝑖 , 𝛿            (5) 

It is more convenient to use the log likelihood.  

𝑙 𝛿: 𝑦 = 𝑙𝑛𝐿 𝛿, 𝑦       (6) 

The estimate of the parameter can be obtained by taking the partial derivative of the log likelihood function with 

respect to the parameter and equating to zero, that is 
𝜕𝑦

𝜕𝛿
 𝑙𝑛𝐿 𝛿, 𝑦 = 0                                                                                                            (7) 

2.1 Maximum likelihood for Rayleigh distribution  

Let 𝑌1 ,𝑌2 ,… ,𝑌𝑛  be a random sample of size 𝑛 from a Rayleigh distribution with a 𝑝𝑑𝑓 given by (1)) the 

likelihood function 𝐿 𝛿: 𝑦  of this sample is given as 

𝐿 𝛿:𝑦 = 𝛱𝑖=1
𝑛 𝑓 𝑦𝑖 , 𝛿 = 𝛱𝑖=1

𝑛
𝑦𝑖
𝛿2

𝑒
−
𝑦𝑖

2

2𝛿2  

𝐿 𝛿: 𝑦 =   𝑦𝑖 
𝑛
𝑖=1

1

𝛿2𝑛 𝑒
−

1

2
 (

𝑦𝑖
𝛿

)2𝑛
𝑖=1 (8)                   

Taking the log of the likelihood function gives  

𝑙(𝛿, 𝛾) = ln 𝛴𝑖=1
𝑛  𝑦𝑖 

1

𝛿2𝑛
𝑒−1/2  (

𝑦𝑖
𝛿

)2𝑛
𝑖=1   

= 𝑙𝑛   𝑦𝑖 
𝑛
𝑖=1 − 2𝑛𝑙𝑛𝛿 −

1

2
  

𝑦𝑖

𝛿
 

2
𝑛
𝑖=1    (9) 

To maximize equation 9 , we take it partial derivative with respect to  𝛿 and equate to zero 
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𝜕𝑙

𝜕𝛿
= −

2𝑛

𝛿
+
 𝑦𝑖

2𝑛
𝑖=1

𝛿3
= 0                                                                                             (10) 

Simplifying equation (10) gives 

𝛿 =  
 𝑦𝑖

2𝑛
𝑖=1

2𝑛
                                                                                                                                     (11) 

 

2.2 Maximum likelihood estimation for Burr XII distribution 

Let 𝑌1 ,𝑌2 ,… ,𝑌𝑛  be a random sample of size 𝑛 from Burr XII distribution with𝑝𝑑𝑓𝑓(𝑦𝑖 ,α,β), the likelihood 

function is given by;  

𝐿 𝑦:𝛼,𝛽 = 𝛱𝑖=1
𝑛 𝛼𝛽𝑦𝑖

𝛼−1 1 + 𝑦𝑖
𝛼 − 𝛽+1                                                                                      (12) 

Taking the log of the likelihood function  12  yields 

𝑙 𝛼,𝛽 = 𝑛𝑙𝑛𝛼 + 𝑛𝑙𝑛𝛽 + (𝛼 − 1)𝑙𝑛  (𝑦𝑖
𝑛
𝑖=1 ) − (𝛽 + 1)𝑙𝑛  (1 + 𝑦𝑖

𝛼𝑛
𝑖=1 )                                  (13) 

Now, differentiating (13) with respect to 𝛼 and 𝛽 yields 
𝜕𝑙  𝛼 ,𝛽 

𝜕𝛼
=

𝑛

𝛼
+ 𝑙𝑛  (𝑦𝑖

𝑛
𝑖=1 ) −  𝛽 + 1   (

𝑦𝑖
𝛼

1+𝑦𝑖
𝛼

𝑛
𝑖=1 )𝑙𝑛𝑦𝑖 = 0 (14)    

𝜕𝑙  𝛼 ,𝛽 

𝜕𝛽
=

𝑛

𝛽
− 𝑙𝑛  1 + 𝑦𝑖

𝛼 𝑛
𝑖=1 = 0                                                    (15) 

Solving (15) we get 

 𝛽 =
𝑛

𝑙𝑛  (1+𝑦𝑖
𝛼 )𝑛

𝑖=1

                                                                                                                        (16) 

Estimate for 𝛼 can be obtained by applying numerical methods such as Newton Raphson iteration. Fatma 

(2018). 

 

III. Analysis 
A Monte Carlo simulation study was extensively carried out in order to estimate the parameters and 

compare the distributions (Rayleigh and Burr) and to see whether the two can be used as an alternative to the 

Weibull distribution. Random samples of size 20, 30, 40, 50 and 60 with different shape parameter settings (0.2, 

0.4, 0.6 and 0.8) from the Weibull distribution were chosen, and the parameters are re estimated using both 

Rayleigh and Burr with Weibull which serves as a reference point. The results were discussed and tabulated in 

the tables 3.1 to 3.4. 

 

3.1 Simulation Results  

The random observations obtained from the simulations through Weibull distribution with the specified 

parameter at different sample sizes fitted to Weibull, Raleigh and Bur distributions are presented in table 3.1-

3.4. 

 

Table 3.1: Parameter Estimates for The Distributions with Fixed Parameters; Weibull (0.2, 2), Rayleigh 

(2) and Burr (3, 4) 
Sample  
     n 

Distributions Parameter(s) MLE AIC BIC Skewn
ess 

Kurtosis  Mean  

 

     20 

Weibull Scale 5.5187 73.2615   75.2530 3.8502 18.5624 117.466 

Shape 0.1894 

Rayleigh Scale  2.0381   332.0621    334.6673 

Burr Shape1 1.2670 77.5259   79.5173 

Shape2 0.2275 

 
     30 

Weibull Scale  1.6917 33.5351     36.3375 5.4615 32.8786 756.4419 

Shape  0.1659 

Rayleigh Scale 2754.754    1183.819    1185.22 

Burr Shape1 1.5211 34.8658    37.6682 

Shape2 0.2201 

 

     40 

Weibull Scale  0.6083 -48.0204    -44.6426 5.9148 38.9855 627.5097 

Shape  0.1540 

Rayleigh Scale 2361.843    1645.636    1647.325 

Burr Shape1 1.7599 -47.8414   -44.4636 

Shape2 0.2027 

 

     50 

Weibull Scale  0.9421 22.0302    25.8542 6.9585 51.8980 

 

56.2487 

Shape  0.1982 

Rayleigh Scale 2361.843    1645.636    1647.325  
 

Burr Shape1 1.6440 26.9878    30.8118 

Shape2 0.2478 

 

     60 

Weibull Scale  1.1582 45.7321    49.9207 6.1044 44.1526 55.5744 

     Shape  0.1982 
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Rayleigh Scale 2361.843    1645.636    1647.325  
 

Burr Shape1 1.5868 52.2085    56.3972 

Shape2 0.2519 

 

The table3.1 above shows the estimates of the parameters obtained for the three distributions (Weibull 

Rayleigh and Burr), the values of the model selection criteria (AIC and BIC), kurtosis and skewness and means 

for the various samples considered. It can be observed that the Weibulland the Burr distributions significantlyfit 

the simulated data better than Rayleigh with minimum values of AIC and BIC. The AIC and BIC of the 

Weibull(0.2,2) and two parameters Burr (3,4) were found to be smaller compared to that of Rayleigh 

distribution, and so, the Burr distribution which has AIC and BIC closer to Weibull distribution could be 

considered as an alternative to the Weibull distribution. 

 

Table 3.2: Parameter Estimates for The Distributions with Fixed Parameters; Weibull (0.4,2), Rayleigh 

(2) and Burr(3,4) 
Sample  

N 

Distributions Parameter(s) MLE AIC BIC Skewn

ess 

Kurtosis  Mean 

 

     20 

Weibull Scale 2.5257 87.0585    89.0499 4.2735 21.6993 7.1263 

 Shape 0.4581 

Rayleigh Scale  2361.843    1645.636    1647.325 

Burr Shape1 1.1167   86.6461    88.6375 

Shape2 0.7030   

 
     30 

Weibull Scale  1.8836 107.536    110.3384  
 

4.2995 23.5196 4.4834 

Shape  0.4549 

Rayleigh Scale 2361.843    1645.636    1647.325 

Burr Shape1 1.2789   110.9067    113.7091 

Shape2 0.6076 

 
     40 

Weibull Scale  1.1519 83.6790 87.0568 2.4655 8.28116 5.9962 

Shape  0.3164 

Rayleigh Scale 2361.843    1645.636    1647.325  

 

Burr Shape1 1.5672  88.0098 91.3876 

Shape2 0.4032 

 

     50 

Weibull Scale  1.8715 176.7372    180.5612 2.9208 11.8167 3.8346 

Shape  0.4792 

Rayleigh Scale 5.6744 508.5054    510.4174 

Burr Shape1 1.2714 183.1925    187.0166 

Shape2 0.6269 

 
     60 

Weibull Scale  1.3092 147.5916    151.7803 3.9527 21.0707 5.6526 

     Shape  0.3435 

Rayleigh Scale 5.6744   508.5054    510.4174 

Burr Shape1 1.5044 154.9037    159.0924 

Shape2 0.4369 

 

Table 3.2 above indicates the estimates of the parameters obtained for the three distributions considered 

(Weibull, Rayleigh and Burr), the values of the model selection criteria (AIC and BIC), skewness and kurtosis 

and means for the various samples considered. It can be observed that the Weibull and the Burr distributions 

significantly fit the simulated data well. The AIC and BIC values for the Weibull and the Burr for the different 

samples were found to be smaller comparedto the Rayleigh distribution. In this case, the skewness and Kurtosis 

values were observed to be asthe samples increases, the mean values moderately closer to the mean in table 5 

which is the reference point. 

 

Table 3.3: Parameter Estimates for The Distributions with Fixed Parameters; Weibull (0.6,2), Rayleigh 

(2) and Burr(3,4) 
Sample  

     N 

Distributions Parameter(s) MLE AIC BIC Skewness Kurtosis  Mean  

 
     20 

Weibull Scale 2.8052 89.1178    91.10927 1.3530 4.8849 4.1045 

Shape 0.5682 

Rayleigh Scale  4.4096   162.8778    163.8735 

Burr Shape1 1.0438 94.1454 96.136 

Shape2 0.7017 

 
     30 

Weibull Scale  2.3127 122.3959    125.1983  
 

2.6456 10.6363 3.2497 

Shape  0.6480 

Rayleigh Scale 4.3533 239.1236    240.5248 

Burr Shape1 1.0039 123.0828    125.8852 

Shape2 1.0082 
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     40 

Weibull Scale  1.4512 125.5619    128.9397 2.862577 11.1411 2.1839 

Shape  0.6199 

Rayleigh Scale 3.1220   304.0384    305.7272 

Burr Shape1 1.3425   124.8001    128.1778 

Shape2 0.8931  

 
     50 

Weibull Scale  1.8559 176.1368    179.9608 2.3005 10.2243 2.59875 

Shape  0.6053 

Rayleigh Scale 3.0072 361.4853    363.3973 

Burr Shape1 1.2079 186.4495    190.2736 

Shape2 0.7547 

 

     60 

Weibull Scale  2.3414 240.6694    244.8581 2.597933 11.5048 

 

3.2730 

     Shape  0.6306   

Rayleigh Scale 4.0944  468.5323    470.6267 

Burr Shape1 1.0456 248.8649    253.0536 

Shape2 0.8711 

 

From above Table3.3, the Weibull distribution having the smallest AIC and BIC values is the best to fit 

the simulated data followed by Burr distribution with closer values of AIC and BIC. The Burr could be 

considered as an alternative to the Weibull distribution. The Rayleigh distribution performs poorer with the 

largest AIC and BIC values. It could also be observed that with the shape increased to 0.6, the data is becoming 

less skewed and the kurtosis is moderately good. The means, at the different sample sizes approximates the real 

data in Table.5. 

 

Table 3.4: parameter estimates for The Distributions with Fixed Parameters; Weibull (0.8,2), Rayleigh (2) 

and Burr(3,4) 
Sample  

     n 

Distributions Parameter(s) MLE AIC BIC Skewness Kurtosi

s  

Mean  

 

     20 

Weibull Scale 2.7267 87.2398 89.2313 1.3343 3.6105 3.0656 

Shape 0.8112 

Rayleigh Scale  3.2847   124.8178    125.8135 

Burr Shape1 0.8157 89.1372    91.1287 

Shape2 1.2518 

 

     30 

Weibull Scale  1.9868 104.3376    107.1399 1.857961 6.8893 1.9604 

Shape  1.0332 

Rayleigh Scale 1.9367 133.6112    135.0124 

Burr Shape1 0.8858 108.7516    111.5539 

Shape2 1.5432 

 

     40 

Weibull Scale  1.6244 131.9051    131.9051    2.1318 6.7180 2.3841 

Shape  0.5962 

Rayleigh Scale 2.9944 298.6593    300.3482 

Burr Shape1 1.2780 137.935    141.3128 

Shape2 0.7770 

 

     50 

Weibull Scale  0.0871 180.7285    184.5525 1.7042 5.5463 2.2673 

Shape  0.7899 

Rayleigh Scale 2.5129 289.5759    291.4879 

Burr Shape1 1.0317   184.5263    188.3504 

Shape2 1.1476 

 

     60 

Weibull Scale  2.2513 228.9974    233.1861 1.8414 6.9474 2.4624 

     Shape  0.8407 

Rayleigh Scale 2.6181 338.358    340.4523 

Burr Shape1 0.9281 238.4283    242.617 

Shape2 1.1916 

 

It is clear from the table.4 above that the Weibull and the Burr distributions significantly fit the 

simulated data better than Rayleigh. Weibull distribution fit the data very well having the smallest AIC and BIC 

values followed by Burr distribution with closest AIC and BIC values. The Rayleigh distribution indicates 

poorest fit compared to the Weibull and Burr distributions. The skewness and kurtosis at the different sample 

sizes indicates less significant compared to the previous shape parameter settings. The mean values at the 

different sample sizes also shows less significant compared to the mean in Table.5. 
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3.3 Fitting and Analyzing the Real Data 

Table 3.5: Parameter Estimates for the Distributions with Fixed Parameters; Rayleigh (2) and Burr (3, 4) 

for the Wind Data. 
Distributions Parameters MLE AIC BIC Skewness Kurtosis  Mean  KST 

Burr Shape1 0.2157  
468.6974    

 
471.5802 

 
0.2250 

 
2.4025 

 
3.4583 

 
0.3897 

 

 
Shape2 3.9307 

 

Rayleigh  Scale  

 

2.6105   643.8048   649.5704 0.1931 

Weibull  Scale  3.8724  

 

446.8891    452.6547 0.0774 

shape 2.8765   

 

The table 3.5above represents the estimates of the parameters obtained for the distributions considered, 

comparison of the model selection criteria, skewness, kurtosis and mean for the real wind data. It is obvious that 

all the three distributions significantly fit the wind data. The values of AIC and BIC for the two parameters 

Weibull and two parameters Burr distributions were found to be smaller; this shows that these two distributions 

fit the wind data very well. We can say that the Burr distribution can be used as an alternative to the Weibull 

distribution instead of Rayleigh distribution. For the skewness and the kurtosis, the values indicate insignificant. 

In terms of Kolmogorov Smirnoff statistics also, the best performance gives the Weibull distribution which has 

the smallest value of 0.0774 followed by the Burr with value 0.1931 and the Rayleigh distribution with greater 

value of 0.3897. 

 

IV. Conclusion 

Based on the results of the analysis of both simulated and the real wind data, tables and graphs shown 

and with respect to the models selection criteria, the Burr distribution competes well with Weibull compared to 

the Raleigh distributions. The Burr distribution can therefore be used as an alternative distribution that best 

describe the data from the Weibull family with higher shape parameter and sample sizes, so also the wind data. 

It can also be observed from the table that the values for skewness and the kurtosis were increasing as the 

sample sizes increases while the shape remained constant at lower shape parameter but were relatively 

decreasing as sample sizes and the shape parameter were increased. 
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