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Abstract

In recent years, generative artificial intelligence (AI) models have revolutionised tasks in image synthesis, text
generation, and multimodal content creation. The foundational capacity of these models to learn, model and
sample from complex data distributions is fundamentally rooted in probability theory. This paper presents a
mathematical perspective on how probability theory underlies and enables modern generative Al: from latent-
variable models, variational and flow-based methods, to adversarial and diffusion-based generative
architectures. We formalise how models define and optimize probability distributions pg(x), latent—variable
priors p(z), and conditional densities p(x | z), and how divergence minimisation (e.g., KL-divergence, Jensen-
Shannon divergence) and likelihood maximisation are employed during training. Key equations such aspg(x) =
[pe(x12)p(2) dzandmingDKL @p1x) Il p(2) — Eqg(zix) [Inpg(x | z)]are explored in the context of

variational autoencoders. Later sections examine applications of probability theory in generative adversarial
networks (GANs) via divergence games, normalizing flows through change-of-variable formulae, and diffusion
models via score-based SDEs. We also discuss how probability theory supports evaluation metrics (e.g.,
likelihood, bits-per-dimension) and sampling strategies, as well as emerging challenges such as high-
dimensional integration, mode collapse, and measurement of generative quality. By emphasising the
probabilistic foundations, this paper aims to provide researchers with a coherent mathematical framework to
analyze, compare, and design generative AI models.

Keywords: generative AI, probability theory, latent-variable models, variational autoencoder, normalizing
flows, generative adversarial networks, diffusion models, divergence minimisation, likelihood modelling.

I.  Introduction
Probability theory provides the mathematical foundation upon which all generative artificial
intelligence (AI) models are built. From classical Bayesian networks to modern large-scale diffusion and
transformer-based architectures, the essence of generation lies in modeling uncertainty and learning data
distributions. A generative model attempts to approximate an unknown probability distribution py,,(x)over
complex high-dimensional data—such as images, text sequences, or audio signals—by learning a parameterized
model pg (x)that captures the underlying structure and variability of the observed data.
Formally, the objective of any generative model can be expressed as a density-estimation problem:
Po (x) ~ pdata(x);
where the goal is to infer parameters fthat minimize the discrepancy between the true data distribution
and the model distribution. This discrepancy is typically measured through a divergence function such as the
Kullback—Leibler (KL) divergence:
Ddata (x)
DrrL(Paata ()| Po (%)) = Epyu0) [In 1o () ]
Minimizing Dg; ensures that the model assigns high probability to the regions of the input space where real data
occur.

Generative Al models—such as Variational Autoencoders (VAEs), Generative Adversarial Networks
(GANs), Normalizing Flows, and Diffusion Models—apply different probabilistic principles to achieve this
approximation. Each approach defines an explicit or implicit model of pg(x)and uses probabilistic reasoning to
perform inference, sampling, or divergence minimization.

2.1 Probabilistic Modelling and Latent Variables

Most real-world data are too complex to model directly. To address this, latent-variable models
introduce hidden variables zthat represent unobserved factors influencing the observed data x. The model thus
defines a joint distribution

Pe (%, 2) = po(x|2) p(2)
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where p(z)is a prior over the latent space (often Gaussian), and pg(x | z)is the conditional likelihood of the
observed data given the latent representation. The marginal likelihood of data is then obtained by integrating out
the latent variable:

Po(x) = [ pe(x2) p(2) dz.
Since this integral is intractable in most cases, probability theory provides several approximate inference
techniques—such as variational inference, Monte Carlo sampling, and importance weighting—to estimate or
maximize log pg(x).

2.2 Maximum Likelihood and Divergence Minimization
A common training objective for generative models is the Maximum Likelihood Estimation (MLE) principle:

6" = argmaxE, () [logpg(x)]
0

Maximizing the log-likelihood is equivalent to minimizing Dgp (Pgaa | Pe). This probabilistic
objective guarantees asymptotic consistency: as data increases, py(x)converges to the true data distribution.
However, computing log pg(x)often requires evaluating complex integrals or determinants, motivating
alternative formulations such as variational lower bounds, adversarial objectives, or flow-based transformations.
In VAEs, for instance, the intractable likelihood integral is replaced by an Evidence Lower Bound (ELBO):

L(6,9) = Eq,(zix)[log pe(x|2)] = Dxr.(q¢ (z]%) Il p(2)),
where g (z|x)approximates the true posterior pg(z|x). Maximizing Lcorresponds to probabilistically
reconstructing data while regularizing latent representations toward the prior p(z).

2.3 Bayesian Foundations in Generative Learning

Bayesian inference offers a natural framework for learning in generative models by treating parameters

as random variables with priors p(8). Given data x, the posterior distribution is obtained via Bayes’ theorem:
201 x) - PPIPE)
p(x)

This formulation provides a principled mechanism for incorporating prior knowledge and quantifying
uncertainty. Many modern approaches, such as Bayesian VAEs and probabilistic transformers, use Monte Carlo
or variational approximations to represent the posterior distribution. The Bayesian perspective unifies learning
and inference as probabilistic reasoning processes.

2.4 The Role of Probability in Generative Sampling

The generative process is mathematically equivalent to sampling from a learned probability
distribution. Once a model has estimated pg(x), new data can be synthesized by first sampling from the latent
prior and then generating from the conditional likelihood:

z~p(2),x ~pg(x12z).

This probabilistic two-step sampling defines the backbone of generative synthesis in VAEs and
diffusion models. In implicit models like GANs, the generator learns a deterministic mapping x = Gg(z)that
implicitly defines a distribution pg(x)via the transformation of the latent prior through G4. Even in such non-
explicit cases, probability theory governs the training process through divergence minimization (e.g., Jensen—
Shannon divergence) and statistical equilibrium between the generator and discriminator.

2.5 Scope of This Paper

This paper aims to (1) analyze how probabilistic reasoning shapes the design of major generative Al
models, (2) derive their central equations from fundamental probabilistic laws, and (3) connect them to broader
theoretical principles such as variational inference, Markov processes, and stochastic differential equations.
Later sections discuss explicit likelihood-based models (Section 3), adversarial and implicit probabilistic
formulations (Section 4), and probabilistic dynamics in diffusion and score-based models (Section 5). The paper
concludes with mathematical challenges and open problems regarding the probabilistic representation of
creativity and uncertainty in artificial intelligence.

3. Probability Foundations in Explicit Likelihood-Based Generative Models

Explicit likelihood—based generative models directly specify a parametric probability distribution
pe (x)or its tractable approximation, and optimise model parameters by maximising the likelihood of observed
data. These models embody the most transparent application of probability theory in generative Al, since they
explicitly evaluate or approximate probability densities and use statistical principles such as maximum
likelihood, expectation—maximisation, and variational inference.
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Three major classes dominate this family: Variational Autoencoders (VAEs), Normalizing Flows (NFs),
and Autoregressive Models. All rest upon core probabilistic ideas—Tlatent variables, change-of-variables, and
conditional factorisation of joint densities.

3.1 Variational Autoencoders (VAEs)

The Variational Autoencoder combines probabilistic modelling with neural-network parameterisation to
learn an approximate posterior distribution over latent variables. A VAE assumes that each observation xarises
from a latent variable zvia a generative process defined by the joint distribution

Pe(x,2) = po(x | 2) p(2),
where p(z)is a simple prior (usually V' (0, 1)), and pg(x | z)is the conditional likelihood modelled by a neural
decoder.
Because direct computation of the marginal likelihood
Po(x) = [ pe(x | 2) p(2) dz
is intractable, VAEs use an approximate posterior qg(z | x)(the encoder) to estimate it through variational
inference. Applying Jensen’s inequality to In pg(x)yields the Evidence Lower Bound (ELBO):
pe(x,z) .
4o (z 1 %)
2 Egq @i [In po(x 1 2)] = D1 (99 (2 1 x) 1| p(2)) = L(6, $).

Maximising Lsimultaneously encourages high data-likelihood under the decoder and closeness
between the approximate posterior and the prior distribution.
Probabilistically, the VAE objective can be understood as minimising the divergence between the approximate
joint g (x,2) = q¢ (2 | X) Pgaa(x)and the model joint pg (x, 2):

Dxr(q¢(x,2) | po(x,2)) = const — Ep, ) [L(6,P)].
This dual probabilistic interpretation makes the VAE one of the most direct bridges between information theory
and generative learning.

In pg (%) =In [ q4(z 1 x)

3.2 Normalizing Flow Models

Normalizing Flows provide an exact likelihood framework by transforming a simple base distribution
pz(z)through a sequence of invertible, differentiable mappings fi.
Let x = fy(z)with z ~ p,(2); the resulting probability density is computed via the change-of-variables theorem:

a—l
po() = . (572 () |der L2

det = —

In logarithmic form:

log pe(x) = log p,(fi"(x)) +log [det J-+(x)|
where | it (x)is the Jacobian matrix of the inverse transformation.

Each flow step is designed so that both the inverse function and the determinant of the Jacobian are efficiently
computable. By composing multiple flows, x = fy o fx_1 o ---o f;(Z), the model represents highly complex
distributions while preserving tractable density evaluation.
Optimising parameters by maximum-likelihood estimation

max Ep,...c0[l0gpe ()]

ensures that the learned distribution approximates the empirical data distribution as closely as possible.
Normalizing Flows thus express the probability of observed data through explicit transformations of base
distributions—each transformation controlled by the determinant term that encodes local volume change in
probability space. This is a direct embodiment of differential probability calculus in deep learning.

3.3 Autoregressive and Sequential Models
Another probabilistic structure used in generative Al is the autoregressive factorisation of the joint distribution.
For a data vector x = (x4, x5, ..., X, ), probability theory provides an exact decomposition:

n

poC) = | o Gl

where x_;denotes all preceding elements.This factorisation forms the theoretical backbone of models such as
PixelRNN, WaveNet, and large language models like GPT.
Training is achieved by maximising the log-likelihood:
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n
£(0) = By [Z log py (xi|x<i)]
i=1

Each conditional probability is parameterised by a neural network that outputs a valid probability distribution
(e.g., softmax for discrete tokens, Gaussian mixture for continuous data).Since the joint distribution is explicitly
normalised, these models provide exact likelihoods and straightforward probabilistic sampling by sequentially
drawing x; ~ pg(x; | x;)-

Autoregressive modelling highlights the role of probabilistic factorisation in managing high-
dimensional data: probability theory enables a complex joint to be represented as a structured product of simpler
conditional densities.

3.4 Comparative Probabilistic Insights
Although VAEs, Normalizing Flows, and Autoregressive Models differ architecturally, their probabilistic
principles are unified. Each defines an explicit form of pg(x), satisfies the probability axioms (non-negativity
and normalisation), and uses divergence minimisation or likelihood maximisation as its learning criterion.

e  VAEs rely on approximate inference through variational bounds.

e Normalizing Flows employ exact transformations using Jacobian determinants.

e Autoregressive models exploit chain-rule decomposition for sequential prediction.
All three are direct computational embodiments of probability theory in high-dimensional representation
learning.

3.5 Transition to Implicit and Adversarial Models

While explicit likelihood-based models adhere to analytical probability formulas, many successful modern
generative models—such as Generative Adversarial Networks (GANs) and Diffusion Models—operate with
implicit densities that cannot be expressed in closed form.
In these frameworks, probability theory shifts from explicit evaluation of pg(x)to divergence estimation and
probabilistic sampling through adversarial or stochastic processes.

4. Probability in Implicit and Adversarial Generative Models

While explicit likelihood-based models define probability densities in closed form, many of the most
successful modern generative frameworks—such as Generative Adversarial Networks (GANs) and Energy-
Based Models (EBMs)—are implicit probabilistic models. These systems do not provide a tractable expression
for py(x); instead, they define a stochastic generative process that samples from the underlying model
distribution without explicitly computing its density.

Despite this apparent departure from classical density estimation, probability theory remains central:
GANSs are trained via divergence minimisation between distributions, and EBMs rely on probabilistic energy
formulations that normalise through partition functions. This section develops the probabilistic principles
governing adversarial learning, statistical divergence estimation, and related implicit modelling paradigms.

4.1 Implicit Probabilistic Modelling
An implicit model defines a stochastic mapping from a latent space Zto data space X:
z~p(2), x=Gg(2),
where p(z)is a known prior (e.g., standard Gaussian) and Gyis a deterministic neural network. This mapping
induces a probability distribution pgy (x)implicitly through the pushforward measure of p(z):
2065 ()
pe(x) = p(2) | det “ox | ,if Gy is invertible.
In practice, however, Gyis not invertible, making the density intractable. Probability theory then provides
alternative means to align pg (x)with pg,, (x)via divergence minimisation.

4.2 Generative Adversarial Networks (GANs)
Introduced by Goodfellow et al. (2014), GANs cast generative learning as a two-player minimax game between
a generatorGgand a discriminatorDy,. The generator produces samples Gg(z)from a latent prior, while the
discriminator attempts to distinguish between real and generated data.

The canonical objective function is derived from the Jensen—Shannon divergence (JSD) between the data and
model distributions:

minmax V(Dy, Gg) = Ex-py,, 08 Dy ()] + Eypi) 108(1 = Dy (G (2)))]

Pdata(X)

pdata(x)+p€(x)’
V(Gg) = —2In2 + 2 Dis(Para || Do)

Under an optimal discriminator D*(x) = the value function reduces to
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Thus, minimising V (Gg)corresponds to minimising the Jensen—Shannon divergence—a symmetric measure of
probabilistic distance between the true and generated distributions.

From a probabilistic standpoint, GAN training implicitly performs divergence estimation without explicitly
evaluating densities, relying instead on the discriminator as a learned statistical estimator of distributional
separability.

4.3 Alternative Divergences and the Probability—Distance Spectrum
The probabilistic perspective on GANs generalises naturally to other divergence metrics, leading to multiple

GAN variants unified under the f-divergence framework.
Given convex f(t), the f-divergence between distributions pand qis defined as:
p(x)
D¢ (pllq) = fq x (—)dx
felle) = | a0 £ (G0

The Jensen—Shannon divergence is obtained when f(t) = tln t — (t + D)In (¢t + 1) + In 4.
Recent research has shown that minimising f-divergences is equivalent to solving a variational estimation
problem:

Dr(pllq) = sup (Ex—p[T(O] = Exnqg[f*(TCDD,

where f*is the convex conjugate of fand T (x)plays the role of the discriminator.
In Wasserstein GANs (WGANSs), the Jensen—Shannon divergence is replaced by the Earth Mover’s
(Wasserstein-1) distance:

W(pdata' pG) = yeﬂ(ggia.pg)E(x’y)Ny[”x - y”]'

where I1(pyaa, Pg)is the set of joint couplings with given marginals.By Kantorovich—Rubinstein duality, this
distance admits a variational form:

W (Dgatar Do) = ”?}Ilgl(lEmpdm [f ()] = Expy [f (0)])

where fis constrained to be 1-Lipschitz.This probabilistic distance provides improved stability and a meaningful
geometric interpretation, grounding adversarial training firmly in measure theory.

4.4 Energy-Based and Implicit Density Models

An Energy-Based Model (EBM) defines an unnormalised probability density via an energy function Eg(x):
—Eg(x)
e [}

Zyg '
where Zy = [ e Fe®dxis the partition function ensuring normalisation.
Minimising the negative log-likelihood yields:
VoL = Expu0) [VoEo ()] = Expy) [VoEa (X)]

This equation mirrors the gradient update in GANSs: the model learns to decrease energy (increase probability)
for real samples and increase energy (decrease probability) for generated ones.
Sampling from EBMs often relies on Markov Chain Monte Carlo (MCMC) techniques such as Langevin
dynamics, which are themselves derived from probability theory through stochastic differential equations:

2

po(x) =

€
Xer1 = X — > ViEg(xe) +€my, ne ~ N(0,1).

This update rule describes diffusion of probability mass guided by the energy gradient and stochastic noise—a
probabilistic mechanism that parallels gradient-based learning in GANS.

4.5 Probabilistic Interpretation of Adversarial Equilibrium
At optimality, adversarial learning achieves a Nash equilibrium between the generator and discriminator
distributions:
p@*(x) = pdata(x)'

such that neither the generator nor the discriminator can improve their objective without changing the other’s
parameters.From a probabilistic viewpoint, this equilibrium corresponds to equality of expected log-
probabilities:

]Epdata(x) [ln D*(x)] = ]EPG(JC) [ln (1 — D*(.X))]
This state represents the convergence of the model to the true data distribution—a stochastic realisation of
maximum entropy subject to data constraints.

4.6 Limitations and Theoretical Challenges

Despite their empirical success, adversarial models pose unresolved probabilistic issues. The lack of
explicit density estimation precludes direct evaluation of pg(x)or likelihood-based metrics, complicating
theoretical analysis. Moreover, training instability, mode collapse, and non-convex loss surfaces arise from
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imperfect divergence approximation and high-variance gradient estimates. Mathematically, the non-overlapping
supports of pg.and pgcan make the Jensen—Shannon divergence ill-defined, motivating the shift toward
Wasserstein and energy-based formulations.

5. Probabilistic Foundations of Diffusion and Score-Based Generative Models

Diffusion and score-based generative models represent one of the most profound probabilistic advances
in modern generative Al. These models define a stochastic process that gradually transforms a simple noise
distribution into complex structured data through the probabilistic principles of Markov processes, stochastic
differential equations (SDEs), and score matching.Unlike GANs, which implicitly approximate probability
distributions via adversarial training, diffusion models construct them explicitly by learning the gradients of log-
densities—known as scores—of intermediate noisy distributions.This section explores the probabilistic
foundations of such models, deriving their central equations and demonstrating how they operationalize key
ideas from probability theory and statistical physics.

5.1 The Forward Diffusion Process
The diffusion process begins by progressively corrupting data with Gaussian noise over discrete time steps. Let
Xo ~ Pdata(x)denote a data sample. The forward (noising) process defines a Markov chain:

q(xe|xe-1) = N (X5 4/1 = Be x¢—1, BeD) t = 1,2, .., T,
where {B T _,is a variance schedule controlling the noise magnitude.
By iteratively applying this process, the data distribution q(x,)converges to an isotropic Gaussian N (0, I)as
t->T.
Using properties of Gaussian distributions, the marginal of the noising process can be expressed directly as:

q(xclxo) = N (x¢; y/ ¢ X0, (1 — @p)I),

where @, = 1 — Beand @, = [[5-; a
This defines a sequence of intermediate distributions q(x;)over time, which together form a probabilistic
diffusion trajectory between data and noise.

5.2 The Reverse Diffusion Process

The generative (denoising) process seeks to invert this diffusion by gradually reconstructing clean
samples from pure noise. Since the forward process is Markovian, the true reverse transitions also form a
Markov chain with conditionals pg (x;_1 | X;):

Po(Xe—1 | X)) = N (Xe—1; Ho (Xe, 1), B (Xe, 1))

where the mean and variance functions are parameterised by neural networks.
The goal of training is to approximate the posterior reverse conditionalq(x;_; | x, Xo), which is also Gaussian
with closed-form mean:

fie (xe, Xo) = —rl— (e — 7,&—_ €,
O(t 1 - at
where e;represents the Gaussian noise added during the forward process.
Thus, the reverse model learns to predict and remove the noise at each step, effectively denoising the sample

while preserving probabilistic consistency.

5.3 Variational Objective and Likelihood Derivation
The training objective for diffusion models is derived from variational inference applied to the data likelihood.
The marginal likelihood of data is:

log pg (%) = log [ po(xo.r) dxyir,
where pg (Xo.r) = p(xr) [Ti=1 Po (x¢—1 | X, Jand p(xr) = N'(0,1).
Applying the variational lower bound yields:
po(Xo.r) 1 _

—_— | = —Lyp.
q(xrr 1 x0) VLB

10g Py (xa) = Eqey iy 108 |
After simplification, this results in a tractable objective:
Lsimple = IE:lf,xo,e~]\/(0,1) :L’.j[” € —€p (xt' t) ”2];
where the neural network eglearns to predict the injected Gaussian noise at each timestep.

Minimising this loss corresponds to maximising a lower bound on the data log-likelihood—a purely
probabilistic objective.

5.4 Continuous-Time Formulation and Stochastic Differential Equations
Recent score-based diffusion models reinterpret the discrete diffusion chain as a stochastic differential equation
(SDE) describing the time evolution of the probability density p;(x).
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The forward SDE (perturbation) is given by:
dx = f(x,t) dt + g(t) dW,,

where W;is a Wiener process, f(x, t)is the drift coefficient, and g (t)is the diffusion coefficient controlling noise
magnitude.
The corresponding reverse-time SDE, derived from the Fokker—Planck equation, expresses the backward
evolution of probability:

dx = [f (x,t) — g(©)*V,log p,(x)]dt + g(t) AW,
where V,log p,(x)is the score function, representing the gradient of the log-density with respect to x.
By learning the score function sq(x,t) = V,log p.(x), one can simulate the reverse SDE and thus generate new
samples from the target distribution.This connection between stochastic calculus and generative modelling
exemplifies the deep integration of probability theory and differential equations in Al

5.5 Score Matching and Denoising Interpretation
The idea of score matching, introduced by Hyvérinen (2005), provides a probabilistic framework for learning
unnormalised densities. It minimises the Fisher divergence between the model score and the true data score:

1
Lycore(0) = 2 IE)c»«z)dm()c)[” V,log pg(x) — V, 108 Pyata (x) ”2]
In diffusion models, the score function is trained over progressively noisier versions of data x;, leading to the
Denoising Score Matching (DSM) objective:
Lpsm = E¢xge [A() 1 S9(xt, 8) + €/0; 1],

where o,controls noise variance and A(t)is a weighting function.Minimising this loss enables the model to
estimate the gradient of the log-probability at every noise level, providing the foundation for efficient sampling
via reverse diffusion.

5.6 Sampling and Probabilistic Generation
Once the model learns the score sg(x, t), new data can be generated by simulating the reverse SDE:
dx = [f(x,t) — g(t)*se (x, D)]dt + g(t) dW,.
This iterative stochastic process reconstructs data from Gaussian noise, gradually restoring high-probability
structure under the learned distribution.

In practice, deterministic approximations such as the probability flow ODE:
dx 1

7= [0 =59(®)se(x,0)

are also used, offering exact likelihood computation under the same probabilistic dynamics.
The generative process thus becomes a continuous probabilistic transformation between distributions, grounded
in the mathematical equivalence between diffusion dynamics and density evolution in stochastic systems.

5.7 Theoretical Insights
Diffusion and score-based models unify multiple probabilistic concepts:

e  Markov chains model conditional independence between noise levels.

e  Stochastic calculus connects diffusion processes to continuous probability flows.

e Bayesian inference appears implicitly through the estimation of posteriors p(x, | x;).

e Energy-based modelling reemerges as the learned score corresponds to the negative gradient of an

implicit energy landscape.

Thus, probability theory does not merely support diffusion models—it defines their entire architecture, training
objective, and sampling mechanism. The precision with which these models approximate complex data
distributions reaffirms probability as the natural language of generative intelligence.

Challenges, Open Problems, and Future Directions

Although probability theory forms the backbone of modern generative Al, several mathematical and
computational challenges persist. One key limitation lies in the difficulty of evaluating or normalising complex
high-dimensional probability distributions. In models such as Variational Autoencoders and Diffusion Models,
the marginal likelihood py(x) = [ pe(x | 2)p(2) dzor the reverse-time conditional pg(x._; | X,)remains
analytically intractable, forcing reliance on variational or Monte Carlo approximations. This introduces
estimation bias and complicates convergence proofs. Another challenge arises from non-convex optimisation
surfaces inherent in probabilistic divergence minimisation; the objectives based on Dgjor Jensen—Shannon
divergence may yield multiple equilibria, often leading to unstable training or mode collapse.

From a computational standpoint, generative probability models scale poorly as dimensionality
increases, since evaluating Jacobian determinants or solving stochastic differential equations such as

dx = [f(x,t) — g()*V,log p,(x)] dt + g(t) dW,
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is expensive for large-scale data. Furthermore, the theoretical understanding of generalisation in probabilistic
generators is incomplete—while these models can approximate pg,,(x)well, formal bounds on likelihood
estimation error or sample quality remain open research questions. Recent efforts attempt to unify explicit and
implicit probabilistic learning through hybrid systems combining variational inference, adversarial training, and
diffusion dynamics, suggesting a direction where the strengths of each probabilistic paradigm may be merged.

Future progress will depend on bridging probability theory with geometry and physics, allowing
models to learn not only densities but also structural invariants of data. Quantum-inspired probabilistic
frameworks and information-theoretic regularisation may offer improved tractability and theoretical guarantees.
In essence, the next generation of generative Al will continue to rely on probability—not just as a modelling tool
but as a universal mathematical language for reasoning about uncertainty, transformation, and creativity in
artificial intelligence.

Conclusion

Probability theory provides the mathematical skeleton of every modern generative Al system. Whether
through explicit likelihood estimation, variational inference, adversarial divergence minimisation, or stochastic
differential equations, the essence of generation is probabilistic reasoning about data distributions. The paper has
shown how latent-variable models like Variational Autoencoders express joint probabilities pgy(x,z) = pg(x |
z)p(z), how adversarial frameworks implicitly minimise divergences between py,,and pg, and how diffusion
and score-based models reconstruct data by solving reverse stochastic processes.

Collectively, these architectures demonstrate that the act of “creating” data synthetically is equivalent
to sampling from a learned probabilistic manifold. Probability not only governs model training and sampling but
also connects learning dynamics to fundamental concepts such as entropy, uncertainty, and information flow.
The remaining theoretical challenge is to unify explicit and implicit probabilistic paradigms under a single
framework that preserves both tractability and expressiveness. As generative Al continues to expand—ifrom
text-to-image synthesis to autonomous creativity—the mathematical future of the field will depend on deeper
integration between probability theory, geometry, and computational physics.
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