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Abstract 
In recent years, generative artificial intelligence (AI) models have revolutionised tasks in image synthesis, text 

generation, and multimodal content creation. The foundational capacity of these models to learn, model and 

sample from complex data distributions is fundamentally rooted in probability theory. This paper presents a 

mathematical perspective on how probability theory underlies and enables modern generative AI: from latent-

variable models, variational and flow-based methods, to adversarial and diffusion-based generative 

architectures. We formalise how models define and optimize probability distributions 𝑝𝜃(𝑥), latent–variable 

priors 𝑝(𝑧), and conditional densities 𝑝(𝑥 ∣ 𝑧), and how divergence minimisation (e.g., KL-divergence, Jensen-

Shannon divergence) and likelihood maximisation are employed during training. Key equations such as𝑝𝜃(𝑥) ≈

∫ 𝑝𝜃( 𝑥 ∣ 𝑧 ) 𝑝(𝑧) 𝑑𝑧and𝑚𝑖𝑛𝐷𝐾𝐿
𝜃

(𝑞𝜙(𝑧 ∣ 𝑥)  ∥  𝑝(𝑧)) − 𝔼𝑞𝜙(𝑧∣𝑥 ) , [𝑙𝑛 𝑝𝜃( 𝑥 ∣ 𝑧 )]are explored in the context of 

variational autoencoders. Later sections examine applications of probability theory in generative adversarial 

networks (GANs) via divergence games, normalizing flows through change-of-variable formulae, and diffusion 

models via score-based SDEs. We also discuss how probability theory supports evaluation metrics (e.g., 

likelihood, bits-per-dimension) and sampling strategies, as well as emerging challenges such as high-

dimensional integration, mode collapse, and measurement of generative quality. By emphasising the 

probabilistic foundations, this paper aims to provide researchers with a coherent mathematical framework to 

analyze, compare, and design generative AI models. 

Keywords: generative AI, probability theory, latent-variable models, variational autoencoder, normalizing 

flows, generative adversarial networks, diffusion models, divergence minimisation, likelihood modelling. 

 

I. Introduction 
Probability theory provides the mathematical foundation upon which all generative artificial 

intelligence (AI) models are built. From classical Bayesian networks to modern large-scale diffusion and 

transformer-based architectures, the essence of generation lies in modeling uncertainty and learning data 

distributions. A generative model attempts to approximate an unknown probability distribution 𝑝data(𝑥)over 

complex high-dimensional data—such as images, text sequences, or audio signals—by learning a parameterized 

model 𝑝𝜃(𝑥)that captures the underlying structure and variability of the observed data. 

Formally, the objective of any generative model can be expressed as a density-estimation problem: 

𝑝𝜃(𝑥) ≈ 𝑝data(𝑥), 
where the goal is to infer parameters 𝜃that minimize the discrepancy between the true data distribution 

and the model distribution. This discrepancy is typically measured through a divergence function such as the 

Kullback–Leibler (KL) divergence: 

𝐷KL(𝑝data(𝑥)|| 𝑝𝜃(𝑥)) = 𝔼𝑝data(𝑥)
 [ln⁡

𝑝data(𝑥)

𝑝𝜃(𝑥)
] 

Minimizing 𝐷KLensures that the model assigns high probability to the regions of the input space where real data 

occur. 

Generative AI models—such as Variational Autoencoders (VAEs), Generative Adversarial Networks 

(GANs), Normalizing Flows, and Diffusion Models—apply different probabilistic principles to achieve this 

approximation. Each approach defines an explicit or implicit model of 𝑝𝜃(𝑥)and uses probabilistic reasoning to 

perform inference, sampling, or divergence minimization. 

 

2.1 Probabilistic Modelling and Latent Variables 

Most real-world data are too complex to model directly. To address this, latent-variable models 

introduce hidden variables 𝑧that represent unobserved factors influencing the observed data 𝑥. The model thus 

defines a joint distribution 

𝑝𝜃(𝑥, 𝑧) = 𝑝𝜃(𝑥|𝑧) 𝑝(𝑧) 
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where 𝑝(𝑧)is a prior over the latent space (often Gaussian), and 𝑝𝜃(𝑥 ∣ 𝑧)is the conditional likelihood of the 

observed data given the latent representation. The marginal likelihood of data is then obtained by integrating out 

the latent variable: 

𝑝𝜃(𝑥) = ∫ 𝑝𝜃(𝑥|𝑧) 𝑝(𝑧) 𝑑𝑧. 
Since this integral is intractable in most cases, probability theory provides several approximate inference 

techniques—such as variational inference, Monte Carlo sampling, and importance weighting—to estimate or 

maximize log⁡ 𝑝𝜃(𝑥). 
 

2.2 Maximum Likelihood and Divergence Minimization 

A common training objective for generative models is the Maximum Likelihood Estimation (MLE) principle: 

𝜃∗ = argmax𝔼𝑝data(𝑥)
𝜃

[log 𝑝𝜃(𝑥)] 

Maximizing the log-likelihood is equivalent to minimizing 𝐷KL(𝑝data   ∥  𝑝𝜃). This probabilistic 

objective guarantees asymptotic consistency: as data increases, 𝑝𝜃(𝑥)converges to the true data distribution. 

However, computing log⁡ 𝑝𝜃(𝑥)often requires evaluating complex integrals or determinants, motivating 

alternative formulations such as variational lower bounds, adversarial objectives, or flow-based transformations. 

In VAEs, for instance, the intractable likelihood integral is replaced by an Evidence Lower Bound (ELBO): 

ℒ(𝜃, 𝜙) = 𝔼𝑞𝜙(𝑧∣𝑥 )[log⁡ 𝑝𝜃(𝑥|𝑧)] − 𝐷KL(𝑞𝜙(𝑧|𝑥) ∥ 𝑝(𝑧)), 

where 𝑞𝜙(𝑧|𝑥)approximates the true posterior 𝑝𝜃(𝑧|𝑥). Maximizing ℒcorresponds to probabilistically 

reconstructing data while regularizing latent representations toward the prior 𝑝(𝑧). 
 

2.3 Bayesian Foundations in Generative Learning 

Bayesian inference offers a natural framework for learning in generative models by treating parameters 

as random variables with priors 𝑝(𝜃). Given data 𝑥, the posterior distribution is obtained via Bayes’ theorem: 

𝑝( 𝜃 ∣ 𝑥 ) =
𝑝𝜃(𝑥) 𝑝(𝜃)

𝑝(𝑥)
. 

This formulation provides a principled mechanism for incorporating prior knowledge and quantifying 

uncertainty. Many modern approaches, such as Bayesian VAEs and probabilistic transformers, use Monte Carlo 

or variational approximations to represent the posterior distribution. The Bayesian perspective unifies learning 

and inference as probabilistic reasoning processes. 

 

2.4 The Role of Probability in Generative Sampling 

The generative process is mathematically equivalent to sampling from a learned probability 

distribution. Once a model has estimated 𝑝𝜃(𝑥), new data can be synthesized by first sampling from the latent 

prior and then generating from the conditional likelihood: 

𝑧 ∼ 𝑝(𝑧), 𝑥 ∼ 𝑝𝜃( 𝑥 ∣ 𝑧 ). 
This probabilistic two-step sampling defines the backbone of generative synthesis in VAEs and 

diffusion models. In implicit models like GANs, the generator learns a deterministic mapping 𝑥 = 𝐺𝜃(𝑧)that 

implicitly defines a distribution 𝑝𝜃(𝑥)via the transformation of the latent prior through 𝐺𝜃. Even in such non-

explicit cases, probability theory governs the training process through divergence minimization (e.g., Jensen–

Shannon divergence) and statistical equilibrium between the generator and discriminator. 

 

2.5 Scope of This Paper 

This paper aims to (1) analyze how probabilistic reasoning shapes the design of major generative AI 

models, (2) derive their central equations from fundamental probabilistic laws, and (3) connect them to broader 

theoretical principles such as variational inference, Markov processes, and stochastic differential equations. 

Later sections discuss explicit likelihood-based models (Section 3), adversarial and implicit probabilistic 

formulations (Section 4), and probabilistic dynamics in diffusion and score-based models (Section 5). The paper 

concludes with mathematical challenges and open problems regarding the probabilistic representation of 

creativity and uncertainty in artificial intelligence. 

 

3. Probability Foundations in Explicit Likelihood-Based Generative Models 

Explicit likelihood–based generative models directly specify a parametric probability distribution 

𝑝𝜃(𝑥)or its tractable approximation, and optimise model parameters by maximising the likelihood of observed 

data. These models embody the most transparent application of probability theory in generative AI, since they 

explicitly evaluate or approximate probability densities and use statistical principles such as maximum 

likelihood, expectation–maximisation, and variational inference. 
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Three major classes dominate this family: Variational Autoencoders (VAEs), Normalizing Flows (NFs), 

and Autoregressive Models. All rest upon core probabilistic ideas—latent variables, change-of-variables, and 

conditional factorisation of joint densities. 

 

3.1 Variational Autoencoders (VAEs) 

The Variational Autoencoder combines probabilistic modelling with neural-network parameterisation to 

learn an approximate posterior distribution over latent variables. A VAE assumes that each observation 𝑥arises 

from a latent variable 𝑧via a generative process defined by the joint distribution 

𝑝𝜃(𝑥, 𝑧) = 𝑝𝜃(𝑥 ∣ 𝑧) 𝑝(𝑧), 
where 𝑝(𝑧)is a simple prior (usually 𝒩(0, 𝐼)), and 𝑝𝜃(𝑥 ∣ 𝑧)is the conditional likelihood modelled by a neural 

decoder. 

Because direct computation of the marginal likelihood 

𝑝𝜃(𝑥) = ∫ 𝑝𝜃(𝑥 ∣ 𝑧) 𝑝(𝑧) 𝑑𝑧 
is intractable, VAEs use an approximate posterior 𝑞𝜙(𝑧 ∣ 𝑥)(the encoder) to estimate it through variational 

inference. Applying Jensen’s inequality to ln⁡ 𝑝𝜃(𝑥)yields the Evidence Lower Bound (ELBO): 

ln⁡ 𝑝𝜃(𝑥) = ln⁡ ∫ 𝑞𝜙(𝑧 ∣ 𝑥) 
𝑝𝜃(𝑥, 𝑧)

𝑞𝜙(𝑧 ∣ 𝑥)
 𝑑𝑧

≥ 𝔼𝑞𝜙(𝑧∣𝑥)
[ln⁡ 𝑝𝜃(𝑥 ∣ 𝑧)] − 𝐷KL(𝑞𝜙(𝑧 ∣ 𝑥)  ∥  𝑝(𝑧)) ≡ ℒ(𝜃,𝜙).

 

Maximising ℒsimultaneously encourages high data-likelihood under the decoder and closeness 

between the approximate posterior and the prior distribution. 

Probabilistically, the VAE objective can be understood as minimising the divergence between the approximate 

joint 𝑞𝜙(𝑥, 𝑧) = 𝑞𝜙(𝑧 ∣ 𝑥) 𝑝data(𝑥)and the model joint 𝑝𝜃(𝑥, 𝑧): 

𝐷KL(𝑞𝜙(𝑥, 𝑧)  ∥  𝑝𝜃(𝑥, 𝑧)) = const − 𝔼𝑝data(𝑥)
[ℒ(𝜃, 𝜙)]. 

This dual probabilistic interpretation makes the VAE one of the most direct bridges between information theory 

and generative learning. 

 

3.2 Normalizing Flow Models 

Normalizing Flows provide an exact likelihood framework by transforming a simple base distribution 

𝑝𝑧(𝑧)through a sequence of invertible, differentiable mappings 𝑓𝑖. 
Let 𝑥 = 𝑓𝜃(𝑧)with 𝑧 ∼ 𝑝𝑧(𝑧); the resulting probability density is computed via the change-of-variables theorem: 

𝑝𝜃(𝑥) = 𝑝𝑧(𝑓𝜃
−1(𝑥)) |det⁡

∂𝑓𝜃
−1(𝑥)

∂𝑥
| 

In logarithmic form: 

log⁡ 𝑝𝜃(𝑥) = 𝑙𝑜𝑔⁡ 𝑝𝑧(𝑓𝜃
−1(𝑥)) + log⁡ |det⁡ 𝐽𝑓𝜃

−1(𝑥)| 

where 𝐽𝑓𝜃
−1(𝑥)is the Jacobian matrix of the inverse transformation. 

Each flow step is designed so that both the inverse function and the determinant of the Jacobian are efficiently 

computable. By composing multiple flows, 𝑥 = 𝑓𝐾 ∘ 𝑓𝐾−1 ∘ ⋯ ∘ 𝑓1(𝑧), the model represents highly complex 

distributions while preserving tractable density evaluation. 

Optimising parameters by maximum-likelihood estimation 

max⁡
𝜃

  𝔼𝑝data(𝑥)
[log 𝑝𝜃(𝑥)] 

ensures that the learned distribution approximates the empirical data distribution as closely as possible. 

Normalizing Flows thus express the probability of observed data through explicit transformations of base 

distributions—each transformation controlled by the determinant term that encodes local volume change in 

probability space. This is a direct embodiment of differential probability calculus in deep learning. 

 

3.3 Autoregressive and Sequential Models 

Another probabilistic structure used in generative AI is the autoregressive factorisation of the joint distribution. 

For a data vector 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛), probability theory provides an exact decomposition: 

𝑝𝜃(𝑥) = ∏𝑝𝜃

𝑛

𝑖=1

(𝑥𝑖|𝑥<𝑖), 

 

where 𝑥<𝑖denotes all preceding elements.This factorisation forms the theoretical backbone of models such as 

PixelRNN, WaveNet, and large language models like GPT. 

Training is achieved by maximising the log-likelihood: 
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ℒ(𝜃) = 𝔼𝑝data(𝑥)
[∑ 𝑙𝑜𝑔

𝑛

𝑖=1

𝑝𝜃(𝑥𝑖|𝑥<𝑖)] 

Each conditional probability is parameterised by a neural network that outputs a valid probability distribution 

(e.g., softmax for discrete tokens, Gaussian mixture for continuous data).Since the joint distribution is explicitly 

normalised, these models provide exact likelihoods and straightforward probabilistic sampling by sequentially 

drawing 𝑥𝑖 ∼ 𝑝𝜃(𝑥𝑖 ∣ 𝑥<𝑖). 
Autoregressive modelling highlights the role of probabilistic factorisation in managing high-

dimensional data: probability theory enables a complex joint to be represented as a structured product of simpler 

conditional densities. 

 

3.4 Comparative Probabilistic Insights 

Although VAEs, Normalizing Flows, and Autoregressive Models differ architecturally, their probabilistic 

principles are unified. Each defines an explicit form of 𝑝𝜃(𝑥), satisfies the probability axioms (non-negativity 

and normalisation), and uses divergence minimisation or likelihood maximisation as its learning criterion. 

• VAEs rely on approximate inference through variational bounds. 

• Normalizing Flows employ exact transformations using Jacobian determinants. 

• Autoregressive models exploit chain-rule decomposition for sequential prediction. 

All three are direct computational embodiments of probability theory in high-dimensional representation 

learning. 

 

3.5 Transition to Implicit and Adversarial Models 

While explicit likelihood-based models adhere to analytical probability formulas, many successful modern 

generative models—such as Generative Adversarial Networks (GANs) and Diffusion Models—operate with 

implicit densities that cannot be expressed in closed form. 

In these frameworks, probability theory shifts from explicit evaluation of 𝑝𝜃(𝑥)to divergence estimation and 

probabilistic sampling through adversarial or stochastic processes. 

 

4. Probability in Implicit and Adversarial Generative Models 

While explicit likelihood-based models define probability densities in closed form, many of the most 

successful modern generative frameworks—such as Generative Adversarial Networks (GANs) and Energy-

Based Models (EBMs)—are implicit probabilistic models. These systems do not provide a tractable expression 

for 𝑝𝜃(𝑥); instead, they define a stochastic generative process that samples from the underlying model 

distribution without explicitly computing its density. 

Despite this apparent departure from classical density estimation, probability theory remains central: 

GANs are trained via divergence minimisation between distributions, and EBMs rely on probabilistic energy 

formulations that normalise through partition functions. This section develops the probabilistic principles 

governing adversarial learning, statistical divergence estimation, and related implicit modelling paradigms. 

 

4.1 Implicit Probabilistic Modelling 

An implicit model defines a stochastic mapping from a latent space 𝒵to data space 𝒳: 

𝑧 ∼ 𝑝(𝑧),⁡⁡⁡⁡𝑥 = 𝐺𝜃(𝑧), 
where 𝑝(𝑧)is a known prior (e.g., standard Gaussian) and 𝐺𝜃is a deterministic neural network. This mapping 

induces a probability distribution 𝑝𝜃(𝑥)implicitly through the pushforward measure of 𝑝(𝑧): 

𝑝𝜃(𝑥) = 𝑝(𝑧) ∣ det⁡
∂𝐺𝜃

−1(𝑥)

∂𝑥
∣ ,if 𝐺𝜃 is invertible. 

In practice, however, 𝐺𝜃is not invertible, making the density intractable. Probability theory then provides 

alternative means to align 𝑝𝜃(𝑥)with 𝑝data(𝑥)via divergence minimisation. 

 

4.2 Generative Adversarial Networks (GANs) 

Introduced by Goodfellow et al. (2014), GANs cast generative learning as a two-player minimax game between 

a generator𝐺𝜃and a discriminator𝐷𝜓. The generator produces samples 𝐺𝜃(𝑧)from a latent prior, while the 

discriminator attempts to distinguish between real and generated data. 

The canonical objective function is derived from the Jensen–Shannon divergence (JSD) between the data and 

model distributions: 

𝑚𝑖𝑛
𝜃

 𝑚𝑎𝑥
𝜓

  𝑉(𝐷𝜓, 𝐺𝜃) = 𝔼𝑥∼𝑝data
[log𝐷𝜓(𝑥)] + 𝔼𝑧∼𝑝(𝑧)[log(1 − 𝐷𝜓(𝐺𝜃(𝑧)))] 

Under an optimal discriminator 𝐷∗(𝑥) =
𝑝data(𝑥)

𝑝data(𝑥)+𝑝𝜃(𝑥)
, the value function reduces to 

𝑉(𝐺𝜃) = −2 ln 2 + 2 𝐷JS(𝑝data  ∥  𝑝𝜃) 
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Thus, minimising 𝑉(𝐺𝜃)corresponds to minimising the Jensen–Shannon divergence—a symmetric measure of 

probabilistic distance between the true and generated distributions. 

From a probabilistic standpoint, GAN training implicitly performs divergence estimation without explicitly 

evaluating densities, relying instead on the discriminator as a learned statistical estimator of distributional 

separability. 

 

4.3 Alternative Divergences and the Probability–Distance Spectrum 

The probabilistic perspective on GANs generalises naturally to other divergence metrics, leading to multiple 

GAN variants unified under the f-divergence framework. 

Given convex 𝑓(𝑡), the f-divergence between distributions 𝑝and 𝑞is defined as: 

𝐷𝑓(𝑝‖𝑞) = ∫𝑞(𝑥)  𝑓  (
𝑝(𝑥)

𝑞(𝑥)
) 𝑑𝑥 

The Jensen–Shannon divergence is obtained when 𝑓(𝑡) = 𝑡ln⁡ 𝑡 − (𝑡 + 1)ln⁡(𝑡 + 1) + ln⁡ 4. 

Recent research has shown that minimising f-divergences is equivalent to solving a variational estimation 

problem: 

𝐷𝑓(𝑝‖𝑞) = sup⁡
𝑇∈𝒯

(𝔼𝑥∼𝑝[𝑇(𝑥)] − 𝔼𝑥∼𝑞[𝑓
∗(𝑇(𝑥))]), 

where 𝑓∗is the convex conjugate of 𝑓and 𝑇(𝑥)plays the role of the discriminator. 

In Wasserstein GANs (WGANs), the Jensen–Shannon divergence is replaced by the Earth Mover’s 

(Wasserstein-1) distance: 

𝑊(𝑝data , 𝑝𝜃) = inf
𝛾∈Π(𝑝data,𝑝𝜃)

𝔼(𝑥,𝑦)∼𝛾[‖𝑥 − 𝑦‖], 

where Π(𝑝data , 𝑝𝜃)is the set of joint couplings with given marginals.By Kantorovich–Rubinstein duality, this 

distance admits a variational form: 

𝑊(𝑝data, 𝑝𝜃) = sup⁡
∥𝑓∥𝐿≤1

(𝔼𝑥∼𝑝data
[𝑓(𝑥)] − 𝔼𝑥∼𝑝𝜃

[𝑓(𝑥)]) 

where 𝑓is constrained to be 1-Lipschitz.This probabilistic distance provides improved stability and a meaningful 

geometric interpretation, grounding adversarial training firmly in measure theory. 

 

4.4 Energy-Based and Implicit Density Models 

An Energy-Based Model (EBM) defines an unnormalised probability density via an energy function 𝐸𝜃(𝑥): 

𝑝𝜃(𝑥) =
𝑒−𝐸𝜃(𝑥)

𝑍𝜃
, 

where 𝑍𝜃 = ∫ 𝑒−𝐸𝜃(𝑥)𝑑𝑥is the partition function ensuring normalisation. 

Minimising the negative log-likelihood yields: 

∇𝜃ℒ = 𝔼𝑥~𝑝data(𝑥)
[∇𝜃𝐸𝜃(𝑥)] − 𝔼𝑥~𝑝𝜃(𝑥)

[∇𝜃𝐸𝜃(𝑥)] 

This equation mirrors the gradient update in GANs: the model learns to decrease energy (increase probability) 

for real samples and increase energy (decrease probability) for generated ones. 

Sampling from EBMs often relies on Markov Chain Monte Carlo (MCMC) techniques such as Langevin 

dynamics, which are themselves derived from probability theory through stochastic differential equations: 

𝑥𝑡+1 = 𝑥𝑡 −
𝜖2

2
 ∇𝑥𝐸𝜃(𝑥𝑡) + 𝜖 𝜂𝑡, 𝜂𝑡 ∼ 𝒩(0, 𝐼). 

This update rule describes diffusion of probability mass guided by the energy gradient and stochastic noise—a 

probabilistic mechanism that parallels gradient-based learning in GANs. 

 

4.5 Probabilistic Interpretation of Adversarial Equilibrium 

At optimality, adversarial learning achieves a Nash equilibrium between the generator and discriminator 

distributions: 

𝑝𝜃∗(𝑥) = 𝑝data(𝑥), 
such that neither the generator nor the discriminator can improve their objective without changing the other’s 

parameters.From a probabilistic viewpoint, this equilibrium corresponds to equality of expected log-

probabilities: 

𝔼𝑝data(𝑥)
[ln⁡ 𝐷∗(𝑥)] = 𝔼𝑝𝜃(𝑥)

[ln⁡(1 − 𝐷∗(𝑥))]. 

This state represents the convergence of the model to the true data distribution—a stochastic realisation of 

maximum entropy subject to data constraints. 

 

4.6 Limitations and Theoretical Challenges 

Despite their empirical success, adversarial models pose unresolved probabilistic issues. The lack of 

explicit density estimation precludes direct evaluation of 𝑝𝜃(𝑥)or likelihood-based metrics, complicating 

theoretical analysis. Moreover, training instability, mode collapse, and non-convex loss surfaces arise from 
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imperfect divergence approximation and high-variance gradient estimates. Mathematically, the non-overlapping 

supports of 𝑝dataand 𝑝𝜃can make the Jensen–Shannon divergence ill-defined, motivating the shift toward 

Wasserstein and energy-based formulations. 

 

5. Probabilistic Foundations of Diffusion and Score-Based Generative Models 

Diffusion and score-based generative models represent one of the most profound probabilistic advances 

in modern generative AI. These models define a stochastic process that gradually transforms a simple noise 

distribution into complex structured data through the probabilistic principles of Markov processes, stochastic 

differential equations (SDEs), and score matching.Unlike GANs, which implicitly approximate probability 

distributions via adversarial training, diffusion models construct them explicitly by learning the gradients of log-

densities—known as scores—of intermediate noisy distributions.This section explores the probabilistic 

foundations of such models, deriving their central equations and demonstrating how they operationalize key 

ideas from probability theory and statistical physics. 

 

5.1 The Forward Diffusion Process 

The diffusion process begins by progressively corrupting data with Gaussian noise over discrete time steps. Let 

𝑥0 ∼ 𝑝data(𝑥)denote a data sample. The forward (noising) process defines a Markov chain: 

𝑞(𝑥𝑡|𝑥𝑡−1) = 𝒩 (𝑥𝑡; √1 − 𝛽𝑡  𝑥𝑡−1, 𝛽𝑡𝐼), 𝑡 = 1,2, … , 𝑇, 

where {𝛽𝑡}𝑡=1
𝑇 is a variance schedule controlling the noise magnitude. 

By iteratively applying this process, the data distribution 𝑞(𝑥0)converges to an isotropic Gaussian 𝒩(0, 𝐼)as 

𝑡 → 𝑇. 

Using properties of Gaussian distributions, the marginal of the noising process can be expressed directly as: 

𝑞(𝑥𝑡|𝑥0) = 𝒩 (𝑥𝑡; √𝛼̄𝑡  𝑥0, (1 − 𝛼̄𝑡)𝐼), 

where 𝛼𝑡 = 1 − 𝛽𝑡and 𝛼̄𝑡 = ∏ 𝛼𝑠
𝑡
𝑠=1  

This defines a sequence of intermediate distributions 𝑞(𝑥𝑡)over time, which together form a probabilistic 

diffusion trajectory between data and noise. 

 

5.2 The Reverse Diffusion Process 

The generative (denoising) process seeks to invert this diffusion by gradually reconstructing clean 

samples from pure noise. Since the forward process is Markovian, the true reverse transitions also form a 

Markov chain with conditionals 𝑝𝜃(𝑥𝑡−1 ∣ 𝑥𝑡): 
𝑝𝜃(𝑥𝑡−1 ∣ 𝑥𝑡) = 𝒩 (𝑥𝑡−1; 𝜇𝜃(𝑥𝑡 , 𝑡), Σ𝜃(𝑥𝑡 , 𝑡)) 

where the mean and variance functions are parameterised by neural networks. 

The goal of training is to approximate the posterior reverse conditional𝑞(𝑥𝑡−1 ∣ 𝑥𝑡 , 𝑥0), which is also Gaussian 

with closed-form mean: 

𝜇̃𝑡(𝑥𝑡 , 𝑥0) =
1

√𝛼𝑡
(𝑥𝑡 −

𝛽𝑡

√1 − 𝛼̄𝑡
 𝜖𝑡), 

where 𝜖𝑡represents the Gaussian noise added during the forward process. 

Thus, the reverse model learns to predict and remove the noise at each step, effectively denoising the sample 

while preserving probabilistic consistency. 

 

5.3 Variational Objective and Likelihood Derivation 

The training objective for diffusion models is derived from variational inference applied to the data likelihood. 

The marginal likelihood of data is: 

log⁡ 𝑝𝜃(𝑥0) = log⁡ ∫ 𝑝𝜃(𝑥0:𝑇) 𝑑𝑥1:𝑇 , 
where 𝑝𝜃(𝑥0:𝑇) = 𝑝(𝑥𝑇)∏ 𝑝𝜃( 𝑥𝑡−1 ∣∣ 𝑥𝑡 )

𝑇
𝑡=1 and 𝑝(𝑥𝑇) = 𝒩(0, 𝐼). 

Applying the variational lower bound yields: 

log⁡ 𝑝𝜃(𝑥0) ≥ 𝔼𝑞(𝑥1:𝑇∣𝑥0) log⁡ [
𝑝𝜃(𝑥0:𝑇)

𝑞(𝑥1:𝑇 ∣ 𝑥0)
] ≡ −ℒVLB. 

After simplification, this results in a tractable objective: 

ℒsimple = 𝔼𝑡,𝑥0,𝜖∼𝒩(0,𝐼) ⁣[∥ 𝜖 − 𝜖𝜃(𝑥𝑡 , 𝑡) ∥
2], 

where the neural network 𝜖𝜃learns to predict the injected Gaussian noise at each timestep. 

Minimising this loss corresponds to maximising a lower bound on the data log-likelihood—a purely 

probabilistic objective. 

 

5.4 Continuous-Time Formulation and Stochastic Differential Equations 

Recent score-based diffusion models reinterpret the discrete diffusion chain as a stochastic differential equation 

(SDE) describing the time evolution of the probability density 𝑝𝑡(𝑥). 
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The forward SDE (perturbation) is given by: 

𝑑𝑥 = 𝑓(𝑥, 𝑡) 𝑑𝑡 + 𝑔(𝑡) 𝑑𝑊𝑡 , 
where 𝑊𝑡is a Wiener process, 𝑓(𝑥, 𝑡)is the drift coefficient, and 𝑔(𝑡)is the diffusion coefficient controlling noise 

magnitude. 

The corresponding reverse-time SDE, derived from the Fokker–Planck equation, expresses the backward 

evolution of probability: 

𝑑𝑥 = [𝑓(𝑥, 𝑡) − 𝑔(𝑡)2∇𝑥log⁡ 𝑝𝑡(𝑥)]𝑑𝑡 + 𝑔(𝑡) 𝑑𝑊̄𝑡 , 
where ∇𝑥log⁡ 𝑝𝑡(𝑥)is the score function, representing the gradient of the log-density with respect to 𝑥. 

By learning the score function 𝑠𝜃(𝑥, 𝑡) ≈ ∇𝑥log⁡ 𝑝𝑡(𝑥), one can simulate the reverse SDE and thus generate new 

samples from the target distribution.This connection between stochastic calculus and generative modelling 

exemplifies the deep integration of probability theory and differential equations in AI. 

 

5.5 Score Matching and Denoising Interpretation 

The idea of score matching, introduced by Hyvärinen (2005), provides a probabilistic framework for learning 

unnormalised densities. It minimises the Fisher divergence between the model score and the true data score: 

ℒscore(𝜃) =
1

2
 𝔼𝑥~𝑝data(𝑥)

[∥ ∇𝑥log⁡ 𝑝𝜃(𝑥) − ∇𝑥log⁡ 𝑝data(𝑥) ∥
2]. 

In diffusion models, the score function is trained over progressively noisier versions of data 𝑥𝑡, leading to the 

Denoising Score Matching (DSM) objective: 

ℒDSM = 𝔼𝑡,𝑥0,𝜖
 [𝜆(𝑡)  ∥ 𝑠𝜃(𝑥𝑡 , 𝑡) + 𝜖/𝜎𝑡 ∥

2], 

where 𝜎𝑡controls noise variance and 𝜆(𝑡)is a weighting function.Minimising this loss enables the model to 

estimate the gradient of the log-probability at every noise level, providing the foundation for efficient sampling 

via reverse diffusion. 

 

5.6 Sampling and Probabilistic Generation 

Once the model learns the score 𝑠𝜃(𝑥, 𝑡), new data can be generated by simulating the reverse SDE: 

𝑑𝑥 = [𝑓(𝑥, 𝑡) − 𝑔(𝑡)2𝑠𝜃(𝑥, 𝑡)]𝑑𝑡 + 𝑔(𝑡) 𝑑𝑊̄𝑡 . 
This iterative stochastic process reconstructs data from Gaussian noise, gradually restoring high-probability 

structure under the learned distribution. 

In practice, deterministic approximations such as the probability flow ODE: 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑡) −

1

2
𝑔(𝑡)2𝑠𝜃(𝑥, 𝑡) 

are also used, offering exact likelihood computation under the same probabilistic dynamics. 

The generative process thus becomes a continuous probabilistic transformation between distributions, grounded 

in the mathematical equivalence between diffusion dynamics and density evolution in stochastic systems. 

 

5.7 Theoretical Insights 

Diffusion and score-based models unify multiple probabilistic concepts: 

• Markov chains model conditional independence between noise levels. 

• Stochastic calculus connects diffusion processes to continuous probability flows. 

• Bayesian inference appears implicitly through the estimation of posteriors 𝑝(𝑥0 ∣ 𝑥𝑡). 
• Energy-based modelling reemerges as the learned score corresponds to the negative gradient of an 

implicit energy landscape. 

Thus, probability theory does not merely support diffusion models—it defines their entire architecture, training 

objective, and sampling mechanism. The precision with which these models approximate complex data 

distributions reaffirms probability as the natural language of generative intelligence. 

 

Challenges, Open Problems, and Future Directions 

Although probability theory forms the backbone of modern generative AI, several mathematical and 

computational challenges persist. One key limitation lies in the difficulty of evaluating or normalising complex 

high-dimensional probability distributions. In models such as Variational Autoencoders and Diffusion Models, 

the marginal likelihood 𝑝𝜃(𝑥) = ∫ 𝑝𝜃(𝑥 ∣ 𝑧)𝑝(𝑧) 𝑑𝑧or the reverse-time conditional 𝑝𝜃(𝑥𝑡−1 ∣ 𝑥𝑡)remains 

analytically intractable, forcing reliance on variational or Monte Carlo approximations. This introduces 

estimation bias and complicates convergence proofs. Another challenge arises from non-convex optimisation 

surfaces inherent in probabilistic divergence minimisation; the objectives based on 𝐷KLor Jensen–Shannon 

divergence may yield multiple equilibria, often leading to unstable training or mode collapse. 

From a computational standpoint, generative probability models scale poorly as dimensionality 

increases, since evaluating Jacobian determinants or solving stochastic differential equations such as 

𝑑𝑥 = [𝑓(𝑥, 𝑡) − 𝑔(𝑡)2∇𝑥log⁡ 𝑝𝑡(𝑥)] 𝑑𝑡 + 𝑔(𝑡) 𝑑𝑊𝑡  
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is expensive for large-scale data. Furthermore, the theoretical understanding of generalisation in probabilistic 

generators is incomplete—while these models can approximate 𝑝data(𝑥)well, formal bounds on likelihood 

estimation error or sample quality remain open research questions. Recent efforts attempt to unify explicit and 

implicit probabilistic learning through hybrid systems combining variational inference, adversarial training, and 

diffusion dynamics, suggesting a direction where the strengths of each probabilistic paradigm may be merged. 

Future progress will depend on bridging probability theory with geometry and physics, allowing 

models to learn not only densities but also structural invariants of data. Quantum-inspired probabilistic 

frameworks and information-theoretic regularisation may offer improved tractability and theoretical guarantees. 

In essence, the next generation of generative AI will continue to rely on probability—not just as a modelling tool 

but as a universal mathematical language for reasoning about uncertainty, transformation, and creativity in 

artificial intelligence. 

 

Conclusion 

Probability theory provides the mathematical skeleton of every modern generative AI system. Whether 

through explicit likelihood estimation, variational inference, adversarial divergence minimisation, or stochastic 

differential equations, the essence of generation is probabilistic reasoning about data distributions. The paper has 

shown how latent-variable models like Variational Autoencoders express joint probabilities 𝑝𝜃(𝑥, 𝑧) = 𝑝𝜃(𝑥 ∣
𝑧)𝑝(𝑧), how adversarial frameworks implicitly minimise divergences between 𝑝dataand 𝑝𝜃 , and how diffusion 

and score-based models reconstruct data by solving reverse stochastic processes. 

Collectively, these architectures demonstrate that the act of “creating” data synthetically is equivalent 

to sampling from a learned probabilistic manifold. Probability not only governs model training and sampling but 

also connects learning dynamics to fundamental concepts such as entropy, uncertainty, and information flow. 

The remaining theoretical challenge is to unify explicit and implicit probabilistic paradigms under a single 

framework that preserves both tractability and expressiveness. As generative AI continues to expand—from 

text-to-image synthesis to autonomous creativity—the mathematical future of the field will depend on deeper 

integration between probability theory, geometry, and computational physics. 
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