
IOSR Journal of Mathematics (IOSR-JM) 

e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 16, Issue 5 Ser. II (Sep. – Oct. 2020), PP 29-36 

www.iosrjournals.org 

 

DOI: 10.9790/5728-1605022936                                       www.iosrjournals.org                                      29 | Page 

Investigation of behavior of the Riemann ζ-function and proof of 

the Riemann hypothesis 
 

Vadim Nikolayevich Romanov 
Doctor of Technical Sciences, Professor Saint-Petersburg, Russia 

vromanvpi@mail.ru 

 

Abstract 
The paper investigates the behavior of the ζ-function. For the zeta function, a series representation is used. The 

problem of determining nontrivial zeros of the zeta function reduces to solving a system of two equations in a 

field of real numbers. The paper proves that the Riemann hypothesis is a consequence of the invariance of zeros 

with respect to symmetry transformations. The performed calculations allow us to understand the reasons for 

the validity of the Riemann hypothesis.  
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I. Introduction. Analysis of general relations 
A large number of works have been devoted to the study of the properties of the Riemann ζ-function 

[1 – 17, 19, 20]. Here and below z = x + iy, where x and y are real numbers; y is in the upper half-plane. We will 

also use the notation z = (x, y). In [7] the values of the function are given with step of 0.1 in the interval 

0 ≤ x ≤ 1, as well as the values of its roots for y < 100. In [15, 19], tables are given for the values of the first 

15000 and 5000 zeros of the zeta function, respectively. The main unsolved problem is the proof of the Riemann 

hypothesis, which consists in the assertion that all the zeros of the ζ-function in the strip 0 ≤ x ≤ 1 are on a line 

x = 1/2. By now, it has been proved that there are an infinite number of zeros on the line x = 1/2, and in addition 

there are no zeros on the ends of the interval. This paper is devoted to the study of behavior of the ζ-function, 

discussion of the reasons for the validity of the Riemann hypothesis and its proof. We consider the open interval 

0 < x < 1.We use for the ζ-function the representation valid for x > 0 [4, 5, 21]: 
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Grouping the terms independent of N, we transform (1) to the form 
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Where function C(z) does not depend from N . 
1 1( ) exp[2 ( )]{1 2 exp[2 ( )][cos( ln 2) sin( ln 2)]}xC z k y ix k y ix y i y       .                        (2a) 

The function C(z) does not vanish and is finite for all values of x from the considered interval and for all values 

of y. Note that for z = (1, 0) it goes to infinity. Therefore, when determining the zeros of the zeta function in the 

considered interval, the function C(z) can be ignored. For definiteness, we assume that k is fixed, for example, 

put k = 0 and consider the main branch of the logarithm, which does not affect the subsequent proof. Then, in 

the field of real numbers, the determination of zeros of the zeta function reduces to solving a system of 

equations of the form 
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where 
xNNxA /1),(  , )lncos(),(1 NyNyB  , )lnsin(),(2 NyNyB  . Expression (2) and the 

system of equations (3a), (3b) are valid for all values of x from the considered interval, in particular, for z = 

1/2 + iy, z1= (1/2 – α) +iy and z2 = (1/2 + α) + iy, where 0 < α < 1/2. The transition from z1 to z2 or from z2 to z1 

corresponds to the reflection operation with respect to the line x = 1/2, which is the middle line (axis of 

symmetry) of the strip 0 ... 1. We write expression (2) for (1 )z  . In this case, we get 
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where function C(1 – z) does not depend from N.  
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Expression (4) corresponds to a system of equations of the form 
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where 
1( , ) 1/ xA x N N  , )lncos(),(1 NyNyB  , )lnsin(),(2 NyNyB  . Expression (4) and 

the system of equations (5a), (5b) are valid for all values of x from the considered interval. The transition from z 

to 1 – z corresponds to the reflection operation relative to the center of the strip, i.e. with respect to the point z = 

(1/2, 0). We write expression (2) for 
*( )z , where 

*z x iy  . In this case, we get 
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where function C(z
*
) does not depend from N.  
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Expression (6) corresponds to a system of equations of the form 
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where ( , ) 1/ xA x N N , )lncos(),(1 NyNyB  , )lnsin(),(2 NyNyB  . This system is similar 

to system (3a), (3b). Expression (6) and the system of equations (7a), (7b) are valid for all values of x from the 

considered interval. Transition from z to z
*
 or from 1 – z to 1 – z

* 
and vice versa corresponds to the reflection 

operation with respect to x-axis (y = 0). We write expression (2) for 
*(1 )z  . In this case, we have 
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where function C(1 – z
*
) does not depend from N.  
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Expression (8) corresponds to a system of equations of the form 
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where 
1( , ) 1/ xA x N N  , )lncos(),(1 NyNyB  , )lnsin(),(2 NyNyB  . This system is similar 

to system (5a), (5b). Thus, in all cases considered, finding the nontrivial zeros of the zeta function reduces to 

solving the corresponding system of equations, i.e. to finding the joint (common) zeros of the functions F1 and 

F2. The initial conditions are F1(x, 0) = S(x), F2 (x, 0) = 0. The expressions for F1(x, y) and F2(x, y) are the sum 

of cosines and sinuses, respectively, with decreasing period, limited by the values of the amplitude A (x, N), 

which changes sign depending on the parity of the number N. The amplitude 1/ xN  decreases with increasing 

x at constant N and with increasing N at constant x. The amplitude 
11/ xN 

 increases with increasing x at 

constant N and decreases with increasing N at constant x. So, F1 and F2 take positive and negative values, 

depending on whether the sets of which sign predominate (plus or minus). Functions B1 and B2 are periodic; 

their period and the distance between zeros depend on y and N. For N = 2, the period is Δy = 2π / ln2 = 9.06; for 

N = 10
6
 it is Δy = 2π/6ln10 = 0.455. For small values of y, N should be large so that at least one zero is observed. 

For example, if y = 0.1, then ln / 0.1 31N   ; if y = 1, then ln N  , etc. These regularities are also 

valid for the functions F1 and F2, namely, for small values of y, long-period components predominate, and the 

distance between the zeros of these functions is significant, and for large y the short-period components play a 

major role, and the distance between the zeros becomes small. We are going to prove that the validity of the 

Riemann hypothesis follows from the properties of the invariance of joint zeros of the functions F1 and F2  to the 

reflection operation with respect to the line x = 1/2. 

 

II. The study of the behavior of functions F1 and F2 

We studied the behavior of the functions F1 and F2 in the range 0.4 ≤ x ≤ 0.96 for different values of y 

from 0.1 to 10
6
. In the calculations, we chose the number of members of the series so that the error was 

acceptable. Calculations for x < 0.4 were not carried out, because they require a large expenditure of computer 

time and are not needed for our purposes. The calculations are auxiliary; they make it possible to understand the 

reasons that underlie the Riemann hypothesis. The calculations were performed by the grid method with 

variable steps in x and y, which was chosen depending on the values of x and y.  For a fixed x, the values of y 

varied in steps of 0.1 – 0.01 or less. For a fixed y, the values of x varied in steps of 0.01 – 0.1. The calculation 

results are given in tables 1 and 2.  

 

Table 1 

The calculation of the joint zeros of the functions F1 and F2 for 100 < y < 200 (x = 0.5) 
Serial  
number 

y(F1) y(F2) Serial  
number 

y(F1) y(F2) 

1 101, 3178 101, 3181 25 156,1127 156,1128 

2 103,7259 103,7255 26 158,8500 158,8499 

3 105, 4469 105, 4467 27 157,5995 157,5976 

4 107,1684 107,1687 28 161,1889 161,1889 

5 111,0298 111,0294 29 163,0302 163,0308 

6 111,8745 111,8747 30 165,5367 165,5371 

7 114,3200 114,3201 31 167,1799 167,1845 

8 116,2265 116,2267 32 169,0946 169,0947 

9 121,3703 121,3702 33 169,9122 169,9121 

10 122,9465 122,9467 34 173,4116 173,4114 

11 124,2568 124,2567 35 174,7542 174,7540 

12 127,5168 127,5151 36 176,4412 176,4415 

13 129,5783 129,5788 37 178,3774 178,3773 

14 131,0877 131,0876 38 179,9164 179,9166 
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15 133,4976 133,4978 39 182,2072 182,2061 

16 134,7564 134,7563 40 184,8743 184,8745 

17 139,7364 139,7361 41 185,5985 185,5987 

18 141,1238 141,1236 42 187,2291 187,2290 

19 143,1118 143,1119 43 189,4160 189,4161 

20 146,0008 146,0009 44 192,0266 192,0265 

21 147,4227 147,4226 45 193,0798 193,0798 

22 150,0537 150,0536 46 195,2653 195,2653 

23 150,9250 150,9254 47 196,8766 196,8766 

24 153, 0245 153, 0246 48 198,0146 198,0152 

 

Note. The values of y are given with rounding. We excluded zeros for y = 138, 116 and y = 118, 790, 

since F1(138, 1165) = 0,00018 and there is no transition through 0, i.e. F1 does not change the sign; 

F2(138,1161 = 0 and F2 behaves regularly. Similarly, F1(118,7907) = 0, and F1 behaves regularly; but 

F2(118,7908) = – 00047 and there is no transition through 0, i.e. F2 does not change the sign. At these points, 

apparently, the functions F1 (resp. F2) behave irregularly and touch the line y at the corresponding points. 

 

Table 2 

The change in the position of the zeros of the functions F1 and F2, depending on x 
F1, F2 x=0,49 x=0,5 x=0,51 x=0,75 

y y y y 

F2=0 0 0 0 0 

F1=0 
F2=0 

8,2413 
5,4094 

8,2482 
5,4066 

8,2553 
5,4037 

8,4735 
5,3371 

F1=0 

F2=0 

10,0799 

9,1129 

10,0722 

9,1118 

10,0645 

9,1107 

9,8300 

9,0867 

F1=0 
 

F2=0 

13,9805 
 

12,0339 

14,0563 
 

12,0351 

zero is absent (the preceding minimum 
is positive)  

    12,0363 

 

zero is absent 
 

12,0692 

F1=0 
F2=0 

14,2140 
14,1340 

14,1383 

14,1346 

zero is absent 
14,1352 

zero is absent 
14,1547 

F1=0 

F2=0 

17,3244 

15,8890 

17,3295 

15,8869 

17,3348 

15,8848 

17,5031 

15,8273 

F1=0 
F2=0 

18,7353 
18,0771 

18,7311 
18,07795 

18,7268 
18,0788 

18,5798 
18,1016 

F1=0 

F2=0 

zero is absent 

19,9574 

- 

19,9614 

- 

19,9654 

- 

20,0984 

F1=0 
F2=0 

21,0025 
21,0266 

21,02196 

21,02180 

21,0437 
21,0169 

zero is absent 
20,8616 

F1=0 

F2=0 

21,4860 

22,9751 

21,4650 

22,9748 

21,4416 

22,9744 

zero is absent 

22,9648 

F1=0 
F2=0 

24,4143 
zero is absent 

24,4293 
- 

24,4452 
- 

zero is absent 
- 

F1=0 

F2=0 

25,0237 

25,0032 
25,01121 

25,01087 

24,9978 

25,0187 

zero is absent 

 zero is absent 

… … … … … 

   *F1=0  

F2=0 

98,8295 

98,8701 
98,8311 

98,8322 

98,8327 

zero is absent 

98,7940 

zero is absent 

… … … … … 

F1=0 
F2=0 

103,7550 
103,7227 

103,7259 

103,7255 

103,6645 
103,7283 

zero is absent 
103,8228 

…     …     …    …    … 
F1=0 

F2=0 

167,2481 

167,1843 
167,1799 

167,1845 

zero is absent 

167,1847 

zero is absent 

167,1961 

…     …     …    …    … 
F1=0 

F2=0 

196,8867 

196,8675 
196,8766 

196,8766 

196,8653 

196,8863 

zero is absent 

zero is absent 

…     …     …    …    … 
F1=0 
F2=0 

99999,6797 
99999,7042 

99999,701 

99999,701 

zero is absent 
99999,6975 

zero is absent 
zero is absent 

F1=0 

F2=0 

100000,3466 

100000,0596 

100000,3504 

100000,0569 

100000,3544 

100000,0540 

100000,6009 

99999,9222 

… … … … … 

F1=0 

F2=0 

999997,9784 

999997,9605 
999997,9682 

999997,9683 

999997,9540 

999997,9778 

zero is absent  

zero is absent 

Note. The zeros of each function are arranged in order of increasing y; the values of y are given with rounding. 

Joint zeros are indicated in bold. In the line with the * sign, y has a weak maximum (y = 98,8402) near x = 0.6 

(step Δx = 0.05). 
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Table 1 gives the values of the joint zeros of functions F1 and F2 for 100 < y < 200. Table 2 gives some 

results of the study of the alternation of zeros of functions (maxima and minima are not specified so as not to 

increase the size of the table) for x = 0.49, 0.50, 0.51 and 0.75, which allows us to understand the existing 

regularities and to draw conclusions. From the results of the calculations, it follows that the functions F1 (x, y) 

and F2 (x, y) change smoothly with increasing x. For each fixed x, the function F1 (x, y) varies periodically with 

increasing y. For y = 0, it is S (x), then it increases, reaches a positive maximum, decreases, passes through zero, 

reaches a minimum, increases again, passes through 0, reaches a maximum, etc. The function F2 (x, y) also 

varies periodically. For y = 0, it is 0, then decreases, reaches a minimum, then increases, passes through 0, 

reaches a maximum, decreases, passes through 0, and so on. For each fixed y, when x increases from 0.4 to 0.96, 

the functions F1 (x, y) and F2 (x, y) change monotonically over the entire range of x or one of them has a weak 

maximum (minimum) and the other changes monotonically over the entire range with the change sufficiently 

slow (smooth). In the behavior of functions F1 (x, y) and F2 (x, y), the following cases are possible. 1. Both 

functions F1 (x, y) and F2 (x, y) are positive, then they can simultaneously decrease or one function decreases 

and the other increases or one has a weak maximum (minimum) and the other decreases. 2. Both functions are 

negative, then they can simultaneously increase (their absolute values decrease). 3. One of the functions is 

positive and the other is negative, then both functions can increase or the negative function increases and the 

positive function decreases or the positive function has a weak minimum and the negative function increases. 

4. Both functions or one of them change sign, then both functions can change monotonically or one of them has 

a weak minimum (maximum) and the other monotonically increases (decreases). These cases repeat periodically 

with increasing y. The analysis shows that the functions F1 (x, y), F2 (x, y) for a given y can intersect no more 

than once with increasing x and only at the joint (common) zero. The zeros of the functions F1 and F2 appear 

regularly in a certain sequence. For an arbitrary fixed x, the appearance of zeros depends on y; we can assign 

them sequence numbers and arrange zeros in ascending order of y values, taking the value y = 0 as the initial 

value. We say that the behavior of a function is regular if it is given by the sequence: the earlier (preceding) zero 

of the function  the regular (ordinal, serial) zero  the later (successive) zero. If the functions have a joint 

zero (it corresponds to zero of the Riemann function), then after zero passing an anomaly is observed, which is 

that the sequence of zeros of one or both functions is violated: some zeros are absent (disappear), and instead of 

them there are positive minimum or negative maximum. With increasing x, the anomaly remains; moreover, if 

there were no anomaly at x values close to 0.5, then it can appear with an increase of x. Irregular (abnormal) 

behavior is given by the sequence: the earlier (preceding) zero of the function  the local optimum (positive 

minimum or negative maximum)  the later (successive) zero. The number of minima (maxima) corresponds to 

the number of missing zeros. We say that the behavior of the function Fi (x, y), where i = 1, 2, is regular in a 

neighborhood of a joint zero, if at x ≠ 1/2, the value of y, for which Fi (x, y) = 0, is closest to the value of y0, for 

which there is a joint zero, that is, the equality F1 (0.5, y0) = F2 (0.5, y0) = 0 holds. Otherwise, we call it irregular 

(abnormal) in the neighborhood of joint zero. Note that irregular behavior can also be observed for other values 

of y for a fixed x. Consider the examples of irregular behavior of functions corresponding to the data in table 2. 

We take the joint zero F1 (0.5, 98.8311) = F2 (0.5, 98.8322) = 0. Hereinafter, the values of y are given with 

rounding. After passing the joint zero, the function F1 (x, y) behaves regularly. Calculations give F1 (0.51, 

98.8327) = F1 (0.55, 98.8375) = F1 (0.6, 98.8401) = F1 (0.65, 98.8361) = F1 (0.7, 98.8224) = F1 (0.75, 

98.7940) = F1 (0.8, 98.7411) = 0. The values of y, at which F1 turns to 0, has a weak maximum near x = 0.6 (the 

step in x is 0. 05). The function F2 has irregular behavior, since some zeros are absent (disappear), and instead of 

them positive minima are observed. For x = 0.51, calculations give: the earlier (preceding) zero F2E (0.51, 

97.1222) = 0, the local minimum F2 (0.51, 98.7990) = 0.02129, the later (successive) zero F2L (0.51, 

99.8148) = 0. For x = 0.55, calculations give: the earlier zero F2E (0.55, 97.116356) = 0, the local minimum 

F2 (0.55, 98.8161) = 0.1278, the later zero F2L (0.55, 99.8059) = 0. We give for comparison the results for the 

function F1 with regular behavior: the earlier zero F1E (0.55, 98.00799) = 0, the regular (ordinal, serial) zero 

F1R (0.55, 98.83754) = 0, the later zero F1L (0.55, 99.3668) = 0. For x = 0.6, calculations give: the earlier zero 

F2E (0.6, 97.1089) = 0, the local minimum F2 (0.6, 98.8417) = 0.23286, the later zero F2L (0.6, 99.79456) = 0. 

The function F2 has abnormal behavior also for other values of x. For x = 0.75, we have the earlier zero 

F2E (0.75, 97.0818) = 0, the local minimum F2 (0.75, 98.9583) = 0.40056, the later zero F2L (0.75, 99.7595) = 0. 

We give for comparison the results for the function F1 with regular behavior: the earlier zero F1E (0.75, 

98.2054) = 0, the regular zero F1R (0.75, 98.7940) = 0 (see table 2), the later zero F1L (0.75, 99.36927) = 0. 

Therefore, for a function with a regular behavior, the zeros follow one another and do not disappear, and there 

are no local minima and maxima between the zeros. We take the joint zero F1 (0.5, 103.7259) = F2 (0.5, 

103.7255) = 0. Both functions first behave regularly (see table 2), and then the function F1 has an anomaly. For 

x = 0.75, calculations give: the earlier zero F1E (0.75, 100.2351) = 0, the first local minimum F11 (0.75, 

101.5210) = 0.2888, the second local minimum F12 (0.75, 103.6919) = 0.8183, the third local minimum 

F13 (0.75, 105.3896) = 0.6497, the fourth local minimum F14 (0.75, 107.0911) = 0.5725, the later zero F1L (0.75, 
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108.4572) = 0. We give for comparison the results for the function F2 with regular behavior: the earlier zero 

F2E (0.75, 102.76004) = 0, the regular zero F2R (0.75, 103.8228) = 0 (see table 2), the later zero F2L (0.75, 

104.35837) = 0. We take the joint zero F1 (0.5, 167.1799) = F2 (0.5, 167.1845) = 0. The function F2 has a 

regular behavior (see table 2), and the function F1 has an anomaly. For x = 0.51, we have the earlier zero 

F1E (0.51, 164.19978) = 0, the first local minimum F11 (0.51, 165.5922) = 0.02048, the second local minimum 

F12 (0.51, 167.1785) = 0.05713, the later zero F1L (0.51, 168.7178) = 0. For x = 0.75, calculations give: the 

earlier zero F1E (0.75, 164.0811) = 0, the first local minimum F11 (0.75, 165.5949) = 0.8887, the second local 

minimum F12 (0.75, 167.1782) = 0.9064, the third local minimum F13 (0.75, 168.9919) = 0.4129, the fourth local 

minimum F14 (0.75, 169.9261) = 0.5078, the later zero F1L (0.75, 171.66366) = 0. We give for comparison the 

results for the function F2 with regular behavior: the earlier zero F2E (0.75, 166.44262) = 0, the regular zero 

F2R (0.75, 167.1961) = 0 (see table 2), the later zero F2L (0.75, 167.870955) = 0. We take the joint zero F1 (0.5, 

196.8766) = F2 (0.5, 196.8766) = 0. At values of x close to 0.5 both functions have regular behavior, and then an 

anomaly is observed. For x = 0.75 calculations give for the function F1: the earlier zero F1E (0.75, 190.7752) = 0, 

the first local minimum F11 (0.75, 192.1213) = 0.5217, the second local minimum F12 (0.75, 193.2455) = 

0.37697, the third local minimum F13 (0.75, 195.2100) = 0.95083, the fourth local minimum F14 (0.75, 

196.7592) = 0.46639, the fifth local minimum F15 (0.75, 197.9480) = 0.530995, the later zero F1L (0.75, 

199.16338) = 0. For the function F2, calculations give: the earlier zero F2E (0.75, 194.3461) = 0, the first local 

minimum F21 (0.75, 195.5322) = 0.062927, the second local minimum F22 (0.75, 197.1262) = 0.21195, the later 

zero F2L (0.75, 198.13011) = 0. For comparison, we give the results for the functions F1 and F2 for x = 0, 51, 

where they have regular behavior in the neighborhood of the joint zero. We have for the function F1: the earlier 

zero F1E (0.51, 195.24142) = 0, the regular zero F1R (0.51, 196.8653) = 0 (see table 2), the local minimum 

F11 (0.51, 197.9826) = 0.02786, the later zero F1L (0.51, 199.12066) = 0. For the function F2 calculations give: 

the earlier zero F2E (0.51, 195.78797) = 0, the regular zero F1R (0.51, 196.8863) = 0 (see table 2), the later zero 

F1L (0.51, 197.24358) = 0. We take the joint zero F1 (0.5, 99999.701) = F2 (0.5, 99999.701) = 0.  At values of x 

close to 0.5, the function F2 behaves regularly, and then both functions have an anomaly (see table 2). We give 

the results for x = 0.75. For the function F1, calculations give: the earlier zero F1E (0.75, 99993.329657) = 0, the 

first local minimum F11 (0.75, 99994.2629) = 0.9417, the second local minimum F12 (0.75, 99995.2531) = 

0.7630, the third local minimum F13 (0.75, 99996.5345) = 0.6297, the fourth local minimum F14 (0.75, 

99997.9181) = 0.6782, the fifth local minimum F15 (0.75, 99998.5955) = 0.67668, the sixth local minimum 

F16 (0.75, 99999.6372) = 2.47037, the later zero F1L (0.75, 100000.6009) = 0. For the function F2, calculations 

give: the earlier zero F2E (0.75, 99997.847625) = 0, the first negative local maximum F21 (0.75, 99998.3252) = –

 0.1649, the second negative local maximum F22 (0.75, 99999.6533) = – 0.3681, the later zero F2L (0.75, 

99999.92218) = 0. We take the joint zero F1 (0.5, 999997.9682) = F2 (0.5, 999997.9683) = 0. At values of x 

close to 0.5 both functions have regular behavior, and then an anomaly is observed (see table 2). We give the 

results for x = 0.75. For the function F1, calculations give: the earlier zero F1E (0.75, 999992.98525) = 0, the first 

local minimum F11 (0.75, 999993.9036) = 0.4171, the second local minimum F12 (0.75, 999994.3047) = 0.4305, 

the third local minimum F13 (0.75, 999995.1825) = 0.1861, the fourth local minimum F14 (0.75, 

999996.9501) = 1.75097, the fifth local minimum F15 (0.75, 999998.5284) = 0.54855, the sixth local minimum 

F16 (0.75, 999999.3971) = 1.1968, the seventh local minimum F17 (0.75, 1000000.5809) = 0.36946, the later 

zero F1L (0.75, 1000001.5788) = 0. For the function F2, calculations give: the earlier zero F2E (0.75, 

999996.2182) = 0, the first local minimum F21 (0.75, 999996.5909) = 0.7188, the second local minimum 

F22 (0.75, 999996.9960) = 0.6647, the third local minimum F23 (0.75, 999998.1137) = 0.4966, the later zero F2L 

(0.75, 999998.61946) = 0. So, from our study, it follows that if, for an arbitrarily chosen but fixed value of y, the 

functions F1 and F2 do not have a joint zero for x = 0.5, i.e. if equality F1 (0.5, y) = F2 (0.5, y) = 0 does not hold, 

then the functions F1 and F2 behave regularly when x is changed, and for x ≠ 0.5 do not have a joint zero. If, on 

the contrary, at an arbitrarily chosen but fixed value of y, the functions F1 and F2 have a joint zero for x = 0.5, 

i.e. if equality F1(0.5, y) = F2 (0.5, y) = 0 holds, then one or both functions behave irregularly when x changes, 

and there are no joint zeros for x ≠ 1/2.   

 

III. Discussion of the results and possible reasons for the appearance of joint zeros 
From our previous analysis, it follows that the functions F1 and F2 have zeros for each x. For x = 1/2 (y 

is in the upper half-plane), some of the zeros of F1 and F2 coincide, forming a set of solutions of system (3a), 

(3b). Joint (common) zeros of F1 and F2 correspond to “double” points on the line x = 1/2. If x ≠ 1/2, namely, x 

= 1/2 ± α, where 0 < α < 1/2, then the double points split and two points are appeared: one corresponds to zero 

of F1, and the second to zero of F2; the splitting occurs in opposite directions (in the value of y) from the double 

point. The magnitude of the splitting depends on | x – 1/2 |, and the signs alternate by turns depending on y. With 

the removal of x from the value 1/2, the points are increasingly separated (see table 2). In some cases, one of the 

zeros may be absent, i.e. as a result of the splitting, only one point appears, corresponding to zero of one of the 

functions. In this case, for a given x ≠ 1/2, the preceding minimum is positive or the preceding maximum is 
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negative: the positive minimum is between two positive maxima or the negative maximum is between two 

negative minima. If for certain x1 ≠ 1/2 this "anomaly" is observed for the first time, then for all x > x1 it remains 

(see examples above). The number of anomalies increases with increasing x. Since in our calculations the 

infinite series was replaced by a finite segment of the series, then the results of tables 1, 2 can be influenced by 

the following factors: the approximation error, the different rate of change of the functions F1 and F2, the 

different rate of convergence of the functions F1 and F2 near zero, and also the path through which we approach 

zero (from the one side or from different sides with maintenance of the sign). But these errors are small 

compared to the useful effect and do not affect the analysis results in principle, therefore the double points are 

reliably identified by the coincidence of two digits after the comma in the value of y (with rounding) 

corresponding to the double point. As can be seen from table 2, the difference between the zeros after the 

splitting is significantly greater than the error. Note that for the appearance of a double point on the line x = 1/2, 

it is necessary that F1 and F2 change synchronic (simultaneously) in the same or opposite directions. Such cases, 

as our analysis showed, are repeated periodically with increasing y. The period of repetition of double points 

depends on the range of values of y and the initial conditions, i.e. the values F1 (x, 0) and F2 (x, 0). For a finite y 

the number of double points is always less than the number of zeros of each of the functions F1, F2, since 

appearance of double points is associated with more strong restrictions. Consider the system s = (x, y; F1, F2) 
defined in the strip 0...1. The appearance of joint zeros of the functions F1 and F2 can be explained by the 

symmetry properties of this system. As can be seen from (3a), (3b), F1 is an even function and F2 is an odd 

function of y. Designate φ1 is the central symmetry operator with respect to the center of the strip 0…1, i.e. 

relative to the point z = (1/2, 0). Designate φ2 is the reflection operator with respect to the x-axis; φ is the 

reflection operator with respect to the line x = 1/2. On the line x = 1/2, the following relations hold φ = φ1φ2 = 

φ2φ1; so, the operators φ1 and φ2 are commutative; φ1φ1 = φ2φ2 = φ1φ2 = φ = E, where E is the identity operator. 

Under the action of the operator φ on the functions F1, F2, we have F1φF2 = F1F2, where F1 = F1(1/2, y), 

F2 = F2(1/2, y);  φF = F, where F = (F1, F2) is a column vector (or a row vector). On the line xα ≠ 1/2, namely 

xα = 1/2 ± α, where 0 < α < 1/2, the following relations hold φ1φ1 = φ2φ2 = E, but φ1φ2 ≠ E. Under the action of 

the operator φ on the functions F1, F2, we have following relations 1 2 1 2φF F F F    , 1 2 1 2φF F F F    , 

where 1 1(1/ 2 , )F F y   ,  2 2(1/ 2 , )F F y   , 1 1(1/ 2 , )F F y   , 2 2(1/ 2 , )F F y   ; 

φF F  , φF F  , where 1 2( , )F F F   , 1 2( , )F F F   . Thus, the operator φ performs a one-to-

one mapping (automorphism) of the system s into itself, for which the points on the line x = 1/2 are fixed points. 

So, on the line x = 1/2, joint zeros are invariant with respect to the operator φ. On any line xα ≠ 1/2, there is no 

invariance with respect to the operator φ, and the joint zeros are separated (disappear). Now take an arbitrary 

line xα = 1/2 ± α. We can define operators on it that are similar to φ1, φ2, φ. Designate φ1α is the operator of 

central symmetry with respect to the point z = (xα, 0), φ2α   φ2 is the reflection operator with respect to the x-

axis, φα is the reflection operator with respect to the line xα. Under the action of the operator φα, the points of the 

line xα are fixed, but with respect to the system s, the operator φα is a local operator. The local operator φα does 

not perform a one-to-one mapping (automorphism) of the entire system s, but only its part sα, which corresponds 

to the part (xα – Δ, xα + Δ) of width 2Δ of the strip 0…1, where Δ = min (α, 1/2 – α). The action of the operator 

φα violates the symmetry of the complete system s. All lines xα ≠ 1/2 and the corresponding operators φα are 

equivalent in the indicated sense, and the line x = 1/2 and the corresponding operator φ occupy a special 

position. The joint zeros of the functions F1 and F2, i.e., the zeros of the zeta function, are due to the symmetry 

properties of the system s as a whole, but not its part; therefore, they are invariant with respect to the operator φ, 

but not the operator φα. A consequence of invariance is that all zeros of the zeta function are located on the line 

x = 1/2. 

 

IV. Proof of the Riemann hypothesis 
Let us prove the following theorem: "For the validity of the Riemann hypothesis, it is necessary and 

sufficient that the zeros of the zeta function are invariant with respect to the operator φ, that is, the relation 

0
( ) 0z zz    is satisfied if and only if 0( ) 0z  ." The necessity is obvious. Indeed. Suppose that the 

hypothesis is valid and let z0 = (1/2, y0) be certain zero of the zeta function, so 0( ) 0z  ; y0 is in the upper 

half-plane. Since the points on the line x = 1/2 are fixed points under the action of the operator φ, we obtain 

0
( ) 0z zz   . Thus, the necessity is proved. We prove sufficiency. We must prove that the relations 

( ) 0z   and ( ) 0z   cannot simultaneously be satisfied at points that do not belong to the line x = 1/2. 

Suppose the contrary. Let z1 be the zero of the zeta function, so 1( ) 0z  , z1 = (1/2 – α, y1); point z1 is located 

in the second quadrant. This point is chosen arbitrarily; we can put it in the first quadrant, then z1 = (1/2 + α, y1), 
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which does not affect the generality of the proof. The function ϛ (z) is defined by (2), and its zeros are found 

from the system of equations (3a), (3b). Applying the operator φ1 to the zeta function, we obtain φ1ϛ(z1) = ϛ(1 –

 z1), where 1 – z1 = (1/2 + α, – y1). Point 1 – z1 is in the fourth quadrant. The function ϛ(1 – z) is defined by (4), 

and its zeros are found from the system of equations (5a), (5b). From the Riemann relation between ϛ(z) and 

ϛ(1 – z), which we write in the form  
12 ( ) ( )cos( / 2) (1 )z zz z z z       , it follows that if ϛ(z1) = 0, 

then ϛ(1 – z1) = 0,  since the other quantities do not take the values 0 or infinity in the considered strip. Applying 

the operator φ2 to the zeta function ϛ(1 – z), we obtain φ2ϛ(1 – z1) = φ2φ1ϛ(z1) = φϛ(z1) = ϛ(1 – 
1z ), where 1 –

 
1z  = (1/2 + α, y1). Point 1 – 

1z  is in the first quadrant. The function ϛ(1 – z ) is defined by (8), and its zeros 

are found from the system of equations (9a), (9b). Since the system of equations (5a), (5b) is equivalent to the 

system (9a), (9b), we obtain φϛ(z1) = ϛ(1 – 
1z )  = 0. However, this is impossible at the same value of y, which 

follows from a comparison of the system of equations (3a), (3b) with the system (9a), (9b). Therefore, there is 

no point not located on the line x = 1/2 at which the zeta function vanishes. This proves the validity of the 

theorem and, therefore, the Riemann hypothesis. 

 

V. Conclusion 
The nontrivial zeros of the ζ-function correspond to the joint zeros of the functions F1 and F2. The 

location of the joint zeros of the functions F1 and F2, i.e. zeros of the zeta function, only on the line x = 1/2 is 

explained by the invariance the joint zeros with respect to the operator φ. On any other line x ≠ 1/2, the 

invariance is absent, so the joint zeros are not observed. The results of calculating the zeros of the ζ-function 

coincide within the error with the data of [7, 19]. There is an analogy with the symmetry properties of atomic 

(molecular) systems [18], which requires additional study. 
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