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Abstract 
The paper gives the simple way of proving Fermat's last theorem. The proof is based on the study of the 

properties of natural numbers, an analysis of the constraints on the proposed solutions, and uses some general 

theorems on the roots of algebraic equations.  
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I. Introduction 
Great (last) Fermat's theorem was formulated over 300 years ago. In view of the significance of the 

problem in many areas of mathematic, large, but unsuccessful efforts have been made to prove it. Finally, a 

proof of the theorem was given in [5], based on the connection of the theorem with the properties of modular 

elliptic curves. The proof is too complicated, so attempts were made to find a simple proof of the theorem. In 

particular, in [1 – 3], alternative approaches to the proof of this theorem were proposed. The theorem of P. 

Fermat, as is known, asserts that equation 
p p px y z             (1) 

has no positive integer solutions for p > 2. The purpose of this paper is to give a simple proof of Fermat's 

theorem within the framework of the elementary number theory. Define a few terms that we will use. The 

quantities x, y, z and their values are called bases of degree, or briefly bases. The bases from the first ten we call 

elementary bases. The set (combination) of three bases (x, y, z) we call a triplet or, accordingly, an elementary 

triplet. Thus, equation (1) depends on three bases and an exponent. For definiteness, let x < y, i.e. we assume 

that x is the base taking the least value. We put y – x = u, z – x = v, then equation (1) will depend on one base x, 

the exponent p, and two parameters u and v. It is easy to see that the parameters u and v do not change, if all 

three bases are increased by an arbitrary number a. Hereinafter (see sections III, IV, V) we use this technique, 

because it allows us to simplify the analysis of equation (1) and apply the Descartes’ rule of signs to determine 

the position of the roots of the equation. 

 

II. Restrictions on possible solutions of the equation and admissible transformations 
Consider restrictions on the possible solutions of equation (1). Analysis of the restrictions allows us to 

establish the conditions that the bases and exponent must satisfy, so that they can be solutions of equation (1). 

Let us formulate the first restriction. Put for definiteness that x < y, i.e. x always means the smallest number on 

the left. Since the numbers x, y, z are all different, we have the following inequality: 

( )p p px y x y   .           (2) 

If a is a positive integer, then a fortiori 

( )p p px y x y a    .          (3) 

From inequalities (2), (3) and the form of equation (1), the first restriction for numbers as possible solutions of 

equation (1) follows  

max( , ) ( )x y z x y   .          (4) 

The second restriction is associated with the obvious requirement that the number 
p px y ends in the same 

digit as the number 
pz . In particular, it follows that the left and right sides of equation (1) must be of the same 

parity. Let us formulate the third restriction. If the following relation holds  
2 2 2x y z   ,           (5) 

then x, y, z are not solutions of the basic equation (1). In this case, strict inequalities hold 
3 3 3x y z  , 
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4 4 4x y z  ,... 

p p px y z  .            (6) 

Indeed, multiplying (5) by z and using the left-hand side of inequality (4), we have 
3 2 2 3 3z zx zy x y    . 

Multiplying this inequality by z and using (4), we obtain 
4 3 3 4 4( )z z x y x y     etc. The fourth 

restriction is the equality of the exponents of all components in equation (1). The restrictions formulated are 

necessary conditions for numbers to be solutions of the basic equation (1). They are quite strong and allow us to 

select the proposed solutions for equation (1). The second and fourth restrictions we call basic, since their 

fulfillment is an unconditional requirement. The first and third restrictions are auxiliary and their 

implementation can be ensured through transformations (see below). Now consider the permissible 

transformations that keep safe the restrictions. As the starting point, we take the elementary bases, i.e. natural 

numbers from the first ten, that satisfy the basic restrictions. Such transformations include: 

1. Multiplication of all bases of degree in (1) by a positive integer q = 2, 3, 4, etc. Since the starting point is 

elementary bases, division is excluded. 

2. An increase of one, two or all three bases by a number a = 10l
 
that is a multiple of 10, where l = 1, 2, 3, etc. 

Since the starting point is elementary bases, the first increase is 10. 

3. If two triplets of numbers , ,x y z
 
and , ,x y z   satisfy the second restriction, then the triplet of numbers 

(bases) {
p px x x   , 

p py y y   , 
p pz z z   }satisfies this restriction. 

The first transformation is useful for obtaining from the known solution all solutions of the same 

class. For example, it can be used to obtain solutions of equation (1) for p = 2. This transformation does not 

change the "status" of the triplet, i.e. if the triplet is not a solution of (1), then after this transformation it will not 

be a solution of (1). Therefore, in proving the theorem without loss of generality, it is sufficient to consider only 

prime triplets, namely, those in which the bases do not have a common divisor different from 1. The second 

transformation is used to provide the first restriction (4) if it does not hold for elementary bases, but the second 

restriction holds. The third transformation can be applied only if some solutions are known, for example, when 

solving equation (1) for p = 2. Thus, the main "generator" of allowed combinations of numbers (triplets) is the 

second transformation; it allows us to go over all the numbers that are admissible by restrictions. Let's take a 

detailed look at the second restriction, for which we analyze the degrees of "elementary" numbers (bases) from 

1 to 10, starting with degree 3. We have replaced 10 by 0, so as not to violate the uniformity of the 

representation (see below). The results are given in table 1. It follows from the data of table 1 that the repetition 

period of the last digit for bases 2, 3, 7 and 8 is 4, for bases 4 and 9 the period is 2, for bases 5, 6, 0 and 1, the 

period is 1. Now we consider combinations of powers of different bases, taking into account the basic 

restrictions. The analysis is performed in the following order. First, we consider combinations of numbers with 

period 4, i.e., powers of 2 are combined consistently with the degrees of the numbers 3, 4,..., 0, 1, then the 

number 3 is combined with the remaining, the number 7 – with the remaining, the number 8 – with the 

remaining. After that, the bases with period 2 are combined, i.e. number 4 – with the numbers 5, 6, 9, 0 and 1, 

then the number 9 – with 5, 6, 0 and 1. Lastly, the numbers with period 1 are combined, i.e. number 5 with the 

numbers 6, 0 and 1, the number 6 – with 0 and 1, the number 0 – with 1. Some of the combinations can be 

immediately excluded due to violation of the second restriction. In addition, we excluded some combinations 

that are not used in the preliminary analysis and proof of the lemmas (see below). For example, we have 

excluded combinations indifferent to the exponent of the form 
ppp 000  , 

ppp 101  , 
ppp 202  etc., 

ppp 055  , as well as trivial combinations of the form 
kkk 454545 211   , 

kkk 454545 422   , 
kkk 454545 633   , 

kkk 454545 844   , 
kkk 454545 266   , 

kkk 454545 477   , 
kkk 454545 688   , 

kkk 454545 899   and some others. Selected results are 

given in table 2. The data of tables 1, 2 are used to select the permissible combinations of bases (triplets) that 

satisfy the formulated restrictions.  

 

III. Proof of auxiliary statements 
We prove Fermat's theorem for the initial triplets (x, y, z) in which x takes values from 1 to 10 (Lemma 

1), and for additional triplets in which x takes values from 11 to 14. We use these classes of triplets as particular 

case in the general proof of the theorem. Lemma 1. Triplet (x, y, z), where x is an elementary base (x < y < z), y 

and z are arbitrary positive integers, cannot be a solution of equation (1) for p > 2. The validity of the lemma is 

established by direct verification. The number of admissible triplets turns out to be finite and if we take into 

account the restrictions formulated above, then the verification procedure ends rather quickly. We must 

consistently consider triplets (x, y, z), for which x is an elementary base, and 1 yz , 2 yz , 
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3 yz  and so on. We call the triplet (x, y, z) boundary triplet if it satisfies equation (1) for p = 2, i.e. it is a 

solution of the quadratic Fermat equation. If equation 
222 zyx   is satisfied for the triplet (x, y, z), then the 

verification procedure ends. From (5) it is easy to obtain a relation that allows us to determine the number of 

admissible triplets. We have 
22 )(2 mmuxx            (5a) 

or 

xmmxu  2/)( 22
,         (5b) 

where x – elementary base, xyu  , yzm  ; u = 1, 2, 3, etc.; m = 1, 2, 3, etc. Relation (5b) determines 

the upper limit of the variation of u. The equality of the left and right sides in (5b) corresponds to the boundary 

triplet. If x is an odd number, then only such triplets are allowed, in which y and z have different parity, which 

follows from the basic restrictions. Therefore, the difference yzm   can take only odd values, i.e. 1, 3, 5 

and so on. If x is an even number, then only such triplets are allowed, in which y and z have the same parity, 

which follows from the basic restrictions. So, m can take only even values, i.e. 2, 4, 6 and so on. Now consider 

the procedure for obtaining admissible triplets. It is clear that triplets of the form (1, y, z) and (2, y, z) cannot be 

solutions of equation (1), since conditions (5) are certainly satisfied for them. Moreover, for triplets of the form 

(1, y, z) the relation 1 + y ≤ z holds. For example, 1 + 2 = 3, 1 + 12 < 15, etc. If y and z are both even, the triplets 

of the form (2, y, z) after dividing all the components by 2 reduce to triplets of the form (1, y, z), for example, (2, 

4, 6) reduces to (1, 2, 3) etc. If y and z are both odd, then for the triplets (2, y, z) the relation 2 + y ≤ z holds, for 

example, 2 + 3 = 5, 2 + 15 < 19, etc. For triplets of the form (1, y, z) and (2, y, z), there are no boundary triplets. 

Let's start with the triplet (3, 4, 5). Since it is boundary triplet, it satisfies relation (5). Therefore, triplets of the 

form (3, y, z), where y > 4, z > 5, cannot be solutions of equation (1), so the verification procedure ends. 

Consider the following triplets of the form (4, y, z). For x = 4 and m = 2, we obtain from (5b) the inequality u < 

0, so there are no such triplets. Note that although triplets of the form (1, y, z), (2, y, z), (3, y, z), (4, y, z) cannot 

be solutions of equation (1), but from them it is possible to obtain admissible triplets by successively increasing 

their bases simultaneously by a = 10l, where l = 1, 2, 3, etc. (see below). Consider the following triplets of the 

form (5, y, z) in more detail to show how restrictions are used. For x = 5 and m = 1, we obtain from (5b) the 

inequality u < 7, i.e. there are 6 such triplets. The value u = 7 corresponds to the boundary triplet (5, 12, 13). We 

write these triplets explicitly (5, 6, 7), (5, 7, 8), (5, 8, 9), (5, 9, 10), (5, 10, 11), (5, 11, 12). The triplets (5, 9, 10) 

and (5, 10, 11) can be excluded, since they do not satisfy the second (basic) restriction. Let m = 3. It follows 

from (5b) that u < 0, so there are no such triplets. In the future, when considering other bases, we will write 

down only the final result. Consider the following triplets of the form (6, y, z). For x = 6 and m = 2, we obtain 

from (5b) the inequality u < 2, so there is only one such triplet (6, 7, 9). The triplet (6, 8, 10) = 2(3, 4, 5) is the 

boundary triplet. Consider the following triplets of the form (7, y, z). For x = 7 and m = 1, we obtain from (5b) 

the inequality u < 17, so there are 16 such triplets. The triplet (7, 24, 25) is the boundary triplet. For x = 7 and m 

= 3, we obtain from (5b) the inequality u < 0, so there are no such triplets. In fact, the number of permissible 

triplets is much smaller if we take into account the basic restrictions (see below). Consider the triplets of the 

form (9, y, z). For x = 9 and m = 1, we obtain from (5b) the inequality u < 31, so there are 30 such triplets. The 

triplet (9, 40, 41) is the boundary triplet. The number of triplets is rather large, but the analysis is simplified, 

because only triplets can be considered, in which y changes within the interval 10 ... 19, since the last digits are 

repeated in every ten. For the remaining triplets, the degrees allowed according to the basic restrictions will be 

repeated (see below). After exclusion, there remain twelve triplets. For x = 9 and m = 3, we obtain from (5b) the 

inequality u < 3, so there are 2 such triplets. One triplet is excluded due to the basic restrictions, so there is only 

one permissible triplet. The boundary triplet is (9, 12, 15) = 3(3, 4, 5). For x = 9 and m = 5, we obtain from (5b) 

the inequality u < 0, so there are no such triplets. Consider the triplets of the form (8, y, z). For x = 8 and m = 2, 

we obtain from (5b) the inequality u < 7, so there are 6 such triplets. Two triplets (8, 11, 13) and (8, 13, 15) can 

be excluded because of the basic restrictions. It should also be taken into account that if all bases in the triplet 

are even, then such triplet can be excluded, since after dividing all the components by 2 we obtain triplet 

considered earlier. For example, (8, 10, 12) reduces to (4, 5, 6), (8, 12, 14) to (4, 6, 7), etc. So there is only one 

permissible triplet (see below). The triplet (8, 15, 17) is the boundary triplet. For x = 8 and m = 4, we obtain 

from (5b) the inequality u < 0, so there are no such triplets. Consider the triplets of the form (10, y, z). For x = 10 

and m = 2, we obtain from (5b) the inequality u < 14, so there are 13 such triplets. In view of the foregoing, after 

exclusion, there remain four triplets. The boundary triplet is (10, 24, 26) = 2(5, 12, 13). For x = 10 and m = 4, we 

obtain from (5b) the inequality u < 84/8 − 10, so there are no such triplets. The final result is given in table 3. It 

is easy to verify by direct verification that the admissible triplets from table 3 are not solutions of equation (1). 

For example, for triplet (5, 6, 7) we have 5
2
 + 6

2 
> 7

2
, but 

 
5

3
 + 6

3
 < 7

3
, therefore, all other powers of these bases 

will give the same result (zero is passed), which follows from relations (4), (6). For triplet (5, 7, 8) we have 5
2
 + 

7
2 
> 8

2
, but 5

3
 + 7

3
 < 8

3
 (zero is passed). For triplet (5, 8, 9) we have 5

2
 + 8

2 
> 9

2
, but 5

3
 + 8

3
 < 9

3 
(zero is 
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passed). For triplet (5, 11, 12) we have 5
2
 + 11

2 
> 12

2
, but 5

3
 + 11

3
 < 12

3 
(zero is passed). For triplet (6, 7, 9) we 

obtain 6
2
 + 7

2
 > 9

2
, but 6

3
 + 7

3
 < 9

3 
(zero is passed). For triplet (7, 9, 10) we obtain 7

2
 + 9

2
 > 10

2
, 7

3
 + 9

3 
> 10

3
, 

but 7
4
 + 9

4
 < 10

4 
(zero is passed). For triplet (7, 10, 11) we have 7

2
 + 10

2 
> 11

2
, 7

3
 + 10

3 
> 11

3
, but 7

4
 + 10

4
 < 11

4
 

(zero is passed). For triplet (7, 20, 21) we have 7
2
 + 20

2 
> 21

2
, but 7

3
 + 20

3 
< 21

3
 (zero is passed). For triplet (8, 

9, 11) we have 8
2
 + 9

2
 > 11

2
, but 8

3
 + 9

3
 < 11

3 
(zero is passed). For triplet (9, 10, 11) we obtain 9

2
 + 10

2
 > 11

2
, 9

3
 

+ 10
3 
> 11

3
, 9

4
 + 10

4 
> 11

4 
, but 9

5
 + 10

5
 < 11

5 
(zero is passed). For triplet (9, 37, 38) we obtain 9

2
 + 37

2
 > 38

2
, 

but 9
3
 + 37

3
 < 38

3 
(zero is passed). 

 
For triplet (10, 11, 13) we have 10

2
 + 11

2
 > 13

2
, 10

3
 + 11

3
 > 13

3
,
 
but 10

4
 + 

11
4 
< 13

4 
(zero is passed). For triplet (10, 21, 23) we have 10

2
 + 21

2
 > 23

2
, but 10

3
 + 21

3
 < 23

3
. Similarly, the 

check is performed for the remaining triplets. Lemma 1 is proved. Hereinafter the triplets from table 3 will be 

called initial triplets. Triplets of the form (1, y, z), (2, y, z), (3, y, z) and (4, y, z) we have excluded, so as they do 

not satisfy the restrictions. However, if all the bases of these triplets are increased by 10, then we obtain 

permissible triplets that satisfy all the restrictions. Hereinafter these triplets will be called additional triplets. 

Prove Lemma 2. Additional triplets cannot be solutions of equation (1) for p > 2. The analysis of additional 

triplets was performed in the same way as for the initial triplets. We write them explicitly using the following 

notation: (p; x, y, z; pth; u, v, m), where p is the allowed exponent, pth is the threshold exponent, at which the 

difference between the left and the right sides of equation (1) changes sign from plus to minus; xyu  , 

xzv  , uvyzm  . The number of permissible triplets of the form (11, y, z) is 51, of which 48 

are triplets with m = 1 and 3 triplets with m = 3. For m = 1 we have triplets (5+4k; 11, 12, 13; 6; 1, 2, 1), (5+4k; 

11, 13, 14; 5; 2, 3, 1), (3+2k; 11, 14, 15; 5; 3, 4, 1), (3+k; 11, 15, 16; 4; 4, 5, 1), (5+4k; 11, 16, 17; 4; 5, 6, 1), 

(5+4k; 11, 17, 18; 4; 6, 7, 1), (5+4k; 11, 18, 19; 4; 7, 8, 1), (3+2k; 11, 19, 20; 4; 8, 9, 1), (3+k; 11, 20, 21; 4; 9, 

10, 1), (5+4k; 11, 21, 22; 3; 10, 11, 1), (5+4k; 11, 22, 23; 3; 11, 12, 1), (5+4k; 11, 23, 24; 3; 12, 13, 1), (3+2k; 

11, 24, 25; 3; 13, 14, 1), (3+k; 11, 25, 26; 3; 14, 15, 1), (5+4k; 11, 26, 27; 3; 15, 16, 1), (5+4k; 11, 27, 28; 3; 16, 

17, 1), (5+4k; 11, 28, 29; 3; 17, 18, 1), (3+2k; 11, 29, 30; 3; 18, 19, 1), (3+k; 11, 30, 31; 3; 19, 20, 1), (5+4k; 11, 

31, 32; 3; 20, 21, 1), (5+4k; 11, 32, 33; 3; 21, 22, 1), (5+4k; 11, 33, 34; 3; 22, 23, 1), (3+2k; 11, 34, 35; 3; 23, 24, 

1), (3+k; 11, 35, 36; 3; 24, 25, 1), (5+4k; 11, 36, 37; 3; 25, 26, 1), (5+4k; 11, 37, 38; 3; 26, 27, 1), (5+4k; 11, 38, 

39; 3; 27, 28, 1), (3+2k; 11, 39, 40; 3; 28, 29, 1), (3+k; 11, 40, 41; 3; 29, 30, 1), (5+4k; 11, 41, 42; 3; 30, 31, 1), 

(5+4k; 11, 42, 43; 3; 31, 32, 1), (5+4k; 11, 43, 44; 3; 32, 33, 1), (3+2k; 11, 44, 45; 3; 33, 34, 1), (3+k; 11, 45, 46; 

3; 34, 35, 1), (5+4k; 11, 46, 47; 3; 35, 36, 1), (5+4k; 11, 47, 48; 3; 36, 37, 1), (5+4k; 11, 48, 49; 3; 37, 38, 1), 

(3+2k; 11, 49, 50; 3; 38, 39, 1), (3+k; 11, 50, 51; 3; 39, 40, 1), (5+4k; 11, 51, 52; 3; 40, 41, 1), (5+4k; 11, 52, 53; 

3; 41, 42, 1), (5+4k; 11, 53, 54; 3; 42, 43, 1), (3+2k; 11, 54, 55; 3; 43, 44, 1), (3+k; 11, 55, 56; 3; 44, 45, 1), 

(5+4k; 11, 56, 57; 3; 45, 46, 1), (5+4k; 11, 57, 58; 3; 46, 47, 1), (5+4k; 11, 58, 59; 3; 47, 48, 1), (3+2k; 11, 59, 

60; 3; 48, 49, 1). The triplet (11, 60, 61) is the boundary triplet.  For m = 3 we have triplets (6+4k: 11, 12, 15; 3; 

1, 4, 3), (4+4k: 11, 15, 18; 3; 4, 7, 3), (6+4k: 11, 17, 20; 3; 6, 9, 3).  The number of permissible triplets of the 

form (12, y, z) is 12, of which 11 are triplets with m = 2 and 1 triplet with m = 4. For m = 2 we have triplets 

(3+2k; 12, 13, 15; 4; 1, 3, 2), (3+k; 12, 15, 17; 4; 3, 5, 2), (5+4k; 12, 17, 19; 3; 5, 7, 2), (5+4k; 12, 19, 21; 3; 7, 9, 

2), (5+4k; 12, 21, 23; 3; 9, 11, 2), (3+2k; 12, 23, 25; 3; 11, 13, 2), (3+k; 12, 25, 27; 3; 13, 15, 2), (5+4k; 12, 27, 

29; 3; 15, 17, 2), (5+4k; 12, 29, 31; 3; 17, 19, 2), (5+4k; 12, 31, 33; 3; 19, 21, 2), (3+2k; 12, 33, 35; 3; 21, 23, 2). 

The triplet (12, 35, 37) is the boundary triplet. For m = 4 we have triplet (4+4k; 12, 15, 19; 3; 3, 7, 4). The triplet 

(12, 16, 20) = 4(3, 4, 5) is the boundary triplet. The number of permissible triplets of the form (13, y, z) is 69, of 

which 56 are triplets with m = 1 and 13 triplets with m = 3. For m = 1 we have triplets (6+4k; 13, 14, 15; 7; 1, 2, 

1), (4+4k; 13, 15, 16; 6; 2, 3, 1), (3+4k; 13, 16, 17; 6; 3, 4, 1), (3+4k; 13, 18, 19; 5; 5, 6, 1), (6+4k; 13, 19, 20; 4; 

6, 7, 1), (4+4k; 13, 20, 21; 4; 7, 8, 1), (3+4k; 13, 21, 22; 4; 8, 9, 1), (3+4k; 13, 23, 24; 4; 10, 11, 1), (6+4k; 13, 

24, 25; 4; 11, 12, 1), (4+4k; 13, 25, 26; 4; 12, 13, 1), (3+4k; 13, 26, 27; 4; 13, 14, 1), (3+4k; 13, 28, 29; 3; 15, 16, 

1), (6+4k; 13, 29, 30; 3; 16, 17, 1), (4+4k; 13, 30, 31; 3; 17, 18, 1), (3+4k; 13, 31, 32; 3; 18, 19, 1), (3+4k; 13, 

33, 34; 3; 20, 21, 1), (6+4k; 13, 34, 35; 3; 21, 22, 1), (4+4k; 13, 35, 36; 3; 22, 23, 1), (3+4k; 13, 36, 37; 3; 23, 24, 

1), (3+4k; 13, 38, 39; 3; 25, 26, 1), (6+4k; 13, 39, 40; 3; 26, 27 1), (4+4k; 13, 40, 41; 3; 27, 28, 1), (3+4k; 13, 41, 

42; 3; 28, 29, 1), (3+4k; 13, 43, 44; 3; 30, 31, 1),  (6+4k; 13, 44, 45; 3; 31, 32, 1), (4+4k; 13, 45, 46; 3; 32, 33, 

1), (3+4k; 13, 46, 47; 3; 33, 34, 1), (3+4k; 13, 48, 49; 3; 35, 36, 1), (6+4k; 13, 49, 50; 3; 36, 37, 1), (4+4k; 13, 

50, 51; 3; 37, 38, 1), (3+4k; 13, 51, 52; 3; 38, 39, 1), (3+4k; 13, 53, 54; 3; 40, 41, 1), (6+4k; 13, 54, 55; 3; 41, 42, 

1), (4+4k; 13, 55, 56; 3; 42, 43, 1), (3+4k; 13, 56, 57; 3; 43, 44, 1), (3+4k; 13, 58, 59; 3; 45, 46, 1), (6+4k; 13, 

59, 60; 3; 46, 47, 1), (4+4k; 13, 60, 61; 3; 47, 48, 1), (3+4k; 13, 61, 62; 3; 48, 49, 1), (3+4k; 13, 63, 64; 3; 50, 51, 

1), (6+4k; 13, 64, 65; 3; 51, 52, 1), (4+4k; 13, 65, 66; 3; 52, 53, 1), (3+4k; 13, 66, 67; 3; 53, 54, 1), (3+4k; 13, 

68, 69; 3; 55, 56, 1), (6+4k; 13, 69, 70; 3; 56, 57, 1), (4+4k; 13, 70, 71; 3; 57, 58, 1), (3+4k; 13, 71, 72; 3; 58, 59, 

1), (3+4k; 13, 73, 74; 3; 60, 61, 1). (6+4k; 13, 74, 75; 3; 61, 62, 1), (4+4k; 13, 75, 76; 3; 62, 63, 1), (3+4k; 13, 

76, 77; 3; 63, 64, 1), (3+4k; 13, 78, 79; 3; 65, 66, 1), (6+4k; 13, 79, 80; 3; 66, 67, 1), (4+4k; 13, 80, 81; 3; 67, 68, 

1), (3+4k; 13, 81, 82; 3; 68, 69, 1), (3+4k; 13, 83, 84; 3; 70, 71, 1). The triplet (13, 84, 85) is the boundary 

triplet. For m = 3 we have triplets (5+4k; 13, 14, 17; 4; 1, 4, 3), (3+k; 13, 15, 18; 3; 2, 5, 3), (5+4k; 13, 16, 19; 3; 

3, 6, 3), (3+2k; 13, 17, 20; 3; 4, 7, 3), (5+4k; 13, 18, 21; 3; 5, 8, 3), (5+4k; 13, 19, 22; 3; 6, 9, 3), (3+k; 13, 20, 

23; 3; 7, 10, 3), (5+4k; 13, 21, 24; 3; 8, 11, 3), (3+2k; 13, 22, 25; 3; 9, 12, 3), (5+4k; 13, 23, 26; 3; 10, 13, 3),  
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(5+4k; 13, 24, 27; 3; 11, 14, 3), (3+k; 13, 25, 28; 3; 12, 15, 3), (5+4k; 13, 26, 29; 3; 13, 16, 3). The number of 

permissible triplets of the form (14, y, z) is 10, of which 7 are triplets with m = 2 and 3 triplets with m = 4. For m 

= 2 we have triplets (4+4k; 14, 15, 17; 5; 1, 3, 2), (6+4k; 14, 23, 25; 3; 9, 11, 2), (4+4k; 14, 25, 27; 3; 11, 13, 2), 

(6+4k; 14, 33, 35; 3; 19, 21, 2), (4+4k; 14, 35, 37; 3; 21, 23, 2), (6+4k; 14, 43, 45; 3; 29, 31, 2), (4+4k; 14, 45, 

47; 3; 31, 33, 2). The triplet (14, 48, 50) = 2(7, 24, 25) is the boundary triplet. For m = 4 we have triplets (3+4k; 

14, 15, 19; 3; 1, 5, 4), (5+4k; 14, 17, 21; 3; 3, 7, 4), (3+4k; 14, 21, 25; 3; 7, 11, 4). Direct verification shows that 

the additional triples are not solutions of equation (1). So Lemma 2 is proved. We summarize the results of the 

analysis of the initial and additional triplets. For the initial triplets from table 3, the permissible exponent can 

take the values p = 3 + 4k, 4 + 2k, 4 + 4k or 6 + 4k; the smallest permissible exponent takes the values pmin = 3, 4 

or 6; the repetition period of permissible ends takes the values b = 2 or 4; threshold exponent pth = 3, 4 or 5. For 

additional triplets, we have p = 3 + k, 3 + 2k, 3 + 4k, 4 + 4k, 5 + 4k or 6 + 4k; pmin = 3, 4, 5 or 6; b = 1, 2 or 4; pth 

= 3, 4, 5, 6 or 7. For most initial and additional triplets, pmin ≥ pth. The exceptions are initial triplets (9, 10, 11), 

(9, 12, 13) and additional triplets (11, 12, 13), (11, 14, 15), (11, 19, 20), (11, 20, 21), (12, 13, 15), (12, 15, 17), 

(13, 14, 15), (13, 15, 16), (13, 16, 17), (13, 18, 19), (13, 21, 22), (13, 23, 24), (13, 26, 27), (14, 15, 17), for 

which the value of the exponent p0 closest to pmin should be taken, taking into account the period, namely p0 = p 

+ b, where b is the period (b = 1, 2 or 4). In this case the inequality p0 ≥ pth will be satisfied (see above). For 

example, for a triplet (9, 10, 11) pmin = 4, pth = 5, so we should take the exponent p0 = 4 + 2 = 6, where 2 is 

period. For a triplet (9, 12, 13) pmin = 3, and pth = 4, therefore it is necessary to take р0 = 3 + 4 = 7, where 4 is 

period (see table 3). The exponent for other such triplets is selected in the same way. All admissible triplets can 

be obtained from the initial triplets of table 3 and additional triplets, successively increasing all bases of these 

triplets by a = 10l. Simple reasoning confirms this statement. Indeed. If the bases x and y do not change or only 

one of them y (y > x) increases by a, and simultaneously z increases by a, then either we obtain the already taken 

into account initial or additional triplets or condition (5) is satisfied for the obtained triplets, i.e. the third 

restriction is violated, since we go beyond the boundary triplet, and such triplets are excluded (see also (7), 

Section IV). If z does not change, and y (y > x) increases by a, then condition (4) is not satisfied, i.e. the first 

restriction is violated and such triplets are excluded. Therefore, so that the restrictions are not violated, all bases 

must increase by the same value a. In triplets obtained from the same initial or additional triplet, the bases have 

the same ends, the same permissible exponent p, and the same values of the parameters u and v. Therefore, the 

set of admissible triplets is divided into groups, in each of which the triplets have the same values of p, u and v.  

 

IV. Study of the function F(p; x, y, z) = x
p
 + y

p
 –  z

p
 

We study the properties of the function F(p; x, y, z) = x
p
 + y

p
 –  z

p
. On the set of natural numbers, it 

takes discrete values and the roots of this function are solutions of equation (1). From the previous analysis (see 

the proof of Lemmas 1 and 2), we have Corollary 1: For initial and additional triplets F > 0 for p < pth and F < 

0 for p ≥ pth. For triplets, which are exceptions, F > 0 for p < p0 and F < 0 for p ≥ p0. Therefore, the function 

takes negative values for all admissible exponent p ≥ pmin (or p ≥ p0). The equality of the function to zero does 

not occur at natural values of x, y, z. To continue the analysis, we write a formal representation for the function 

F(p; x + a, y + a, z + a). We have for arbitrary fixed p 
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where a = 10l, l = 1, 2, 3, etc. Obviously, when a = 0, F(p; x + a, y + a, z + a) = F(p; x, y, z). If only one base on 

the left side of equation (1) is increased by a = 10l, then (6) takes the form 
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where uxy  , vxz  . If p ≥ pth (or p ≥ p0), all terms in the right-hand side of (7) are less than zero, 

therefore equality is impossible, and such bases can be ignored, since they cannot be solutions of equation (1). A 

fortiori this conclusion is valid if both bases x and y do not change. We represent the functions F(p; x + a, y + a, 

z + a)  and F(p; x , y, z )  in canonical form in decreasing powers of one base x, treating x as a variable, and u, v 

as parameters. Since u and v do not change with an increase in all bases on a, such a representation is convenient 

for analysis and allows us to apply the Descartes’ rule of signs. We write the equation for finding the roots of 

the function F(p; x + a, y + a, z + a) 
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If in (6a) we put a = 0, then we obtain the equation for finding the roots of the initial function F(p; x , y, z). We 

have  
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Equations (6a) and (6b) are equivalent to equation (1) for different values of bases. Find out what 

happens if we simultaneously increase all the bases of the triplet by the value of a = 10l. This increase must be 

simultaneous and by a multiple of 10 so that the restrictions stated above are not violated. With a simultaneous 

increase in the bases of the triplet, if the function F was positive, i.e. F > 0, then its sign does not change; if it 

was negative, i.e. F < 0, its sign changes to the opposite, i.e. will be F > 0. Let us explain this with an example. 

Take the triplet (5, 6, 7). From table 3 it follows that 5
4
 + 6

4
 – 7

4
 < 0 (here p = 4 is the smallest allowed 

exponent, pth = 3 is the threshold exponent). If we increase all bases by 10, we get 15
4
 + 16

4
 – 17

4
 > 0, and the 

transition to the negative region occurs only when pth = 8 (we have 5
8
 + 6

8
 – 7

8
 < 0. If only one or two bases are 

increased by 10, then the restrictions formulated above are violated. In our example, we have triplets (5, 6, 17), 

(5, 16, 17), (6, 15, 17), (15, 16, 7). It is easy to verify that these triplets do not satisfy the first or the third 

restriction, so they can be ignored. A similar result is observed for other triplets. The larger a, the greater must 

be the exponent pth, at which F changes the sign (becomes negative). So, for arbitrary admissible fixed p, 

increasing the bases of initial and additional triplets by a = 10l, we can observe a change in the sign of the 

function F(p, x, y, z) from minus to plus due to the fact that, as follows from (6), the quantity a
p
 will 

predominate over the rest of members. On the other hand, for arbitrary fixed base (or, which is the same, for 

arbitrary a = 10l), increasing the exponent p, we can observe a change in the sign of the function F(p, x, y, z) 

from plus to minus due to the fact that, as follows from (6), the quantity z
p
 will predominate over the rest of 

members (as z > max(x, y)). Below we show that the equality F(p, x, y, z) to zero on the set of natural numbers is 

impossible for any fixed a = 10l and for any fixed p > 2. We now consider the equation F(p; x , y, z) = 0, where 

the function F(p; x , y, z) is given by expression (6b), in the field of real numbers; x is a variable that changes 

continuously. The characteristic (essential) parameters of this equation are p, u and v. In other words, in order to 

maintain succession (continuity) with the Fermat equation, it is necessary to consider different equations (6b) 

for different admissible values of p, u and v. The coefficients of equation (6b) have one change of sign; 

therefore, according to the Descartes’ rule of signs, this equation has one positive real root. In our case, this 

conclusion does not depend on the parity of the number p, since the first and the last coefficients of the equation 

have different signs, namely, a0 = 1 > 0, an = (u
p
 – v

p
) < 0. From the previous analysis (see Lemmas 1, 2) it 

follows that for the initial and additional triplets, this root is not a natural number. It also cannot be a rational 

number, since otherwise it follows from the theory that it would be an integer [4], which is not the case. From 

(6) it follows that if p < pth, then all terms in (6) are positive and the increase in a does not change the sign of the 

function. If p = pth, then only the first term is negative, and the rest are positive. If p = pth + 1, then the first two 

terms are negative. If p = pth + 2, then the first three members are negative, and so on. The sign of the function 

depends on the value of a, which, in turn, depends on the value of u for a given p and m. So, when p ≥ pth, for all 

initial and additional triplets F(p; x , u, v) < 0, and F(p; x + a , u, v) > 0. Therefore, according to the well-known 

Weierstrass theorem the root of equation (6b) is located between x and x + a. It cannot be a natural or rational 

number, since in the interval from x to x + a there are no admissible values of the bases or that the same there 

are no admissible values of x, u and v. We give the illustrative example. The triplet (5, 6, 7) from table 3 

corresponds to three numbers p = 4 + 4k, u = 1, v = 2. Let p = pmin = 4, then this triplet is described by the 

function F(4; x , 1, 2). Calculations by (6b) show that F(4; 5 , 1, 2) < 0 and for any admissible p, it remains 

negative, since p = 4 + 4k > pth = 3. Increase the base x by 10, then the calculations by (6a) give that F(4; 15, 1, 

2) > 0.  
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V. Determining the position of real positive root of the function F(p; x , y, z) 
The position of root can be determined more accurately using the Descartes’ rule of signs, which can be 

useful for large a. We apply this rule to equation (6b), which is equivalent to (1), but depends on one variable x 

(u and v are parameters). The Descartes’ rule allows us to determine the number of roots of equation (6b), 

exceeding a certain number a. In our case, a = 10l (l = 1, 2, 3, etc.). Consider equation (6b), in which the change 

of variables is made x → x + a. Equation (6b) transforms into (6a). In this case, as is known, all the roots of the 

initial equation (6b) are reduced by the same value a. It turns out that for all triplets (in particular, initial and 

additional), only two cases are possible, all the coefficients of equation (6a) are positive or they have one change 

of sign (from plus to minus). According to the Descartes’ rule, in the first case all the roots of the initial equation 

(6b) are less than a, and in the second case there is one root larger than a. From the analysis of equation (6a) it 

follows that it is sufficient to determine the sign of the free term in (6a). In the first case, the sign is positive, and 

in the second, the sign is negative. We carried out calculations of the position of the roots for all permissible 

values of p, u and v by equation (6a) and additionally checked the results on the table of powers of numbers. 

Since the values of u and v remain constant when the bases simultaneously increase by a, the results have a 

general applicability. The sign of the free term depends on p and m, and for identical p and m on the value of u. 

We prove Lemma 3. For initial and additional triplets, the real positive root of equation (6b) is located between 

x + a – 10 and x + a. The validity of Lemma 3 is established by direct verification. We give the results of 

calculation for the initial and additional triplets. For initial triplets, value of a varies from 10 to 30. For all 

triplets of the form (5, y, z) with m = 1, pmin = 4 > pth = 3 we obtain that a = 10. Moreover, it is easy to verify 

using (6a) that for triplets (5, 6, 7), (5, 7, 8) and (5, 8, 9) the root of (6b) is less than 10 and is located between 5 

and 10. For triplet (5, 11, 12) the root is greater than 10 and is located between 10 and 15. For triplet (6, 7, 9) 

with m = 2, pmin = 3 = pth we get that a = 10 and the root of (6b) is less than 10 and is located between 6 and 10. 

For triplet (7, 9, 10) with m = 1, pmin = 6 > pth = 4 we get that a = 10 and the root is located between 10 and 17. 

For triplet (7, 10, 11) with m = 1, pmin = 4 = pth we have a = 10 and the root is located between 7 and 10. For 

triplet (7, 14, 15) with m = 1, pmin = 6 > pth = 3 we have a = 20 and the root is located between 17 and 27. For 

triplet (7, 15, 16) with m = 1, pmin = 4 = pth we have a = 10 and the root is located between 10 and 17. For triplet 

(7, 19, 20) with m = 1, pmin = 6 > pth = 3 we have a = 30 and the root is located between 27 and 37. For triplet (7, 

20, 21) with m = 1, pmin = 4 > pth = 3 we have a = 20 and the root is located between 17 and 27. For triplet (8, 9, 

11) with m = 2, pmin = 3 = pth we have a = 10 and the root is located between 8 and 10. For triplet (9, 10, 11) 

with m = 1, p0 = 6 > pth = 5 we have a = 10 and the root is located between 9 and 19. For triplet (9, 12, 13) with 

m = 1, p0 = 7 > pth = 4 we have a = 20 and the root is located between 19 and 29. For triplet (9, 15, 16) with m = 

1, pmin = 4 = pth we have a = 10 and the root is located between 9 and 19. For triplet (9, 20, 21) with m = 1, 

pmin = 4 > pth = 3 we have a = 10 and the root is located between 9 and 19. For triplets (9, 25, 26), (9, 30, 31), (9, 

35, 36), with m = 1, pmin = 4 > pth = 3 we have a = 20 and the root is located between 19 and 29. For triplets (9, 

17, 18), (9, 22, 23), (9, 27, 28), (9, 32, 33), (9, 37, 38) with m = 1, pmin = 3 = pth we have a = 10 and the root is 

located between 9 and 19. For triplet (9, 10, 13) with m = 3, pmin = 4 > pth = 3 we have a = 10 and the root is 

located between 9 and 19. For triplet (10, 11, 13) with m = 2, pmin = 4 = pth we have a = 10 and the root is 

located between 10 and 20. For triplets (10, 17, 19), (10, 19, 21), (10, 21, 23), with m = 2, pmin = 4 > pth = 3 we 

have a = 20 and the root is located between 20 and 30. The regularity (behavior) is obvious. If the values of p 

and m increase, then a increases; with the same p and m, if u is increased by 10, then a, as a rule, increases by 

10. So, the root of equation (6b) for initial triplets is between x and 10, if p = 4 and (u = 1, v = 2), (u = 2, v = 3), 

(u = 3, v = 4) or p = 3 and (u = 1, v = 3). The root of equation (6b) is located between 10 and (x + 10) if p = 6 

and (u = 2, v = 3) or p = 4 and (u = 8, v = 9). For the remaining initial triplets, the root of equation (6b) is located 

between x + a – 10 and x + a. Thus, Lemma 3 is valid for initial triplets. For additional triplets calculations are 

carried out similarly. Below are the results of calculations. The dependence of a on the parameters p, m and u 

for additional triplets is the same as for the initial ones. For additional triplets, a varies from 10 to 80. For 

triplets of the form (11, y, z) for m = 1, the following results are obtained. If p = 5+4k, then a = 10, when pth  = 6 

and u = 1; a =10, when pth  = 5 and u = 2; a =10, when pth  = 4 and u = 5, 6, 7; a = 20, when pth  = 3 and u =10, 

11, 12, 15, 16, 17; a = 30, when pth = 3 and u =20, 21, 22, 25, 26, 27; a =40, when pth = 3 and u = 30, 31, 32, 35, 

36, 37; a =50, when pth  = 3 and u = 40, 41, 42, 45, 46, 47. If p = 3+2k, then a = 10, when pth  = 5 and u = 3; 

a = 10, when pth  = 4 and u = 8; a = 10, when pth  = 3 and u = 13, 18, 23, 28, 33; a = 20, when pth  = 3 and u = 38, 

43, 48. If p = 3+k, then a = 10, when pth  = 4 and u = 4, 9; a = 10, when pth  = 3 and u = 14, 19, 24, 29, 34; 

a = 20, when pth  = 3 and u = 39, 44. For m = 3, the following results are obtained. If p = 6+4k, then a = 20, 

when pth = 3 and u = 3; a = 40, when pth = 3 and u = 6. If p = 4+4k, then a = 20, when pth = 3 and u = 4. For 

triplets of the form (12, y, z) for m = 2, the following results are obtained. If p = 3+2k, then a = 10, when pth = 4 

and u = 1; a = 10, when pth = 3 and u = 11; a = 20, when pth  = 3 and u = 21. If p = 3+k, then a = 10, when pth = 4 

and u = 3; a = 10, when pth = 3 and u = 13. If p = 5+4k, then a = 20, when pth = 3 and u = 5, 7, 9; a = 30, when 

pth = 3 and u =15, 17, 19. For m = 4 we have the following results. If p = 4+4k, then a = 20, when pth = 3 and u = 

3. For triplets of the form (13, y, z) for m = 1, the following results are obtained. If p = 6+4k, then a = 10, when 



A simple proof of the Fermat theorem 

DOI: 10.9790/5728-1605023747                                       www.iosrjournals.org                                      44 | Page 

pth = 7 and u = 1; a = 10, when pth = 4 and u = 6; a = 20, when pth = 4 and u = 11; a = 30, when pth = 3 and u 

= 16; a = 40, when pth = 3 and u = 21, 26; a = 50, when pth = 3 and u = 31, 36; a = 60, when pth = 3 and u = 41, 

46; a = 70, when pth = 3 and u = 51, 56; a = 80, when pth = 3 and u = 61, 66. If p = 4+4k, then a = 10, when pth = 

6 and u = 2; a = 10, when pth = 4 and u = 7, 12; a = 10, when pth = 3 and u = 17; a = 20, when pth = 3 and u = 22, 

27, 32; a = 30, when pth = 3 and u = 37, 42, 47;  a = 40, when pth = 3 and u = 52, 57, 62; a = 50, when pth = 3 and 

u = 67. If p = 3+4k, then a = 10, when pth  = 6 and u = 3; a = 20, when pth = 5 and u = 5; a = 20, when pth = 4 and 

u = 8; a = 30, when pth = 4 and u = 10, 13; a = 10, when pth = 3 and u = 15, 18, 20, 23, 25, 28, 30, 33, 35, 38, 40; 

a = 20, when pth = 3 and u = 43, 45, 48, 50; a = 30, when pth = 3 and u = 53, 55, 58, 60; a = 40, when pth = 3 and 

u = 63, 65, 68, 70. For m = 3 we have the following results. If p = 5+4k, then a = 10, when pth  = 4 and u = 1; 

a = 20, when pth = 3 and u = 3, 5; a = 30, when pth = 3 and u = 6, 8, 10, 11; a = 40, when pth = 3 and u = 13. If 

p = 3+k, then a = 10, when pth = 3 and u = 2, 7, 12. If p = 3+2k, then a = 10, when pth = 3 and u = 4, 9. For 

triplets of the form (14, y, z) for m = 2, the following results are obtained. If p = 4+4k, then a = 10, when pth = 5 

and u = 1; a = 20, when pth = 3 and u = 11; a = 30, when pth = 3 and u = 21; a = 40, when pth = 3 and u = 31. If 

p = 6+4k, then a = 30, when pth = 3 and u = 9; a = 50, when pth = 3 and u = 19; a = 60, when pth = 3 and u = 29. 

For m = 4 we have the following results. If p = 3+4k, then a = 10, when pth = 3 and u = 1, 7.  If p = 5+4k, then 

a = 30, when pth = 3 and u = 3. A direct verification shows that for additional triplets the root is located between 

x + a – 10 and x + a. So, Lemma 3 is completely proved. In our case, a more accurate determination of the 

position of the root is not required. The main conclusion from the analysis performed is that increasing the base 

of a triplet by the number a = 10l does not change the class (type) of solutions of equation (6b) or that the same 

of equation (1), so that they are not natural (rational) numbers. Since an arbitrary triplet can be obtained from 

initial or additional triplets by increasing the bases of the triplets by the number a = 10l, this conclusion is valid 

in the general case.  

 

VI. Proof of the theorem  
We now prove Fermat's theorem by the method of induction with respect to the parameters a and p. 

According to Lemmas 1 and 2, the theorem is valid for all initial and additional triplets. We prove the induction 

transition. The proof of the theorem consists of two parts: the proof for all permissible triplets (induction by a) 

and the proof for all permissible exponents (induction by p). Induction by a. The value of p is fixed, although it 

is chosen arbitrarily. We prove that Fermat's theorem is valid for any permissible triplet. It is enough to prove 

that the theorem is valid for any base x when it increases by an arbitrary number a. Let a = 0. It follows from 

Corollary 1 that for all initial and additional triplets with an arbitrary permissible exponent p, we have F(p; x , y, 

z) = F(p; x , u, v) > 0 if p < pth or F(p; x , u, v) < 0 if p ≥ pth. The transition of the function F(p; x , u, v) through 0 

does not occur for a natural or rational value of x, so equation (6b) has a real positive root. If we successively 

increase the base x by 10, then this procedure, on the one hand, allows us to obtain permissible triplets, and, on 

the other hand, to determine the position of the root of the initial equation (6b) using the Descartes’ rule. Let us 

suppose that for a = al = 10l, the equation (6a), namely, F(p; x + al, u, v) = 0 does not turn into 0 for the natural 

value of x, u and v. Equation (6a) corresponds to equation (6b), in which the change of variable is made x → x + 

al; therefore, equation (6b) has a real positive root. From the definition of al, it follows that we can choose the 

value of l so that al is the smallest number for which the inequality F(p; x + al, u, v) > 0 holds. Then the root of 

the function F(p; x, u, v) or that the same of equation (6b) is located between x + al –10 and x + al, and it is not a 

natural (rational) number. We put al+1 = 10(l + 1) = al + 10, which corresponds to the change of variables x → x 

+ al+1 or, that the same, x + al → x + al+1. Then a fortiori F(p; x + al+1, u, v) > 0. So, the real positive root of the 

function F(p; x, u, v) does not change its position, namely, it is located between x + al –10 and x + al, and it 

remains real positive, that is, cannot be a natural number. Therefore, there are no permissible bases (natural 

numbers), which are solutions of equation (6b) or equivalent equation (1). Induction transition by the parameter 

a is proved. Induction by p. The value of a is fixed, although it is chosen arbitrarily. We prove that Fermat's 

theorem is valid for any admissible exponent p. We put p = pmin, where pmin can take the values 3, 4, 5, or 6 (see 

above). To avoid confusion, we denote x0 – the base of the initial or additional triplet; x0 takes the values 5, 6, ..., 

14; u and v take the corresponding permissible values (see above). Then, for a fixed a, an arbitrary base is 

represented as x = x0 + a. When a = 0, for most initial and additional triplets pmin ≥ pth, then F(pmin; x0, u, v) < 0. 

For triplets that are exceptions pmin < pth, then F(pmin; x0, u, v) > 0 and for arbitrary a, we have F(pmin; x0 + a, u, 

v) > 0. For these triplets, if we put p = p0 = pmin + b, where b is period (b = 1, 2 or 4), then F(p0; x0, u, v) < 0. It 

follows from Lemmas 1 and 2 that for all initial and additional triplets, the root of the function F(pmin|p0; x0, u, v) 

is not a natural number. It follows from Lemma 3 that for all initial and additional triplets, the root of equation 

(6b), in which p = pmin or p = p0 = pmin + b, is located between x0 + a –10 and x0 + a, where a = 10 ... 80. (Of 

course, a is different for different triplets as well as pmin and p0). A more accurate determination of the position 

of the root is not required. Therefore, F(pmin|p0; x0 + a –10, u, v) < 0, but F(pmin|p0; x0 + a, u, v) > 0. Since in the 

given interval between x0 + a –10 and x0 + a there are no permissible triplets (permissible values of x0, u, v), the 

root of the function F(pmin|p0; x0, u, v) is a real positive and cannot be a natural number. A fortiori this is true for 
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a > 80, since in this case for an arbitrary a we have F(pmin|p0; x0 + a, u, v) > 0. Thus, the Fermat theorem is valid 

for the exponents pmin and p0. If we successively increase the exponent p by period bk, then this procedure, on 

the one hand, allows us to obtain all permissible exponents, and on the other hand, to determine groups of 

triplets described by equation (6b) of the same (given) degree. Let us assume that for p = pk = pmin + bk, where bk 

= k, 2k or 4k (see above) equation (6b), namely F(pk; x, u, v) = 0 has no natural solutions, so its root is a real 

positive number. We use pmin, since p0 = pmin + b and therefore there is no need to consider p0 separately. From 

the definition of pk, it follows that we can choose the value of k so that pk is the smallest number for which the 

inequality pk ≥ pth(a) is valid, i.e. the inequality F(pk; x, u, v) < 0 holds. We put p = pk+1 = pk + b, where b = 1, 2 

or 4. Then a fortiori F(pk+1; x, u, v) < 0. Therefore, the root of the equation F(pk+1; x, u, v) = 0 is not a natural 

number. Therefore, there is no equation (6b) or that the same equation (1) with permissible exponent, the root of 

which is a natural number. Induction transition by the parameter p is proved. Thus, a change in the base and the 

exponent does not change the class of solutions of equation (6b) or, it is the same, of equation (1). The root of 

the equation remains real positive and is not a natural number. This implies the validity of the Fermat theorem. 

 

VII. Connection of Fermat's theorem with Beal conjecture 
Beal conjecture consists in the statement that the equation x

p
 + y

q
 = z

r  
has no solution in positive 

integers x, y, z, p, q and r with p, q and r at least 3 and x, y, and z coprime. If p = q = r, then this equation turns 

into equation (1) and then, of course, the validity of Beal conjecture follows from Fermat's theorem, but the 

opposite is not true. Let us show that in this case the validity of the Beal conjecture follows from our method of 

proving Fermat's theorem. Indeed. For all initial and additional triplets, the Beal conjecture is true, since the 

bases of these triplets (natural numbers) are coprime. In addition, in each initial or additional triplet, one base is 

an even number, and the other two bases are odd numbers. The difference of the parameters v and u, namely m = 

v – u, takes values 1, 2 or 3 for the initial triplets (see table 3), 1 or 3 for additional triplets of the form (11, y, z) 

and (13, y, z) and 2 or 4 for additional triplets of the form (12, y, z) and (14, y, z). All permissible triplets are 

obtained from the initial and additional triplets by increasing all the bases of the triplet (initial or additional) 

simultaneously by a = 10l. If we simultaneously increase the bases of the triplet by a = 10l, then the properties 

noted above are remain unchanged (saved), namely, the parity of the bases does not change and the parameters 

v, u and m = v – u do not change their values. Therefore, the bases of triplets cannot have an even number as a 

common divisor. The common divisor also cannot be the number 3, although the two bases can be divided by 3. 

Since m ≤ 4, other divisors may not be considered. It follows that the permissible bases remain mutually prime 

(coprime) numbers, which proves the Beal conjecture. In the general case, when p, q and r are different, the 

analysis technique used in the proof of Fermat's theorem can be used to prove Beal conjecture. In particular, the 

second restriction on permissible solutions established for equation (1) remains valid for the Beal equation. Let's 

give an example. We can assume, without loss of generality, that x < y < z. If p < q < r, then the Beal equation 

obviously has no solutions not only for coprime numbers x, y and z, but, also for numbers having a common 

divisor. If p > q > r, then the permissible values of exponents p, q and r and bases x, y and z are determined 

using the second restriction. In particular, it follows from the second restriction that three cases are possible: 1) 

x, y and z are even numbers; 2) x and y are odd, and z is an even number; 3) x and y have different parity, and z 

is odd. Table 1 can be used to select permissible combinations of endings and exponents. Proving this conjecture 

and analyzing possible options in these cases requires a lot of time due to the generality of the problem 

statement.  

 

VIII. Conclusion 
1. The above proof of the theorem uses only the characteristic properties of natural numbers and some general 

theorems on the roots of algebraic equations.  

2. Fermat's theorem has an obvious geometric interpretation. For p = 1, equation (1) always has a solution, i.e. 

the sum of two integer segments is always an integer segment. For p = 2, equation (1) has a solution only in 

some cases, i.e. the sum of the areas of two squares with integer sides is only sometimes equal to the area of the 

square with integer sides. For p = 3, equation (1) has no solution, i.e. the volume of a cube with integer sides is 

never the sum of the volumes of two cubes with integer sides. This is true a fortiori for hypercube. 

3. The analysis technique used in the proof of Fermat's theorem can be used to prove Beal conjecture. In the 

case when p = q = r, Beal conjecture is one of the consequences of Fermat's theorem. 
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Table 1 

Admissible ends of powers for elementary bases 
Number 

 

Last digit of 

number 

 

Number 

 

Last digit of 

number 

 

Number 

 

Last digit of 

number 

 

Number 

 

Last digit of 

number 

 

32  
8 33  

7 34  
4 35  

5 

42  
6 43  

1 44  
6 45  

5 (repeat) 

52  
2 53  

3 54  
4 (repeat)   

62  
4 63  

9     

72  
8 (repeat) 73  

7 (repeat)     

Number 

 

Last digit of 

number 

 

Number 

 

Last digit of 

number 

 

Number 

 

Last digit of 

number 

 

Number 

 

Last digit of 

number 

 

36  
6 37  

3 38  
2 39  

9 

46  
6 (repeat) 47  

1 48  
6 49  

1 

  57  
7 58  

8 59  
9 (repeat) 

  67  
9 68  

4 

  77  
3 (repeat) 78  

2 (repeat) 

Number 

 

Last digit of 

number 

 

Number 

 

Last digit of 

number 

 

30  
0 31  

1 

40  
0 (repeat) 41  

1(repeat) 

 

Table 2 

Combination of ends for elementary bases permissible under basic restrictions 
kkk 232323 532    

kkk 434343 143    
kkk 434343 347    

kkk 434343 648    

kkk 242424 042    
5 4 5 4 5 43 4 7k k k     

kkk 454545 147    
kkk 454545 248    

5 4 5 4 5 42 4 6k k k     
6 4 6 4 6 43 4 5k k k     

kkk 464646 547    
kkk 464646 048    

kkk   333 752  
kkk   333 853  

kkk   333 257  
kkk 434343 358    

kkk 444444 152    
4 4 4 4 4 43 5 6k k k     

kkk 444444 657    
kkk 444444 158    

kkk 464646 352    
kkk 464646 253    

kkk 444444 457    
kkk 242424 758    

kkk 434343 462    
3 4 3 4 3 43 6 7k k k     

kkk 242424 857    
kkk   333 358  

kkk 454545 862    
5 4 5 4 5 43 6 9k k k     

3 4 3 4 3 47 6 9k k k     
kkk 464646 758    

kkk 464646 062    
kkk 464646 563    

kkk 454545 367    
kkk 434343 268    

kkk 434343 172    
kkk 232323 073    

kkk 464646 567    
kkk 454545 468    

kkk 454545 972    
3 4 3 4 3 43 8 9k k k     

kkk 232323 587    
kkk 464646 068    

kkk 232323 082    
kkk 454545 183    

kkk 434343 897    
kkk 434343 198    

kkk 434343 392    
kkk 434343 693    

kkk 454545 697    
kkk 454545 798    

kkk 454545 192    
kkk 454545 293    

kkk 464646 097    
kkk 464646 598    

kkk 464646 592    
kkk 464646 293    

kkk 444444 107    
kkk 242424 208    

kkk 434343 912    
kkk 464646 093    

kkk 464646 307    
kkk 444444 608    

kkk 444444 402    
kkk 242424 703    

kkk 444444 907    
kkk 434343 718    

kkk 242424 802    
kkk 444444 903    

kkk 464646 547    
kkk 454545 918    

5 4 5 4 5 42 1 3k k k     
kkk 434343 213    

kkk 464646 017    
kkk 464646 518    
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6 4 6 4 6 42 1 5k k k     
kkk 454545 413    

kkk 454545 817    
kkk 444444 958    

  kkk 464646 013    
    

kkk 434343 954    
kkk 434343 433    

kkk 242424 965    
kkk 434343 316    

kkk 444444 354    
kkk 444444 103    

kkk   333 165  
kkk 454545 716    

4 4 4 4 4 44 5 7k k k     
  kkk 444444 215    

  

kkk 434343 064    
kkk   333 459  

kkk   333 615  
kkk 444444 310    

kkk 434343 794    
kkk 242424 659    

kkk 444444 365    
kkk 444444 710    

kkk 444444 204    
kkk 444444 259    

kkk 444444 765    
kkk 242424 910    

kkk 444444 804    
kkk 444444 859    

kkk 444444 815    
  

kkk 434343 514    
kkk 232323 569    

   

  kkk 242424 109    
  

 kkk 444444 309     
 

 kkk 444444 709    
  

 kkk 232323 019    
  

 

Note. The relationships given in table 2 do not mean actual equality and they are symbolic notation representing 

the fulfillment of the basic restrictions necessary for equation (1), namely, the coincidence of the exponents of 

all components and the coincidence of the last digit, to which the left and right sides of equation (1) end.  

 

Table 3 

Permissible triplets of the form (x, y, z), in which x is an elementary base 
Form of 

triplet 

Permissible 

triplets of this 

form 

Degree, permissible 

by basic restrictions, p 

The number of 

permissible triplets 

Boundary triplet pth u v m 

(1, y, z) - - 0 -     

(2, y, z) - - 0 -     

(3, y, z) - - 0 (3, 4, 5)     

(4, y, z) - - 0 -     

(5, y, z) (5, 6, 7) 4+4k 4 (5, 12, 13) 3 1 2 1 

(5, 7, 8) 4+2k 3 2 3 1 

(5, 8, 9) 4+4k 3 3 4 1 

(5, 11, 12) 4+4k 3 6 7 1 

(6, y, z) (6, 7, 9) 3 + 4k 1 (6, 8, 10) 3 1 3 2 

(7, y, z) (7, 9, 10) 6+4k 6 (7, 24, 25) 4 2 3 1 

(7, 10, 11) 4+4k 4 3 4 1 

(7, 14, 15) 6+4k 3 7 8 1 

(7, 15, 16) 4+4k 3 8 9 1 

(7, 19, 20) 6+4k 3 12 13 1 

(7, 20, 21) 4+4k 3 13 14 1 

(8, y, z) (8, 9, 11) 3 + 4k 1 (8, 15, 17) 3 1 3 2 

(9, y, z) (9, 10, 11) 4+2k 13 (9, 40, 41) 5 1 2 1 

(9, 12, 13) 3 + 4k 4 3 4 1 

(9, 15, 16) 4+2k 4 6 7 1 

(9, 17, 18) 3 + 4k 3 8 9 1 

(9, 20, 21) 4+2k 3 11 12 1 

(9, 22, 23) 3 + 4k 3 13 14 1 

(9, 25, 26) 4+2k 3 16 17 1 

(9, 27, 28) 3 + 4k 3 18 19 1 

(9, 30, 31) 4+2k 3 21 22 1 

(9, 32, 33) 3 + 4k 3 23 24 1 

(9, 35, 36) 4+2k 3 26 27 1 

(9, 37, 38) 3 + 4k 3 28 29 1 

(9, 10, 13) 4+4k (9, 12, 15) 3 1 4 3 

(10, y, z) (10, 11, 13) 4+4k 4 (10, 24, 26) 4 1 3 2 

(10, 17, 19) 4+4k 3 7 9 2 

(10, 19, 21) 4+2k 3 9 11 2 

(10, 21, 23) 4+4k 3 11 13 2 

Note. To determine the degree p, we used tables 1, 2. Threshold exponent pth is the value of the exponent p, at 

which the difference between the left and right sides of equation (1) changes sign from plus to minus. 


