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Abstract
We establish a number of properties of the dyadic rational numbers associated with surreal number theory. In
particular, we show that a two parameter function of dyadic rationals can give all the trees of n-days in surreal
number formalism.
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I. Introduction

In mathematics, from number theory history [1], one learns that historically, roughly
speaking, the starting point was the natural numbers N and after a centuries of though
evolution  one  ends  up  with  the  real  numbers   from which  one  constructs  the
differential and integral calculus. Surprisingly in 1973 Conway [2] (see also Ref.  [3])
developed the surreal numbers structure  which contains no only the real numbers ,
but also the hypereals and other numerical structures.
Consider the set

(1)

and call   and   the left and right sets of  , respectively. Surreal numbers are
defined in terms of two axioms:

Axiom 1. Every surreal number corresponds to two sets   and   of previously
created numbers, such that no member of the left set  is greater or equal to
any member  of the right set .

Let us denote by the symbol   the notion of no greater or equal to. So the axiom
establishes that if  is a surreal number then for each  and  one has

. This is

denoted by .
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Axiom 2.  One  number   is  less  than  or  equal  to  another  number

 if and only if the two conditions  and  are satisfied.

This can be simplified by saying that  if and only if  and .

Observe that Conway definition relies in an inductive method; before a surreal number
 is introduced one needs to know the two sets  and  of surreal numbers. Using

Conway algorithm one finds that at the -day one obtains  numbers, all of
which are of form

(2)

where   is an integer and  is a natural number. Of course, the numbers (2) are
dyadic rationals which are dense in the real . It is also possible to show that the real
numbers  are contained in the surreals  (see Ref. [2,3] for details). Of course, in
some sense the prove relies on the fact that the dyadic numbers (2) are dense in the
real .

In 1986, Gonshor [4] introduced a different but equivalent definition of surreal numbers.

II. Dyadic numbers in the surreal number theory

As we mentioned earlier, in [4] Gonshor provided a surreal number definition equivalent
to the one given by Conway;  in this note we will work with the Gonshor's definition,
so we begin by recalling it.

Definition 2.1 A surreal number is a function  from initial segment of the ordinals 

into the set .

For  instance,  if   is  the  function  so  that  ,  ,  ,

 then   is  the surreal  number  . In the Gonshor approach one
obtains the sequence:

-day

(3)
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in the -day

(4)

and -day

(5)

respectively.

Here, we would like to propose that the different dyadic numbers in the surreal
number theory can be obtained from the two parameter function:

(6)

Here, ,  and . The positive sector of 

(6), with  and therefore , becomes

(7)

while the negative sector, with  and therefore , is given by

(8)
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Observe that 

(9)

Moreover, it is worth mentioning that Gonshor [4] derived the formula 

(10)

which corresponds to (III) in (6).

Example 2.2 Let us consider the Gonshor surreal number . One gets 

(11)

By defining the order  if , where  is the first place where 
and  differ and the convention , it is possible to show that the Conway
and Gonshor definitions of surreal numbers are equivalent (see Ref. [4] for details).

Let us focus in (7) with   and therefore  . Also, we write  

explicitly as  Notice that according to (6) one always has . The first thing

that one observe is that (I) in (7) and (8) gives the integer numbers  and ,

respectively. By completeness one sets  . While (II) provides with the

dyadic rationals  where  is an odd element in the rationals  and . So,

this suggests that both integer  and rational  numbers are contained in the surreal
numbers .

Assume . In this case (7) becomes

(12)

This implies that from (I) and (II) one gets ,  and from

(III)  one  obtains  ,   and  so  on.  Since
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 one  also  has   and

,  and so on.

There must  be many interesting combinations  between (12) and (7)  (and (8),  but
perhaps one of the most attractive is

Proposition 2.3 The functions  and  are related by

(13)

This means that the tree  (and ) plays the role of a main

building block; any other tree   with   can be obtained from (13).

Surprisingly,   has  been  studied  in  the  context  of  Zeno  algorithm  [5],
Tompson group [6], Minkowski's  question mark function [7] among others. In some

sense if   were added to  and (3) was used the surreal numbers
terms of dyadic rationals could be discovered for another routes, different than game
theory [2].

Another  interesting  aspect  of  the  tree  structure   and

 is that one can derive, in an alternative way, how many numbers are created

in the  -day.  It  is  worth  to mention that  this  notion  of “day” is  used by the
mathematicians, in spire of their development of surreal numbers theory is considered
only in the mathematical context. First, let us use Gonshor formalism to answer this
question. In the -day one starts with the number  and in the -day the numbers 

and  are created, namely  and . While in the -day  numbers are created,

namely , , , and so on.

First, we shall need the proposition

Proposition 2.4 The identity

(14)

holds.

Proof.  By induction one assumes that (14) holds for an integer  and proves that also

holds for . Thus, one needs to prove that
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(15)

is true. But (15) implies that

(16)

For assumption (14) holds and therefore (16) becomes

(17)

which is an identity.    

Proposition 2.5  The total number of surreal numbers created at the -day are

(18)

Proof.

 The series  determines . So, from the identity (14) 
one sees that (18) holds. 

Remark 2.6  Since the function  is two a parameter function  and , if

one fixes  and change  one moves vertically producing the corresponding tree, as

. While if one fixes   and change  one is moving horizontally. In this

sense  determines the day parameter used by the mathematician.

Example 2.7 Let us set . From (7) one obtains , ,

, and the corresponding negatives. So, in the  -day we have  

numbers and so one discovers the series  which is what one
obtains with Gonshor approach.

The -day is defined as the limit when the surreal numbers reproduce the real
numbers.
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Proposition 2.8 In the -day the tree  take values in the interval

(19) 

over the real .

Proof. Let us first proof that . From III in (7), one has

(20)

with  and . The maximum of (20) is obtained when one takes only the
positive number value in each term. In this case (20) becomes

(21)

which leads to 

(22)

But, since  when , one has . 

Now the minimum value of  is obtained when one takes all the 
negative values (20). So, one has

(23)

 

This implies

(24)
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This means that  when . Since  one 
sees that the proposition is verified.   

Corollary 2.9 In the -day the function  takes values in the interval 

(25)

over the real .

Proof.   According  to  (13)  one  has  .  Since

 and   one sees that  . On the other hand,

since  one learns that  and therefore

 which  means  that  .  This  prove  that

.  The  other  part  of  the  proof  follows  from  the  fact  that

.  

A connection between oriented matroid theory [8] (see also Refs. [9]-[15] and
references therein) and surreal number theory has been developed [16]. So, one may
expect that, in the context of surreal number theory, the mathematical notions of this
article may be useful for further developing of oriented matroid theory .
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