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I. Introduction 
The study of possible links between intrinsic kinematics of space curves [23] and integrablesoliton 

bearing equations [1] deserves attention because of a wide variety of applications of moving curves such as 

vortex filament motion in fluids [13]. dynamics of continuum spin chain [17], interface dynamics [11], etc. The 

pioneering work by Hasimoto [13] on the motion of a vortex filament in a fluid was the first to suggest such a 

link [3]. 

After the work of Hasimoto, several authors [4,5,10,15,16,17,18, 20,21, 22, 25] studied the connection 

between thy integrable nonlinear Schrodinger equation and non-stretching vortex filament equation. Ding and 

Inoguchi also presented this connection in Minkowski 3-space [6,7,8,12]. 

 The present work is aimed to study the relationship between moving space curve in Minkowski 3-

space in case of space-like curve and soliton equations. The paper is organized as follows: In section 2 we 

discuss the basic geometry of a curve in Minkowski 3-space and introduce the Frenet-Serret equations which 

describe it. In section 3 we derive the relationship between curve evolution and soliton equations in Minkowski 

3-space in case of space-like curve with space-like principal normal. 

 

II. Preliminaries 
The Minkowski 3-space𝐸1

3is the Euclidean 3-space 𝐸3 provided with the standard flat metric given by 
𝑑𝑠2 = −𝑑𝑥1

2 + 𝑑𝑥2
2 + 𝑑𝑥3

2 ,  
where 𝑥1 , 𝑥2 , 𝑥3  is a rectangular coordinate system of 𝐸1

3. Since 𝑑𝑠2 is an indefinite metric, recall that a vector 

𝜈 𝐸1
3 can have one of three Lorentzian causal characters: it can be space-like vector if 𝑑𝑠2  (𝑢, 𝜈 ) >  0 𝑜𝑟 𝜈 =

 0, timelike vector if 𝑑𝑠2(𝑢, 𝑣)  <  0 and null (light-like) vector if 𝑑𝑠2(𝑢, 𝜈)  =  0and 𝑣 ≠  0. Similarly, an 

arbitrary curve 𝛼 =  𝛼(𝑠) 𝑖𝑛 𝐸1
3 can locally be space-like curve, time-like curve or null (light-like)curve, if all 

of its velocity vectors α' (s)are respectively space-like, time-like or null (light-like) vectors. Denote by {𝒕, 𝒏, 𝒃} 

the moving Frenet frame along the curve α (s)in the space 𝐸1
3 [9, 14, 24]. 

 

III. Moving space-like curves with a space-like normal 
A space curve embedded in three-dimensions may be described using the usual Frenet-Serret equations. In the 

case of space-like curve with a space-like principal normal, the usual Frenet equations read as the following 

[14]: 

𝒕𝒔  =  𝜅𝒏,               𝒏𝒔  = + 𝜅𝒕 ــ    𝜏𝒃,             𝒃𝒔  =  𝜏𝒏 3.1  
where𝜅, 𝜏and 𝑠are curvature, torsion and arc-length of 𝛼 (𝑠)and 

 𝑡, 𝑡 =  𝑛, 𝑛 = − 𝑏, 𝑏 = 1,                 𝑡, 𝑛 =  𝑛, 𝑏 = − 𝑏, 𝑡 = 0 

To describe the time evolution of the triad {𝒕, 𝒏, 𝒃}, from above relations we have the following set of equations: 

𝒕𝒖  =  𝑔𝒏 + 𝑕𝒃,        𝒏𝒖 = 𝑔𝒕 ـ + 𝑓𝒃,        𝒃𝒖 = 𝑕 𝒕 + 𝑓𝒏,                                     (3.2) 

where the functions 𝑔 = 𝑔 𝑠, 𝑢 , 𝑕 = 𝑕(𝑠, 𝑢) and 𝑓 = 𝑓(𝑠, 𝑢)determine the motion of the curve with respect to 

time 𝑢. In the case of non-stretching curves, requiring that the unit traid satisfy the compatibility conditions: 

𝒕𝑠𝑢 = 𝒕𝑢𝑠 ,               𝒏𝑠𝑢 = 𝒏𝑢𝑠 ,                     𝒃𝑠𝑢 = 𝒃𝑢𝑠 .                                               3.3  
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By substituting in the compatibility conditions (3.3) from (3.1) and (3.2), we obtain the following relations: 

κ𝑢 = 𝑔𝑠 + 𝑕𝜏,          𝜏𝑢 = κ𝑕 + 𝑓𝑠 ,           𝑕𝑠 = κ𝑓 − 𝑔𝑕.                                             (3.4)      
Now, we will study three formulations to the relation between moving space-like curve with space-like normal 

and soliton equations as follows: 

 

Formulation (3.1) 

The second and third equations of the set (3.1) are combined to yield 

(𝒏 +  𝒃)𝑠 + 𝜏 𝒏ــ  𝒃 = −𝜅 𝒕,           𝒏 − 𝒃 𝑠 + 𝜏 𝒏 − 𝒃 = −𝜅 𝒕 .                (3.5) 

This immediately suggests the definition of certain complex vectors 

𝑁1 =
1

 2
 𝑛 + 𝑏 exp  − 𝜏 𝑑𝑠 𝑁2 =

1

 2
 𝑛 − 𝑏 exp   𝜏 𝑑𝑠            (3.6) 

Then we have a new frame {𝒕, 𝑁1, 𝑁2} satisfying the following conditions: 

 𝑡, 𝑡 =  𝑁1, 𝑁2 = 1,                 𝑡, 𝑁1 =  𝑡, 𝑁2 =  𝑁1, 𝑁1 =  𝑁2, 𝑁2 = 0 

Differentiating equation (3.6)with respect  to 𝑠 and using equation (3.5), we will get:          

𝑁1𝑠 = −
1

 2
𝜅 exp  − 𝜏 𝑑𝑠 𝑡,          𝑁2𝑠 = −

1

 2
𝜅 exp   𝜏 𝑑𝑠 .                        3.7  

Thus the functions Ψ1 and Ψ2 appear in a natural fashion in the above equations 

Ψ1 =
1

 2
𝜅 exp  − 𝜏 𝑑𝑠 Ψ2 =

1

 2
𝜅 exp   𝜏 𝑑𝑠 .                            3.8  

By using the definitions of  𝑁1and  𝑁2 in (3.6), we get the following system  

 
𝑡𝑠 = Ψ2𝑁1 + Ψ1𝑁2,         𝑁1𝑠 = −Ψ1𝑡,           𝑁2𝑠 = −Ψ2𝑡,                           
𝑡𝑢 = γ2𝑁1 + γ1𝑁2,         𝑁1𝑢 = −γ1𝑡 + 𝑅1𝑁1,           𝑁2𝑢 = −γ2𝑡 − 𝑅1𝑁2,

(3.9)  

where 

γ1 =
1

 2
 𝑔 − 𝑕 exp  − 𝜏 𝑑𝑠 ,            γ2 =

1

 2
 𝑔 − 𝑕 exp   𝜏 𝑑𝑠 ,     𝑅1

= 𝑓 −  𝜏𝑢𝑑𝑠 

On imposing the compatibility conditions 𝒕𝑠𝑢 = 𝒕𝑢𝑠 , 𝑁1𝑠𝑢 = 𝑁1𝑢𝑠 ,  𝑁2𝑠𝑢 = 𝑁2𝑢𝑠  and using (3.9), we obtain 

Ψ1𝑢 − γ1𝑠 − 𝑅1Ψ1 = 0,        Ψ2𝑢 − γ2𝑠 + 𝑅2Ψ2 = 0,      𝑅1𝑠 = γ1Ψ2 − γ2Ψ1      (3.10) 

Or 

Ψ𝑢 − γ𝑠 − 𝑅1Ψ
∗ = 0,             𝑅1𝑠 = −

𝑖

 2
 𝛾Ψ∗ − 𝛾Ψ∗  3.11  

whereΨ = Ψ1 + 𝑖Ψ2,     𝛾 = γ1 + 𝑖γ2, Ψ∗ = Ψ1 − 𝑖Ψ2and 𝛾∗ = γ1 − 𝑖γ2. the two equations (3.11) are the 

system of soliton equations because it is an integrable system (of soliton type) [19] corresponding to moving 

space-like curve with space-like normal in formulation (I). 

It is worth noting that: as noted by Lamb [18], the structure of the two Equations in (3.11) which arose from 

compatibility conditions on curve evolution suggests a possible relationship with soliton-bearing equations, via 

the Ablowitz-Kaup-Newel1-Segur (AKNS) formalism [1,2]. In other wording: If we put Ψ1 = 𝑟, Ψ2 = 𝑞, γ1 =

−𝑟𝑠 ,  γ2 = 𝑞𝑠and 𝑅1 = 𝑅where 𝑟 ــ  = 𝑟 𝑠, 𝑢 , 𝑞 = 𝑞(𝑠, 𝑢)and 𝑅 = 𝑅(𝑠, 𝑢)are real functions of the variables 

𝑠and 𝑢, we get the following soliton equations: 

 𝑟𝑢 + 𝑟𝑠𝑠 + 𝑟𝑅 = 0,    𝑞𝑡 − 𝑞𝑠𝑠 − 𝑞𝑅 = 0,   𝑅𝑠 = 𝑟𝑞𝑠 + 𝑟𝑠𝑞,                 3.12  
which are introduced by Ding and Inoguchi in [8]. It is worth noting that: the third equation of (3.12) implies 

that 𝑅has the form 𝑅(𝑠, 𝑢) =  𝑟𝑞 + 𝑅0(𝑢), where 𝑅0(𝑢)is a function depending only on 𝑢. Then under the 

transformations 𝑞 ↦  𝑞 𝑒𝑥𝑝  ∫ 𝑅0𝑑𝑢  , 𝑟 ↦  𝑟𝑒𝑥𝑝 −∫ 𝑅0𝑑𝑢 ,we obtain 

𝑞𝑢 = 𝑞𝑠𝑠 + 𝑞2𝑟,      𝑟𝑢 = −𝑟𝑠𝑠 − 𝑟2𝑞                  3.13  
This system is just the second AKNS hierarchies of real type (2) by a scaling transformation  

𝑞 →  2 𝑞 and  𝑟 →  2 𝑟. 
 

Formulation (3.2) 

Combining the first and second equations of the set (3.1), we get 

(𝒏 +  i 𝒕)𝑠 + 𝑖𝜅 𝒏ــ  i 𝒕 = 𝜏𝒃.                            (3.14)  

The above equation suggests the definition of second complex vector 

 𝑀 =
1

 2
 𝑛 + 𝑖𝑡 exp  −𝑖  𝜅𝑑𝑠                                                          (3.15) 

Then we have the new moving curve {𝒃, 𝑀, 𝑀∗} satisfy 

− 𝑏, 𝑏 =  𝑀, 𝑀∗ = 1,                 𝑏, 𝑀 =  𝑏, 𝑀∗ =  𝑀, 𝑀 =  𝑀∗, 𝑀∗ = 0 

Differentiating equation (3.15) with respect to 𝑠 and using equation (3.14), we get: 
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𝑀𝑠 =
1

 2
𝜏 exp  −𝑖  𝜅 𝑑𝑠 𝑏                                                           (3.16) 

Thus the functions Φ appears in a natural fashion in the above equation. 

Φ =
1

 2
𝜏 exp  −𝑖  𝜅 𝑑𝑠                                                                 (3.17) 

By using the definitions of 𝑀, we can get the following system of differential equations 

 
𝑏𝑠 = Φ∗𝑀 + Φ𝑀∗,       𝑀𝑠 = Φb,                          

𝑏𝑠 = β∗𝑀 + β𝑀∗,       𝑀𝑢 = −i𝑅2𝑀 + 𝛽𝑏,
(3.18)  

where 

𝛽 =
1

 2
 𝑓 + 𝑖𝑕 exp  −𝑖  𝜅𝑑𝑠 ,   𝑅2 =  𝜅𝑢𝑑𝑠 − 𝑔. 

Now, from compatibility condition 𝑀𝑠𝑢 = 𝑀𝑢𝑠  and equating the coefficients of 𝒃, 𝑀 and 𝑀∗ we get 

Φ𝑢 − 𝛽𝑠 + 𝑖𝑅2Φ = 0          𝑅2𝑠 = 𝑖 𝛽∗Φ − 𝛽Φ∗  3.19  
The system of equations (3.19) are the AKNS-heirarchy which is known to be a universal model in integrable 

systems since almost all the famous equations coming from varied physical backgrounds, such as the NLS, 

KdV, mKdV and so on, belong to this hierarchy [2]. 

 

Formulation (3.3) 

From the first and third equations of (3.1), we get 

(𝒕 +  𝑖𝒃)𝑠 = (𝜅 + 𝑖𝜏)𝒏.                                            (3.20) 

This suggests the definition of a third complex vector 

𝑃 =
1

 2
( 𝒕 +  𝑖𝒃).                                                      (3.21) 

Then we have the new moving curve {𝑛, 𝑝, 𝑝∗}satisfy 

 𝑛, 𝑛 =  𝑃, 𝑃 =  𝑃∗, 𝑃∗ = 1                𝑛, 𝑃 =  𝑛, 𝑃∗ =  𝑃, 𝑃∗ = 0. 
Differentiating equation (3.21) with respect to 𝑠and using equation (3.20), we get: 

𝑃𝑠 =
1

 2
 (𝜅 + 𝑖𝜏) 𝒏                                                      (3.22) 

If we put 𝜒 =
1

 2
 (𝜅 − 𝑖𝜏) we can get the following system 

 
𝑛𝑠 = − χ∗𝑃 + χ𝑃∗ ,       𝑃𝑠 = χ∗𝑛,                              

𝑛𝑢 = − γ3
∗𝑃 + γ3𝑃

∗ ,       𝑃𝑢 = 𝑖𝑅3𝑃
∗ + γ3

∗𝑛,
(3.23)  

where𝛾3 =
1

 2
 (𝑔 − 𝑖𝑓)and 𝑅3 = 𝑕. Then from equations (3.23). we can obtain 

𝜒𝑢 − 𝛾3𝑠 + 𝑖𝑅3χ
∗ = 0,       𝑖𝑅3𝑠 =  γ3

∗𝜒 − 𝛾3χ
∗                                 (3.24) 

as an associated integrable system by the AKNS formulation. 
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