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Abstract:

In this paper we introduce a relationship between curve evolution and the soliton equations in Minkowski 3-
space in case of space-like curve with space-like principal normal.
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I.  Introduction

The study of possible links between intrinsic kinematics of space curves [23] and integrablesoliton
bearing equations [1] deserves attention because of a wide variety of applications of moving curves such as
vortex filament motion in fluids [13]. dynamics of continuum spin chain [17], interface dynamics [11], etc. The
pioneering work by Hasimoto [13] on the motion of a vortex filament in a fluid was the first to suggest such a
link [3].

After the work of Hasimoto, several authors [4,5,10,15,16,17,18, 20,21, 22, 25] studied the connection
between thy integrable nonlinear Schrodinger equation and non-stretching vortex filament equation. Ding and
Inoguchi also presented this connection in Minkowski 3-space [6,7,8,12].

The present work is aimed to study the relationship between moving space curve in Minkowski 3-
space in case of space-like curve and soliton equations. The paper is organized as follows: In section 2 we
discuss the basic geometry of a curve in Minkowski 3-space and introduce the Frenet-Serret equations which
describe it. In section 3 we derive the relationship between curve evolution and soliton equations in Minkowski
3-space in case of space-like curve with space-like principal normal.

Il. Preliminaries
The Minkowski 3-spaceE}is the Euclidean 3-space E2 provided with the standard flat metric given by
ds? = —dx} + dx? + dx2,

where(xy, x,, x3) is a rectangular coordinate system of E3. Since ds? is an indefinite metric, recall that a vector
v € E} can have one of three Lorentzian causal characters: it can be space-like vector if ds? (u,v) > 0orv =
0, timelike vector if ds?(u,v) < 0 and null (light-like) vector if ds?(u,v) = Oand v # 0. Similarly, an
arbitrary curve @ = a(s) in E} can locally be space-like curve, time-like curve or null (light-like)curve, if all
of its velocity vectors o' (s)are respectively space-like, time-like or null (light-like) vectors. Denote by {t, n, b}
the moving Frenet frame along the curve a (s)in the space E} [9, 14, 24].

I11. Moving space-like curves with a space-like normal
A space curve embedded in three-dimensions may be described using the usual Frenet-Serret equations. In the
case of space-like curve with a space-like principal normal, the usual Frenet equations read as the following
[14]:

t; = kn, ng = -kt + b, by, = ™m(3.1)
wherex, Tand sare curvature, torsion and arc-length of « (s)and
(t,t) =(n,n) = —(b,b) =1, (t,tn)=(nb)y=—(b,t)=0
To describe the time evolution of the triad {t, n, b}, from above relations we have the following set of equations:
t, =gn+hb, mn,=-gt+fh, b,=ht+ fn, (3.2)

where the functions g = g(s,u), h = h(s,u) and f = f (s, u)determine the motion of the curve with respect to
time u. In the case of non-stretching curves, requiring that the unit traid satisfy the compatibility conditions:
tSll = tus' nSll = nus* bsu = bus- (33)
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By substituting in the compatibility conditions (3.3) from (3.1) and (3.2), we obtain the following relations:

K, = gs + ht, T, = Kh + f, hs = xf — gh. (3.4)
Now, we will study three formulations to the relation between moving space-like curve with space-like normal
and soliton equations as follows:

Formulation (3.1)
The second and third equations of the set (3.1) are combined to yield

(n + b);-t(n + b) = —k ¢, n-b);+t(n—b) =—xkt. (3.5
This immediately suggests the definition of certain complex vectors
1 1
Ny =—(Mn+b)ex <—frds)N =—(nm—->b)ex (frds) 3.6
1 \/E( p 2 \/2( ) exp (3.6)
Then we have a new frame {t, N;, N, } satisfying the following conditions:
<t,t> = (vaN2> = 11 <t1N1> = <t1N2> = <N1:N1) = <N2!N2) =0
Differentiating equation (3.6)with respect to s and using equation (3.5), we will get:
1 1
Nig = ——kKex (—frds)t, N,, = ——kKex (frds). 3.7
1s \/E p 2s \/E p ( )
Thus the functions ¥; and W, appear in a natural fashion in the above equations
1 1
Y, =—kex (—frds)‘l’ = —KeX (frds). 3.8
1 2 p 2 NG p (3.8)
By using the definitions of N;and N, in (3.6), we get the following system
{ts = lple + l'plNz, le = _lplt, st = _qut, (3 9)
ty = Y2N1 +y1N,, Ny, = —=yit + RiNy, Npy = =Yat = R{Np,~ ™

where

Y1=%(9—h)exp(—ffd5), y2=%(g—h)exp(frd5), Ry
=f—f‘[uds

On imposing the compatibility conditions t, = t,, Nig, = Niys, Nogw = Ny and using (3.9), we obtain
Wi, —vis —Ri¥1 =0, Wou = V2s + R, =0, Rz =v¥ —v,¥; (3.10)
Or

l
Y, — v, — RWT =0, Ris = — = (%" —y¥)(3.11)

whereW =¥, +i¥,, y=v; +iy,, ¥"' =¥, —i%%and y* =vy; —iy,. the two equations (3.11) are the
system of soliton equations because it is an integrable system (of soliton type) [19] corresponding to moving
space-like curve with space-like normal in formulation (1).
It is worth noting that: as noted by Lamb [18], the structure of the two Equations in (3.11) which arose from
compatibility conditions on curve evolution suggests a possible relationship with soliton-bearing equations, via
the Ablowitz-Kaup-Newell-Segur (AKNS) formalism [1,2]. In other wording: If we put ¥; =71, ¥, =¢q, y; =
—1,, Y2 = q;and Ry = —Rwhere r = r(s,u), q = q(s,u)and R = R(s,u)are real functions of the variables
sand u, we get the following soliton equations:

n,+7s+TR=0, g —qs—qR=0, R;=rq,+14q, (3.12)
which are introduced by Ding and Inoguchi in [8]. It is worth noting that: the third equation of (3.12) implies
that Rhas the form R(s,u) = rq + Ry(u), where Ry(u)is a function depending only on u. Then under the
transformations g ~ q exp (f Rodu),r ~ rexp(—J Rodu),we obtain

Qu = qss + qZT, =Ty — qu (313)
This system is just the second AKNS hierarchies of real type (2) by a scaling transformation

q—>+vV2qand r > V2r.

Formulation (3.2)
Combining the first and second equations of the set (3.1), we get

(m + it)-ik(n + 1t) =1b. (3.14)
The above equation suggests the definition of second complex vector
1
M=—(Mn+it)ex (—ifde) 3.15
ﬁ( ) exp (3.15)
Then we have the new moving curve {b, M, M*} satisfy
—(b,b) = (M,M") = 1, (b,M) = (b,M*) =(M,M) =(M",M") =0

Differentiating equation (3.15) with respect to s and using equation (3.14), we get:
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1
M, = —rtex <—if;cds)b 3.16
Thus the functions @ appears in a natural fashion in the above equation.
1
O =—r7ex <—iflc ds) 3.17
Nk (3.17)

By using the definitions of M, we can get the following system of differential equations
b, = ®*M + ®M*, M, = ®b, 318
{ b, = B*M + BM*, M, = —iR,M + b, (3.18)
where

B =%(f+ih)exp<—ifkds>, R, =fkuds—g.

Now, from compatibility condition M, = M,,; and equating the coefficients of b, M and M™ we get

&, — B + iR, ® =0 Rys = i(B*® — f*)(3.19)
The system of equations (3.19) are the AKNS-heirarchy which is known to be a universal model in integrable
systems since almost all the famous equations coming from varied physical backgrounds, such as the NLS,
KdV, mKdV and so on, belong to this hierarchy [2].

Formulation (3.3)
From the first and third equations of (3.1), we get

(t+ ib), = (k +iD)n. (3.20)
This suggests the definition of a third complex vector
1
P =—(t + ib). 3.21
\/Z( ) (3.21)
Then we have the new moving curve {n, p, p*}satisfy
(n,n) =(P,P) =(P",P*)=1 (n,P) = (n,P*) = (P,P*) = 0.
Differentiating equation (3.21) with respect to sand using equation (3.20), we get:
1
P=—(k+it)n 3.22
7z ( ) (3.22)

If we put y = \/1—7 (x — it) we can get the following system
{ns =—-P+xP*), P =xn,
1 n, = _(ygp +Y3P*); Pu = lRBP* +Y§Tl,
wherey; = % (g — if)and R; = h. Then from equations (3.23). we can obtain

S Xu = V3s +iRsX" =0,  iRss = (y3x —¥3X") (3.24)
as an associated integrable system by the AKNS formulation.

(3.23)
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