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Abstract: 

During the last twenty years, there has been a revolution in the methods used to solve optimization problems. In 

the early 1980s, sequential quadratic programming and augmented Lagrangian methods were favoured for 

nonlinear problems, while the simplex method was unchallenged for linear programming. Since then, modern 

interior-point methods (IPMs) have infused virtually every area of continuous optimization, and have forced 

great improvements in the earlier methods. This paper aims to describe interior-point methods and their 

application to convex programming, special conic programming problems (including linear and semi-definite 

programming), and general possibly non-convex programming. 
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I. Introduction 
Almost twenty-five years ago, Karmarkar [11] proposed his projective method to solve linear 

programming problems: from a theoretical point of view, this was a polynomial-time algorithm, in contrast to 

Dantzig’s simplex method. Moreover, with some refinements, it proved a very worthy competitor in practical 

computation, and substantial improvements to both interior-point and simplex methods have led to the routine 

solution of problems (with hundreds of thousands of constraints and variables) that were considered untouchable 

previously. Most commercial software, for example, CPlex (Bixby [12]) and XpressMP (Gueret, Prins, and 

Sevaux [4]), includes interior-point as well as simplex options. 

The majority of the early papers following Karmarkar’s dealt exclusively with linear programming and 

its near-relatives, convex quadratic programming, and the (monotone) linear complementarity problem. Gill, 

Murray, Saunders, Tomlin and Wrigth [11] showed the strong connection to earlier barrier methods in nonlinear 

programming; Gonzaga et.al [4] introduced path-following methods with an improved iteration complexity; 

Kojima, Mizuno and Yoshise [9] realized, primal-dual versions of these algorithms, which are the most 

successful in practice. 

At the same time, Nesterov and Nemirovski were investigating the new methods from a more 

fundamental viewpoint: What are the basic properties that lead to polynomial-time complexity? It turned out 

that the key property is that the barrier function should be self-concordant. This seemed to provide a clear, 

complexity-based criterion to delineate the class of optimization problems that could be solved in a provably 

efficient way using the new methods. The culmination of this work was the book by Nesterov and Nemirovski, 

whose complexity emphasis contrasted with the classic text on barrier methods by Fiacco and McCormick [2]. 

Fiacco and McCormick describe the history of the (exterior) penalty and barrier (sometimes called 

interior penalty) methods; other useful references are Nash (1998) and Forsgren, Gill, and Wright [3]. Very 

briefly, Courant [14] first proposed penalty methods, while Frisch [7] suggested the logarithmic barrier method 

and Carroll [6] the inverse barrier method (which inspired Fiacco and McCormick). While these methods were 

among the most successful for solving constrained nonlinear optimization problems in the 1960s, they lost 

favour in the late 1960s and 1970s when it became apparent that the sub problems that needed to be solved 

became increasingly ill-conditioned as the solution was approached. 

The new research alleviated these fears to some extent, at least problems. Besides, the ill-conditioning 

turned out to be relatively Wright (1992) and Forsgren et al. [3]. 

The theory of self-concordant barriers is limited to convex optimization. However, this limitation has 

become less burdensome as more and more scientific and engineering problems are amenable to convex 

optimization formulations. Researchers in control theory have been much influenced by the ability to solve 

semi-definite programming problems (or linear matrix inequalities, in their terminology) arising in their field: 
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see Boyd, El Ghaoui, Feron, and Balakrishnan [17]. Moreover, several seemingly non-convex problems arising 

in engineering design can be reformulated as convex optimization problems: may be viewed in reference- Boyd, 

and Vandenberghe [16], Ben-Tal, and Nemirovski [1]. 

We have concentrated on the theory and application in structured convex programming of interior-

point methods since the polynomial-time complexity of these methods and its range of applicability have been a 

major focus of the research of the last twenty years. For further coverage of interior-point methods for general 

nonlinear programming, we recommend the survey articles of Forsgren et al. [3] and Could, Orban, and Toint 

[10]. Also, to convey the main ideas of the methods, we have given short shrift to important topics including 

attaining feasibility from infeasible initial points, dealing with infeasible problems, and super-linear 

convergence. The literature on interior-point methods is huge, and the area is still very active. 

 

II. The self-concordance-based approach to IPMs: 
Preliminaries 

The first path-following interior-point polynomial-time methods for linear programming, analyzed by Gonzaga 

[4], turned out to belong to the very well-known interior penalty scheme going back to Fiacco and McCormick 

[2]. Consider a convex program 

Tmin{c x : x X},   (1) 

     

X being a closed convex domain (i.e., a closed convex set with a non-empty interior) in this is one of the 

universal forms of a convex program. To solve the problem with a path-following scheme, one equips X with an 

interior penalty or barrier function F – a smooth and strongly convex1 function defined on int X such that   on 

every sequence of points   converging to a point  and considers the barrier family of functions 

T
tF (x) tc x F(x),          (2) 

 

where t > 0 is the penalty parameter. Under mild assumptions (e.g. when X is bounded), every function F attains 

its minimum on int X at a unique point X-(t), and the central path {X*(t) : 0}  converges, as   to the 

optimal set of (1). The path-following scheme for solving (1) suggests ‘tracing’ this path as   according 

to the following conceptual algorithm: 

Given the current iterate k k(t 0, x int X)   with kx  ‘reasonably close’ to * kx (t ),  we 

(a) Replace the current value kt  of the penalty parameter with a larger value k 1t ;  and 

(b) Run an algorithm for minimizing tk 1F (.),  starting at kX ,  until a point k 1X   close to * k 1x (t )

int tk 1arg min x F (.)  is found. 

The main advantage of the scheme described above is that *x (t)  is, essentially, the unconstrained minimizer of 

tF ,  which allows the use in (b) of basically any method for smooth convex unconstrained minimization, e.g., 

the Newton method. Note, however, that the classical theory of the path-following scheme did not suggest its 

polynomials; rather, the standard theory of unconstrained minimization predicted slow-down of the process as 

the penalty parameter grows. In sharp contrast to this common wisdom, both Renegar and Gonzaga proved that, 

when applied to the logarithmic barrier 
T

i i iF(x) In(b a ,x)    for a polyhedral set 

T
i iX {x :a x b 1 i m},     a Newton-method-based implementation of the path-following scheme can be 

made polynomial. These breakthrough results were obtained via an ad hoc analysis of the behavior of the 

Newton method as applied to the logarithmic barrier (augmented by a linear term). In a short time Nesterov 

realized what intrinsic properties of the standard log-barrier are responsible for this polynomials, and this crucial 

understanding led to the general self-concordance-based theory of polynomial-time interior-point methods 

developed in Nesterov and Nemirovski; this theory explained the nature of existing interior-point methods 

(IPMs) for LP and allowed the extension of these methods to the entire field of convex programming. We now 

provide an overview of the basic results of this theory. 

 

III. Self-concordance 
In retrospect, the notion of self-concordance can be extracted from analysis of the classical results on 

the local quadratic convergence of Newton’s method as applied to a smooth convex function f with nonsingular 

Hessian. These results state that a quantitative description of the domain of quadratic convergence depends on 
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(a) the condition number of 
2f  evaluated at the minimize *x  and (b) the Lipschitz constant of 

2f . In 

hindsight, such a description seems unnatural, since it is ‘frame-dependent’: it heavily depends on an ad hoc 

choice of the Euclidean structure in 
nR ;  indeed, both the condition number of 

2
*f (x )  and the Lipschitz 

constant of 
2 .f ( )  depend on this structure, which is in sharp contrast to the affine invariance of the Newton 

methods itself. At the same time, a smooth strongly convex function f by itself defines at every point x a 

Euclidean structure 
2u,v f , x D f (x) [u,v] . With respect to this structure, 

2f (x)  is as well-

conditioned as it could be it is just the unit matrix. The idea of Nesterov was to use this local Euclidean 

structure, intrinsically linked to the function f we intend to minimize, in order to quantify the Lipschitz constant 

of 
2f , with the ultimate goal of getting a ‘frame-independent’ description of the behavior of the Newton 

method. The resulting notion of self-concordance is defined as follows. 

Definition 2.1 Let
nX R  be a closed convex domain. A function f : int X R  is called self-concordant 

(Sc) on X if 

(i) f is a three times continuously differentiable convex function with k kf (X ) if x x ;    and 

(ii) f satisfies the differential inequality 

2 3/ 2 n| D f (x) [h,h,h] | 2(D f (x) [h,h]) , x int X,h R .      (3) 

Given a real v 1,F  is called a v-self-concordant barrier (v-SCB) for X if F is self-concordant on X and, in 

addition, 

DF(x)[hlI 291/ 2(D2F(x)[hhj)1/ 2Vx Eint X,hE R                           (4) 

(As above, we will use f for a general sc function and F for an SCB in what follows.) Note that the powers 3/2 

and ½ in (3) and (4) are a must, since both sides of the inequalities should be of the same homogeneity degree 

with respect to h. In contrast to this, the two sides of (3) are of different homogeneity degrees with respect to f, 

meaning that if f satisfies a relation of the type (3) with some constant factor on the right-hand side, we can 

always make this factor equal to 2 by scaling f appropriately. The advantage of the specific factor 2 is that with 

this definition, the function x ln(x) : R R   becomes a 1-SCB for R  directly, without any 

scaling, and this function is the main building block of the theory we are presenting. Finally, we remark that (3) 

and (4) have a very transparent interpretation: they mean that 
2D f  and F are Lipschitz-continuous, with 

constants 2 and 
1/ 2v , in the local Euclidean (semi) norm 

T 2
f ,x f ,x

|| h || , h,h h f (x)h    defined 

by f or similarly by F. 

It turns out that self-concordant functions possess nice local properties and are perfectly well suited to Newton 

minimization. We are about to present the most important of the related results. In what follows, f is an SC 

function on a closed convex domain X. 

Bounds on third derivatives and the recession space of Sc functions For all x int X  and all

n
1 2 3h ,h ,h R , we have 

3
1 2 3 1 f ,x 2 f ,x 3 f ,x| D f (x)[h ,h ,h ] | 2 || h || || h || || h || .  

The recession subspace 
2

fE {h : D f (x)[h,h] 0}   of f is independent of x int X , and fX X E  . 

In particular, if 
2f (x)  is positive definite at some point in int X, then 

2f (x)  is positive definite for all 

x int X  (in this case, f is called a non-degenerate SC function; this is always the case when X does not 

contain lines). 

It is convenient to write A 0 (A 0)   to denote that the symmetric matrix A is positive definite 

(semidefinite), and A B and B A(A B and B A)    if A – B 0(A – B 0).   

 

IV. Dikin’s ellipsoid and the local behavior of f 

For every x int X,  the unit Dikin. ellipsoid off f ,x{y :|| y x || 1}   is contained in X, and within this 

ellipsoid, f is nicely approximated by its second-order Taylor expansion: 
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f ,xr : || h || 1    

2 2 2 2
2

1
(1 r) f (x) f (x h) f (x)

(1 r)
    


                                 (5) 

T Tf (x) f (x) h ( r) f (x h) f (x) f (x) h (r),         

where 
2 3(s) : ln (1 s) s s / 2 s /3 ....         (Indeed, the lower bound in the last line holds true for all 

h such that x h int X.  ) 

 

V. The Newton decrement and the damped Newton method 

Let f be non-degenerate. Then f ,x|| . ||  is a norm, and its conjugate norm is f ,x|| || * 

T
f ,xmax{h :|| h || 1}  

T 2 1[ f (x)]    The quantity 

2 1
f ,x f ,x(x,f ) : || f (x) || * || f (x)] f (x) ||       

max
2

h
{Df (x)[h]: D f (x)[h,h] 1}  , 

called the Newton decrement of f at x, is a finite continuous function of x int X  which vanishes exactly at 

the (unique, if any) minimizer fx  of f on int X; this function can be considered as the ‘observable’ measure of 

proximity of x to Xf. In particular, when it is at most 1/2, the Newton decrement is, within an absolute constant 

factor, the same as ix The damped Newton method as applied to f is the iterative process. 

We get the following ‘frame-and data-independent’ description of the convergence properties of the damped 

Newton method as applied to an Sc function f: the domain of quadratic convergence is {x : A(x,f ) 1/ 4};  

after this domain is reached, every step of the method nearly squares the Newton decrement, the. Ilf, Xf distance 

to the minimizer and the residual in terms of f. Before the domain is reached, every step of the method decreases 

the objective by at least 2c (1) 1/ 4 — ln(5 / 4) . It follows that a non-degenerate sc function admits its 

minimum on the interior of its domain if and only if it is bounded below, and if and only if. A(x, f ) < 1 for 

certain x. Whenever this is the case, for every e (0, 0.1] the number of steps N of the damped Newton method 

which ensures that f (xk) min x f   does not exceed 0(1). 

Existence of the central path and its convergence to the optimal set Consider problem as above and assume that 

the domain X of the problem is equipped with a self-concordant barrier F, and the level sets of the objective 

{x E X : cTx a}  are bounded. In the situation in question, F is nondegenerate, cTx attains its minimum on 

X, the central path x(t) : argmin F(x),F(x) :  tcTx F(x), t 0  , 

In the case of linear programming, when K (and then also *K ) is the nonnegative orthant, then whenever (P) or 

(D) is feasible, we have equality of their optimal values (possibly   ), and if both are feasible, we have strong 

duality: no duality gap, and both optimal values attained. 

In the case of more general conic programming, these properties no longer hold (we will provide examples in 

the next subsection), and we need further regularity conditions. Nesterov and Nemirovski (1994, Theorem 4.2.1) 

derive the next result. 

 

VI. Theorem. 
If either (P) or (D) is bounded and has a strictly feasible solution (i.e., a feasible solution where x (respectively, 

s) lies in the interior of K (respectively, *K )), then their optimal values are equal. If both have strictly feasible 

solutions, then strong duality holds. 

The existence of an easily stated dual problem provides one motivation for considering problems in 

conic form (but its usefulness depends on having a closed form expression for the dual cone). We will also see 

that many important applications naturally lead to conic optimization problems. Finally, there are efficient 

primal-dual interior-point methods for this class of problems, or at least for important subclasses. 
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VII. Examples of conic programming problems 
First, it is worth pointing out that any convex programming problem can be put into conic form. Without loss of 

generality, after introducing a new variable if necessary to represent a convex nonlinear objective function, we 

can assume that the original problem is 

min T
x {C X : x X}  

with X a closed convex subset of 
nR . This is equivalent to the conic optimization problem, but for one 

dimension higher: 

min T
x

{C X : 1, (X, ) K},


     

where 
nK : cl{(x, ) R R : 0,x / X}       . However, this formal equivalence may not be very 

useful practically, partly because K and K may not be easy to work with. More importantly, even if we have a 

good self-concordant barrier for X, it may be hard to obtain and efficient self-concordant barrier for K (although 

general, if usually over conservative, procedures are available: see rule E in Section 2.4 and Freund, Jarre and 

Schaible [15]. 

Let us turn to examples with very concrete and useful cones. The first example is of course linear programming, 

where 
nK R . Then it is easy to see that K is also

nR , and so the dual constraints are just 
TA y c . The 

significance and wide applicability of linear programming are well known. Our first case with a non-polyhedral 

cone is what is known as second-order cone programming (SOCP). Here K is a second-order, or Lorentz, or 

‘icecream’ cone, 

q qL : { ,x) R R :|| x ||}     

or the product of such cones. It is not hard to see, using the Cauchy Schwarz inequality, that such cones are also 

self-dual, i.e., equal to their duals. We now provide an example showing the usefulness of SOCP problems 

(many more examples can be foundin Ben-Tal and Nemirovski [1]), and also a particular instance demonstrating 

that strong duality does not always hold for such problems. 

Suppose we are interested in solving a linear programming problem max 
T T{b y : A y c} , but the constraints 

are not known exactly: for the jth constraint 
T
ka y cj,  we just know that 

j jj j j j j(c ;a ) {(c ;a ) P u :|| u || 1},    an ellipsoidal uncertainty set centred at the nominal values j j(c ;a ) . 

(We use the MATLAB-like notation (u; v) to denote the concatenation of the vectors u and v.) Here jP  is a 

suitable matrix that determines the shape and size of this uncertainty set. We would like to choose our decision 

variable y so that it is feasible no matter what the constraint coefficients turn out to be, as long as they are in the 

corresponding uncertainty sets; with this limitation, we would like to maximize 
Tb y . This is (a particular case 

of) the so-called robust linear programming problem. Since the minimum of 
T T

j j j jc — a y (c ;a ) (1; –y)  

over the jth uncertainty set is 
T T

j j j(c,;a, ) (1; y) min{P u ) (1; y) : || u || 1}    

T T
j j j(c ;a ) (1; y) || P (1; y) ||,    this robust linear programming problem can be formulated as max

Tb y  

T
j j j1c ;a y S 0, j 1,..........,m,     

T
j j1P [(1; y) S 0, j 1,..........,m,     

jji j(S ;S ) K , j 1,............,m,   

where each jK  is a second-order cone of appropriate dimension. This is a SOCP problem in dual form. 

Next, consider the SOCP problem in dual form with data 

0
1 0 1 1

a ,b ,c 1
1 0 1 0

0

 
                 

  
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and  K the second-order cone in 
3R . It can be checked that y is feasible in (D) if and only if 1y  and 2y  are 

positive, and 
l 2

y y4 1 . Subject to these constraints, we wish to maximize 1y , so the problem is feasible, 

with objective function bounded above, but there is no optimal solution! In this case, the optimal values of 

primal and dual are equal: ( , x) (1/ 2;0;1/ 2)   is the unique feasible solution to (P), with zero objective 

function value. 

The second class of non-plyhedral cones we consider gives rise to semi-definite programming problems. These 

correspond to the case when K is the cone of positive semi definite matrices of a given order (or possibly a 

Cartesian product of such cones). Here we will restrict ourselves to the case of real symmetrc matrices, and we 

use 
pS  to denote the space of all such matrices of order p. Of scourse, this can be identified with 

nR  for 

n : p(p 1) / 2  , by making a vector from the entries and ij2m ,i j . We use the factor 2  so that the 

usual scalar product of the vectors corresponding to two symmetric matrices U and V equals the Frobenius 

scalar product 

T
ij ij

i, j

U V : Tr(U V) u v    

of the matrices. However, we will just state these problems in terms of the matrices for clarity. We write 
p

S  for 

the cone of (real symmetric) positive semidefinite matrices, and sometimes write X 0  to denote that X lies in 

this cone for appropriate P. As in the case of the non-negative orthant and the second-order cone, 
p

S  is self-

dual. This can be shown using the spectral decomposition of a symmetric matrix. We note that the case of 

complex Hermitian positive semidefinite matrices can also be considered and this is important in some 

applications. 

In matrix form, the constraint AX = b is defined using an operator A forms 
pS  to 

mR  and we can find 

matrices 
p

ijA S ,i 1,...,m,   so that 
m T

j i 1AX (A X) A   is then the adjoint operator from 
mR  to 

pS  

defined by
T

i i iA y y A  . The primal and dual semidefinite programming problems then become 

i imin C X, A X b ,i 1,......,m, x 0                               (6) 

and   
T

i i imax b y, y A S C,S 0    .    (7) 

Once again, we give examples of the importance of this class of conic optimization problems, and also an 

instance demonstrating the failure of strong duality. 

Let us first describe a very simple example that illustrates techniques used in optimal control. Suppose we have 

a linear dynamical system 

i(t) A(t) z (t),  

where the p × p matrices A(t) are known to lie in the convex hull of a number 1 kA ,...., A , of given matrices. 

We want conditions that guarantee that the trajectories of this system stay bounded. Certainly a sufficient 

condition is that there is a positive definite matrix 
pY S  so that the Lyapunov function 

TL(z(t)) : z(t) Yz (t)  remains bounded. And this will hold as long as L(z(t)) 0 . Now using the 

dynamical system, we find that 

T TL(z(t)) z(t) (A(t) Y YA(t)) z (t),   

and since we do not know where the current state might be, we 
Twant A(t) Y YA(t)   to be positive 

semidefinite whatever A(t) is, and so we are led to the constraints 

T
i i pA Y YA 0,i 1,....., k, Y I 0,      

where the last constraint ensures that Y is positive definite. (Here pI  denotes the identity matrix of order p. 

Since the first constraints are homogeneous in Y, we can assume that Y is scaled so its minimum eigenvalue is 

at least 1). To make an optimization problem, we could for instance minimize the condition number of Y by 
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adding the constraint pI Y 0    and then maximizing  . This is a semidefinite programming problem in 

dual form. Note that the variables y are the entries of the symmetric matrix Y and the scalar   and the cone is 

the product of k+2 copies of 
p

Ss . We can similarly find sufficient conditions for z(t) to decay exponentially to 

zero. 

Our second example is a relaxation of a quadratic optimization problem with quadratic constraints. Notice that 

we did not stipulate that the problem be convex, so we can include constraints like 
2
j jx x . Which implies 

that jx  is 0 or 1, i.e., we have included binary integer programming problems. Any quadratic function can be 

written as a linear function of a certain symmetric matrix. 

The set of all matrices 
T

T
1 x
x

xx

 
 

 is certainly a subset of the set of all positive semi definite matrices with top 

left entry equal to 1, and so we can obtain a relaation of the original hard problem in x by optimizing over a 

matrix X that is subject to the constraints defining this superset. This technique has been very successful in a 

number of combinatorial problems, and has led to worthwhile approximations to the stable set problem, various 

satisfiability problems, and notably the max-cut problem. Further details can be found, for example, in Goemans 

[8] and Ben-Tal and Nemirovski [1]. 

Let us give an example of two dual semidefinite programming problems where strong duality fails. The primal 

problem is where the first constraint implies that and hence 12x  and 21x , are zero, and so the second 

constraint implies that 33x  is 1. Hence one optimal solution is X = Diag (0; 0; 1) with optimal value 1. The 

dual problem is so the dual slack matrix S has 22s 0 , implying that 12S  and 21S  must be zero, so 2y  

must be zero. So an optimal solution is y (0;0)  with optimal value 0. Hence, while both problems have 

optimal solutions, their optimal values are not equal. Note the both problems have a strictly feasible solution, 

and arbitrary small perturbations in the data, which can make the optimal values, jump. 
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