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Abstract 
In this work we derived and analyzed the convergence and consistency of an order eight rational integrator 

wherein our numerator and denominator is 4 (𝑖. 𝑒 𝑚 = 𝑛 = 4) for the solution of problems in ordinary 

differential equations. A demonstration of the implementation of our integrator was also carried out; the result 

shows that our integrator is stable computationally. The integrator was observed to be A-stable, consistence and 

hence convergence.   
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I. Introduction 
Scientific Computing is the Mathematical Subject that deals with the use of computer to solve mathematical 

problems. The process involves 

i. Analyzing the problem into a computable form 

ii. Developing the Analysis into an algorithm 

iii. Writing a Computer Programme in a Computer Programming Language based on the algorithm 

iv. Running the programme to obtain Output Results and 

v. Analysing the output for the work. 

Luke et al (1975) opened the main stream researches in the use of rational approximating functions of the form: 

𝑅 𝑥 =  
𝑃𝑚 (𝑥)

𝑄𝑛 (𝑥)
        (1.1) 

where 𝑃𝑚  𝑥  and 𝑄𝑛(𝑥) are polynomial functions of the same variable 𝑥, whose denominator degrees 

𝑚 and numerator degree 𝑛 need not be unique for developing Rational Integrators. Herein we desire to avoid 

one of the methods that use the determinant of the matrix equation in arriving at the solution to our 

Simultaneous Linear Algebraic Equations (SLAE) where in this case the unknown variables are not very many 

to handle. We must herein state that whenever the unknown variables are more than three; the Gaussian 

Elimination Method (GEM) becomes much more attractive to users Derrick and Grossman (1987). For the 

purpose of this research we have 4 unknown𝑞1 , 𝑞2, 𝑞3 , 𝑞4 and so we are employing the services of the Gaussian 

Elimination Method (GEM) (also known as row reduction). It is usually understood as a sequence of row 

operations performed on the associated matrix of coefficients. This method can also be used to find the rank of a 

matrix, to calculate the determinant of a matrix, and to calculate the inverse of an invertible square matrix. The 

method is named after Carl Friedrich Gauss (1777-1855), Wikipedia (2015).  

 According to Aashikpelokhai (1991), Elakhe and Aashikpelokhai (2010, 2011, 2013) this method 

represents an important family of implicit and explicit iterative methods for approximation of (ODEs) in 

numerical analysis especially in solving (IVPs) in (ODEs) of the form 

𝑦′ = 𝑓 𝑥, 𝑦 , 𝑦 𝑥0 =  𝑦0 , 𝑎 ≤ 𝑥 ≤ 𝑏                              (1.2) 

 

For any 4 × 4 matrix of coefficients such as represented in (2.1) we employ the GEM by following the 

work in Elakhe (2011) and also Elakhe et al (2011) whose work on order 4 based denominator with 𝑚 = 0 

arrived with a new formula after a very exhaustive detailed analysis.   Tejumola (1971, 1975, 1988), Tejumola 

and Ezeilo (1979) Tejumola and Afuwape (1990), Ebiendele (2010, 2011, 2013), Ebiendele and Okodugha 

(2013), Afuwape et al (2007) concentrated their work on the theoretical solutions in (ODEs) whose result on 

lurie systems we will follow to achieve our goal, here their major aim was centered on the nonlinearities of the 

equilibrium state of the degenerate systems. Here in this research we wish to derive a singulo-stiff numerical 

rational integrator, study its stability and determine the nature of the stability function. 
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As our work is concerned with the stability function of the eight order rational integrator, we would 

ensure that there is a theoretical guarantee of its workability before future testing, this assurance is obtained by 

proving consistency and convergence. Works of Inegbedion (1995), Tian and Kuang (1996), Papakostas et all 

(1996), Schroll (1996), In’tHout (1996), Barry et al (1996), David et al (1996), Vozovol et al (1996), Momodu 

(1997), Irhumudomon (1997), Enaholo (2000), Uzor (2000), did not carry out implementation. They 

concentrated on the theoretical aspect of their works. We cite just a few here to justify this non-implementation 

work.    

In an attempt to extend the approximation method of Euler, Runge in 1895 elaborated on Euler method 

to give a more elaborate scheme which was capable of greater accuracy. The requirement of evaluating the 

derivative at the midpoint or endpoint of a step not yet completed was achieved by first performing an Euler 

type of calculation to obtain a preliminary approximation to the solution at one of these points. Exponential 

integrators are among the integrators that have become an active area of research, which originally was 

developed for solving stiff differential equations and also partial differential equations which include hyperbolic 

as well as parabolic problems such as heat. They are a class of numerical methods for the solution of partial and 

ordinary differential equations. This deals with the exact integration of the linear part of the initial value 

problem from numerical analysis. They can be constructed to be explicit or implicit for numerical ordinary 

differential equations or serve as the time integrator for numerical partial differential equations. Examples of 

published works in this area include the work of Fatunla (1978, 1980). 

This research work however, is aimed at creating and applying a new integration approach to solve 

these classes of problems. We shall also be examining the stability structure of the new integration method. 

 

Terms and Notations 

Definition: (Dahlquist, 1963) 

A numerical method is said to be A-Stable if its Region of Absolute Stability (RAS) contains the whole of the 

left-hand half of the complex plane i.e. 𝑅𝑒 𝑕  < 0. 

Definition: (Lambert, 1973, 1974) 

 A numerical integrator is said to be Absolutely Stable if the absolute value of the stability function 

𝜍(𝑕) is less than unity. That is, 

⃒𝜍 𝑕 ⃒ = ⃒𝜍 𝑢 + 𝑖𝑣 ⃒ < 1,    𝑖 =  −1      (1.3) 

Definition: Region of Absolute Stability (RAS) (Lambert, 1976) 

A region D of the complex plane is said to be a Region of Absolute Stability (RAS) of a given method, if the 

method is absolutely stable for 𝑕 ∈ 𝐷. 

Definition: (Lambert, 1973) 

 A given one-step method is said to be L-stable if it is A-stable and in addition, 

lim𝑅𝑒 𝑕 → −∞ ⃒𝜍 𝑕 ⃒ = 0.       (1.4) 

Definition: (Aashikpelokhai 1991) 

 The function 𝑓(𝑥, 𝑦) is said to satisfy a Lipschitz condition in y, over the region D, if there exist a 

constant L such that 

 

∥ 𝑓 𝑥, 𝑦1 − 𝑓 𝑥, 𝑦2 ∥≤ 𝐿 ∥ 𝑦1 − 𝑦2 ∥     (1.5) 

In this case, L is called the Lipschitz constant and 𝑓(𝑥, 𝑦) is said to be Lipschitzian. 

By virtue of the relation 
𝜕𝑓 (𝑥 ,𝑦)

𝜕𝑦
= lim 𝑦1−𝑦2  →0

𝑓 𝑥 ,𝑦1 −𝑓(𝑥 ,𝑦2)

𝑦1−𝑦2
      (1.6) 

Consequently, 
𝜕𝑓 (𝑥 ,𝑦)

𝜕𝑦
 becomes a ready tool for the computation of L. Thus, we can simply write 

𝐿 =
⃒⃒𝜕𝑓 (𝑥 ,𝑦)⃒⃒

𝜕𝑦
 (1.7) 

 

II. Existence and Uniqueness of IVPs (ODEs) Solutions 
Theorem: (Aashikpelokhal et al 2010b) 

 The initial value first order linear differential equation 

 𝑎1 𝑥 
𝑑𝑦

𝑑𝑥
+ 𝑎0 𝑥 𝑦 = 𝑕 𝑥 , 𝑎1 𝑥 ≢ 0 

 𝑦 𝑥0 = 𝑦0 , 𝑎 ≤ 𝑥 ≤ 𝑏 

has a unique solution in the interval [𝑎, 𝑏] in which it is defined on the real line. 

Proof: (Aashikpelokhai et al 2010b) 

By the method of integrating factor, we obtain the general solution 
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𝑦 =  𝑒𝑥𝑝  − 
𝑎0(𝑥)

𝑎1(𝑥)
𝑑𝑥   𝐴 +   

𝑕(𝑥)

𝑎1(𝑥)
𝑒𝑥𝑝   

𝑎0(𝑥)

𝑎1(𝑥)
𝑑𝑥  𝑑𝑥    (2.1) 

where A is the integrator constant. 

 

Existence  

Select any point 𝑥 = 𝑥0   𝑖𝑛 [𝑎, 𝑏] and the value 𝑦 = 𝑦0 along the y-axis. Substitute the pair (𝑥0, 𝑦0) into 

(1.6.1.1), solve for the constant A. 

This value of A yields a particular solution 𝑦 = 𝑦(𝑥) obtained from (2.1) for every choice of arbitrary 𝑥 = 𝑥0in 

the interval [𝑎, 𝑏] and any 𝑦 = 𝑦0values chosen along the y-axis, when the pair (𝑥0 , 𝑦0) is substituted into the 

result (2.1) we obtain a new particular A which in turn yields a corresponding new solution. 

Hence, every initial value problem (ivp) above has at least one solution in the interval [𝑎, 𝑏]. 
 

Uniqueness  

To prove uniqueness, we wish to prove that if any two solutions are given, then they must be identical. Well 

then, let 𝑦1 , 𝑦2be such solutions of the given ivp. In this case we have for each 𝑖 = 1, 2. 

 𝑎1 𝑥 
𝑑𝑦 𝑖

𝑑𝑥
+ 𝑎0 𝑥 𝑦𝑖 = 𝑕 𝑥 , 𝑎1 𝑥 ≢ 0,     (2.2) 

implying, by linearity of the differential operator 

𝑎1 𝑥 
𝑑(𝑦1−𝑦2)

𝑑𝑥
+ 𝑎0 𝑥 (𝑦1 − 𝑦2) = 0 𝑎1 𝑥 ≢ 0     (2.3) 

and  𝑦2 − 𝑦1  𝑥0 = 𝑦2 𝑥0 − 𝑦1 𝑥0 = 0      (2.4) 

Hence 𝑦2 − 𝑦1 is a solution of the homogenous ivp 

𝑎1 𝑥 
𝑑𝑦

𝑑𝑥
+ 𝑎0 𝑥 𝑦 = 0, 𝑎1 𝑥 ≢ 0 

𝑦 𝑥0 = 0 

But by 𝑦𝑕 = 𝐴𝑒− 𝑝 𝑥 𝑑𝑥 the solution to this homogenous ivp is given by 

𝑦 = 𝐴 𝑒𝑥𝑝  − 
𝑎0(𝑥)

𝑎1(𝑥)
𝑑𝑥         (2.5) 

where A is our arbitrary constant of integration. 

Hence, therefore  

 𝑦2 − 𝑦1 = 𝐴 𝑒𝑥𝑝  − 
𝑎0(𝑥)

𝑎1(𝑥)
𝑑𝑥        (2.6) 

∴ 𝑦 = 𝑦2 − 𝑦1          (2.7) 

Substituting 𝑦 𝑥0 = 0 into our equation (2.5) we obtain 

𝐴 𝑒𝑥𝑝  − 
𝑎0(𝑥)

𝑎1(𝑥)
𝑑𝑥 = 0 

but then, 

𝐴 𝑒𝑥𝑝  − 
𝑎0(𝑥)

𝑎1(𝑥)
𝑑𝑥 ≢ 0for every value of 𝑥 on the real line. Hence, 𝐴 = 0, meaning that in  (2.5) we now 

have 𝑦 = 0 as the solution to the ivp. 

But by (2.5), 𝑦 = 𝑦2 − 𝑦1  

Hence, 𝑦2 − 𝑦1 = 0 and so 𝑦2 = 𝑦1 

 

A Multinomial Result 

Result for all real 𝑎𝑖  

Algebraic 

  𝑎𝑖
𝑛
𝑖=1  2 =  𝑎𝑖

2𝑛
𝑖=1 + 2  𝑎𝑖𝑎𝑗𝑖<𝑗   1 ≤ 𝑖, 𝑗 ≤ 𝑛  (2.8) 

𝑒. 𝑔. (𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5)2 

= 𝑎1
2 + 𝑎2

2 + 𝑎3
2 + 𝑎4

2 + 𝑎5
2 + 2[𝑎1𝑎2 + 𝑎1𝑎3 + 𝑎1𝑎4 + 𝑎1𝑎5 + 𝑎2𝑎3 + 𝑎2𝑎4 + 𝑎2𝑎5 

+𝑎3𝑎4 + 𝑎3𝑎5 + 𝑎4𝑎5 (2.9) 

 

Theorem1.2.2.1: (Aashikpelokhai et al 2010a) 

Let 𝑎𝑖 , 𝑖 = 1 1 𝑛 be any real or complex function, then(𝑎1 + 𝑎2 … + 𝑎𝑛)2 = 2  𝑎𝑖𝑎𝑗 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. 

Proof  

We employ the method on n. for 𝑛 = 1 we have  

𝐿𝐻𝑆 = 𝑎1
2  

 𝑅𝐻𝑆 = 𝑎1
2 + 2  𝑎𝑖𝑎𝑗 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. 

But 1 ≮ 1 ∴ there is no 𝑎𝑗  which make 𝑖 < 𝑗 

∴ 𝑎𝑗 = 0and so 𝑅𝐻𝑆 = 𝑎1
2 

𝑖𝑒 𝐿𝐻𝑆 = 𝑎1
2 = 𝑅𝐻𝑆 = 𝑎1

2 
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So the formula is true for 𝑛 = 𝑖 
Assume the formula true for arbitrary positive integer 𝑘 > 1 then 

(𝑎1 + 𝑎2 + ⋯ + 𝑎𝑘)2 = (𝑎1
2 + 𝑎2

2 + ⋯ + 𝑎𝑘)2 + 2  𝑎𝑖𝑎𝑗 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑛.                     (2.10) 

meaning that 

(𝑎1 + 𝑎2 + ⋯ + 𝑎𝑘)2 = 𝑎1
2 + 𝑎2

2 + ⋯ + 𝑎𝑘
2 + 2[ 𝑎1𝑎2 + 𝑎1𝑎3 + ⋯ + 𝑎1𝑎𝑘  

+ 𝑎2𝑎3 + 𝑎2𝑎4 + ⋯ +𝑎2𝑎𝑘 + ⋯ + 𝑎𝑘−1𝑎𝑘] 
Next we consider 

(𝑎1 + 𝑎2 + ⋯ + 𝑎𝑘 + 𝑎𝑘+1)2 =  𝐴 + 𝑎𝑘+1 
2  , 𝑤𝑕𝑒𝑟𝑒 𝐴 =  𝑎1 + 𝑎2 + ⋯ +𝑎𝑘 

2. 
𝑎𝑛𝑑 (𝐴 + 𝑎𝑘+1)2 = 𝐴2 + 𝑎𝑘+1

2 + 2𝐴𝑎𝑘+1    (2.11) 

𝑖𝑒 (𝑎1 + 𝑎2 + ⋯ + 𝑎𝑘 + 𝑎𝑘+1)2 = (𝑎1 + 𝑎2 + ⋯ + 𝑎𝑘)2 + 𝑎𝑘+1
2 + 2(𝑎1 + 𝑎2 + ⋯ + 𝑎𝑘)𝑎𝑘+1 

By induction step 

=  𝑎𝑖
2𝑘

𝑖=1 + 2  𝑎𝑖𝑎𝑗𝑖<𝑗 + 𝑎𝑘+1
2 + 2(𝑎1𝑎𝑘+1 + 𝑎2𝑎𝑘+1 + ⋯ + 𝑎𝑘𝑎𝑘+1)  (2.12) 

Observe that, the last term here represents the extra terms, each needed to bring them to (𝑘 + 1)𝑡𝑕 terms, 

namely 

i)  𝑎𝑖
2𝑘

𝑖=1 + 𝑎𝑘+1 =  𝑎𝑖
2𝑘+1

𝑖=1      (2.13) 

ii) 2  𝑎𝑖𝑎𝑗
𝑘
𝑖<𝑗 + 2 𝑎1𝑎𝑘+1 + 𝑎2𝑎𝑘+1 + ⋯ + 𝑎𝑘𝑎𝑘+1  

= 2[ 𝑎1𝑎2 + 𝑎1𝑎3 + ⋯ + 𝑎1𝑎𝑘 + 𝑎1𝑎𝑘+1 +  𝑎2𝑎3 + 𝑎2𝑎4 + ⋯ + 𝑎2𝑎𝑘 + 𝑎2𝑎𝑘+1    
       (1.2.2.7) 

 𝑎3𝑎4 + 𝑎3𝑎5 + ⋯ + 𝑎3𝑎𝑘 + 𝑎3𝑎𝑘+1 + ⋯ + 𝑎𝑘𝑎𝑘+1] = 2  𝑎𝑖𝑎𝑗
𝑘+1
𝑖<𝑗  (2.14) 

∴ The induction step 𝑘 has made true  

(𝑎1 + 𝑎2 + ⋯ + 𝑎𝑘 + 𝑎𝑘+1)2 =  𝑎𝑖
2𝑘+1

𝑖=1 + 2  𝑎𝑖𝑎𝑗1≤𝑖<𝑗≤𝑘     (2.15) 

but𝑘 was chosen arbitrarily. 

∴the multinomial theorem is true for all 𝑛 ∈ ℤ+.  

 

𝑷𝒂𝒅𝒆  Approximants (Aashikpelokhai et al 2010) 

 The subject of 𝑃𝑎𝑑𝑒  approximants dates back to as early as Cauchy (1759-1857) and Jacobi (1804-

1851). Frobenius gave a detailed investigation of the algebraic properties of 𝑃𝑎𝑑𝑒  approximants in 1881. 𝑃𝑎𝑑𝑒  
in his dissertation of the Ecole Nor male Suprrieure, classified these rational fraction approximants (now known 

as 𝑃𝑎𝑑𝑒  approximants) arranged them in a table now known as the 𝑃𝑎𝑑𝑒  table and investigated the structure of 

the table as well as special properties of the approximants to 𝑒𝑥 . 

The Linear 𝑃𝑎𝑑𝑒  Approximant according to Aashikpelokhai (1991) has the form (1.1). 

where𝑃𝑚 (𝑥) is the polynomial  𝑝𝑖𝑥
𝑖𝑚

𝑖=0  

and𝑄𝑛(𝑥) is the polynomial  𝑞𝑖𝑥
𝑖𝑚

𝑖=0  . 

The important aspect of 𝑃𝑎𝑑𝑒  approximants is the 𝑃𝑎𝑑𝑒  Table. 

By 𝑃𝑎𝑑𝑒  Table we mean the array 

 
 
 
 
 1 1   1 2   1 3   1 4  

 2 1   2 2   2 3   2 4  

 3 1   3 2   3 3   3 4  

 4 1   4 2   4 3   4 4   
 
 
 
 

 

 

 

III. Derivation Of Our Method 
The GEM and Our Rational Integrator 

The work done in the first major stages shows that row 1 of the given matrix equation was left untouched while 

the elements in column 1 of row 2, row 3 and row 4 became zero each. 

Consequently, by noting result (1.6) a comprehensive picture of the resulting matrix expressed above as  

 

𝑎11 𝑎12 𝑎13  𝑎14

0   𝑑22𝑑23  𝑑24

0   𝑑32𝑑33𝑑34

0   𝑑42𝑑43𝑑44

  

𝑞1

𝑞2

𝑞3

𝑞4

  =   

𝑏1

𝑒2

𝑒3

𝑒4

           (3.1)  

which represents the matrix equation form at the end of MAJOR STEP 1 and as kept in the computer memory. 

As we carry this computer picture in our minds while moving to the beginning of the second major step, we 

focus, as demanded by the GEM on the 3x3 matrix to stand in the place of the original matrix equation (3.1).  

in this chapter we are handling the implementation of the derivation work done in chapter 2 precisly. We now 

employ the derived results in (2.1.7 – 2.1.14) to state our implementation algorithm for obtaining the matrix 

form (2.1.6) above. 



An Explicit One-Step Method of an Order Eight Rational Integrator 

DOI: 10.9790/5728-1606020109                            www.iosrjournals.org                                                   5 | Page 

ALGORITHM FOR 𝒅𝒊𝒋 and 𝒆𝒊 IN TERMS OF 𝒂𝒊𝒋 and 𝒃𝒊 

For   row i   from  1 to 3  do 

  For  column j   from  1 to 3  do 

  𝑃𝑗 ivot = 
𝑎1,𝑗+1 

𝑎11 
 

  𝑑𝑖𝑗  =  𝑎𝑖+1,𝑗+1 − 𝑎𝑖+1,1 ∗ 𝑃𝑗 ivot 

  End do 

  𝑃4ivot = 
𝑏1 

𝑎11 
 

  𝑒𝑖 =  𝑏𝑖+1 − 𝑎𝑖+1,1 ∗ 𝑃4ivot 

End do 

Next, we pick on the derivation work done in the second major stages of the GEM derivation and note that while 

we focus on the matrix results, we recall that the derivation shows us that at the end of the second major step, 

row 1remained untouched while row 2 and row 3 entries in its column 1 become zero each. A comprehensive 

matrix picture that results at the end of the second major step is given by  

 

𝑎11 𝑎12 𝑎13  𝑎14

0   𝑑11𝑑12  𝑑13

0      0    𝑓11𝑓12

0      0    𝑓21𝑓22

  

𝑞1

𝑞2

𝑞3

𝑞4

  =   

𝑏1

𝑒1

𝑔1

𝑔2

      (3.2) 

This is the form now in the computer memory. This form is carried over to the beginning of 3
rd

 major step. This 

then leads us to obtain our implementation algorithm for obtaining  𝑓𝑖𝑗  and 𝑔𝑖  in terms of 𝑑𝑖𝑗  and 𝑒𝑖  as state here 

under. 

ALGORITHM FOR 𝒇𝒊𝒋 and 𝒈𝒊 IN TERMS OF 𝒅𝒊𝒋 and 𝒆 

For   row i   from  1 to 2  do 

  For  column j   from  1 to 2  do 

  𝑃𝑗 𝑖𝑣𝑜𝑡 = 
𝑑1,𝑗+1 

𝑑11 
 

  𝑓𝑖𝑗  =  𝑑𝑖+1,𝑗 − 𝑑𝑖+1,1 ∗ 𝑃𝑗 𝑖𝑣𝑜𝑡 

  End do 

  𝑃3𝑖𝑣𝑜𝑡 = 
𝑒1 

𝑑11 
 

  𝑔𝑖  =  𝑒𝑖+1 − 𝑑𝑖+1 ∗ 𝑃3𝑖𝑣𝑜𝑡 
End do 

 We at this last stage pick on the derivation work done in the third major stage for our implementation 

as follows. As we carried the result (3.2) with us from the last major step. The GEM left row 1 of the initial 

matrix equation is untouched while the transformation in the GEM left column 1 of its row 2 with zero entry. 

The resulting final matrix equation at the end of the third major stage is stated here as; this form is what now 

exists in the computer memory – our Upper Triangular Matrix. 

 
 
 
 
 

𝑎11 𝑎12 𝑎13              𝑎14

0                    𝑑11𝑑12            𝑑13

0                    0                 𝑓11𝑓12

        0                    0                  0    𝑓22 − 𝑓21
𝑓12

𝑓11
  
 
 
 
 

 

𝑞1

𝑞2

𝑞3

𝑞4

  =  

 
 
 
 
 

𝑏1

𝑒1

𝑔1

𝑔2 − 𝑓21
𝑔1

𝑓11 
 
 
 
 

 (3.3) 

Note that the matrix equation (3.3) obtained here is the required Upper Triangular Matrix (UTM). At this stage, 

knowing fully well that the matrix equation entries for the UTM are fully known, we use the last row to obtain 

the value directly for 𝑞4 and the use the back substitution to get 𝑞4 , 𝑞3, 𝑞2  𝑎𝑛𝑑 𝑞1in that order. 

Indeed, employing the fourth (last) row, we get 

 𝑓22 −
𝑓21𝑓12

𝑓11

 𝑔2 =  𝑔2 −
𝑓21𝑓12

𝑓11

 

which then yields  

𝑞4 =  
𝑔2𝑓11−𝑔1𝑓21

𝑓22𝑓21−𝑓21𝑓12
     (3.4) 

row 3 gives 

𝑞3 =  
𝑔1−𝑓12𝑞4

𝑓11
     (3.5) 

row 2 gives 

𝑞2 =  
𝑒1−𝑑12𝑞3−𝑑13𝑞4

𝑒11
     (3.6) 

row 1 gives  

𝑞1 =  
𝑏1−𝑎12𝑞2−𝑎13𝑞3𝑎14𝑞4

𝑎11
     (3.7) 
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 From these results, one can at any time in that order produce 𝑞𝑖𝑥𝑛+1
𝑖  𝑖 = 4,3,2,1. In order to obtain the 

final form of the numerator of the primitive form of the integrator 

𝑦𝑛+1 =  
𝑝0 +𝑝1𝑥𝑛+1+𝑝2𝑥

2
𝑛+1+𝑝3𝑥

3
𝑛+1+𝑝4𝑥

4
𝑛+1

 1+𝑞1𝑥𝑛+1+𝑞𝑥2
𝑛+1+𝑞3𝑥

3
𝑛+1+𝑞4𝑥

4
𝑛+1

     (3.8) 

Re-write (3.2.40) – (3.2.44) on page 22 as follows 

𝑝0 = 𝑦𝑛      (3.9) 

𝑝1𝑥𝑛+1 = 𝑦𝑛𝑞1𝑥𝑛+1 + 𝑕𝑦𝑛
(1)

     (3.10) 

𝑝2𝑥𝑛+1
2 = 𝑦𝑛𝑞2𝑥𝑛+1

2 + 𝑕𝑦𝑛
(1)

𝑞1𝑥𝑛+1 +
𝑕2𝑦𝑛

(2)

2!
     (3.11) 

𝑝3𝑥𝑛+1
3 = 𝑦𝑛𝑞3𝑥𝑛+1

3 + 𝑕𝑦𝑛
(1)

𝑞2𝑥𝑛+1
2 +

𝑕2𝑦𝑛
(2)

2!
𝑞1𝑥𝑛+1 +

𝑕3𝑦𝑛
(3)

3!
   (3.12) 

𝑝4𝑥𝑛+1
4 = 𝑦𝑛𝑞4𝑥𝑛+1

4 + 𝑕𝑦𝑛
(1)

𝑞3𝑥𝑛+1
3 +

𝑕2𝑦𝑛
(2)

2!
𝑞2𝑥𝑛+1

2 +
𝑕3𝑦𝑛

(3)

3!
𝑞1𝑥𝑛+1 +

𝑕4𝑦𝑛
(4)

4!
 (3.13) 

The sum  𝑝𝑖𝑥𝑛+1
𝑖4

𝑖=0 usinng (3.3.9) – (3.3.13) yields  

𝑝0 + 𝑝1𝑥𝑛+1 + 𝑝2𝑥𝑛+1
2 + 𝑝3𝑥𝑛+1

3 + 𝑝4𝑥𝑛+1
4  

=  
𝑕𝑟𝑦𝑛

(𝑟)

𝑟!

4

𝑟=0
+   

𝑕𝑟𝑦𝑛
(𝑟)

𝑟!

3

𝑟=0
 𝑞1𝑥𝑛+1 +   

𝑕𝑟𝑦𝑛
(𝑟)

𝑟!

2

𝑟=0
 𝑞2𝑥𝑛+1

2 +   
𝑕𝑟𝑦𝑛

(𝑟)

𝑟!

1

𝑟=0
 𝑞3𝑥𝑛+1

3 + 𝑦𝑛𝑞4𝑥𝑛+1
4  

𝑖𝑒  𝑝𝑖𝑥𝑛+1
𝑖

4

𝑖=0
= 𝑇4 + 𝑇3𝑞1𝑥𝑛+1 + 𝑇2𝑞2𝑥𝑛+1

2 + 𝑇2𝑞3𝑥𝑛+1
3 + 𝑦𝑛𝑞4𝑥𝑛+1

4  

∴ The numerator  𝑝𝑖𝑥𝑛+1
𝑖4

𝑖=0  of the primitive form of the integrator is given by 

 𝑝𝑖𝑥𝑛+1
𝑖4

𝑖=0 = 𝑇4 + 𝑇3𝑞1𝑥𝑛+1 + 𝑇2𝑞2𝑥𝑛+1
2 + 𝑇2𝑞3𝑥𝑛+1

3 + 𝑦𝑛𝑞4𝑥𝑛+1
4   (3.14) 

Consequently, we write our final form of the eight order rational integrator 

𝑦𝑛+1 =
𝑇4 + 𝑇3𝑞1𝑥𝑛+1 + 𝑇2𝑞2𝑥𝑛+1

2 + 𝑇2𝑞3𝑥𝑛+1
3 + 𝑦𝑛𝑞4𝑥𝑛+1

4

1 + 𝑞1𝑥𝑛+1 + 𝑞2𝑥𝑛+1
2 + 𝑞3𝑥𝑛+1

3 + 𝑞4𝑥𝑛+1
4  

where the 𝑞𝑖 , 𝑖 = 4, 3, 2, 1 are obtained in that order by the GEM results (3.4) – (3.7). 

Next, we produce our algorithm relating the matrix equation equivalent entries as follows. 

For neat programming we separate the coefficient work as follows 

 For r from  1 to m do 

  𝑐𝑟  ←   
𝑕

𝑥𝑛+1
 
𝑟 𝑦𝑛

(𝑟)

𝑟 !
 

 End do 

Employing our equivalent matrix equations,  we observe that  

𝑎𝑖𝑗 = 𝑐9−(𝑖+𝑗 ) 𝑎𝑛𝑑 𝑏𝑖 = −𝑐9−𝑖  

Therefore, having completed the coefficients 𝑐𝑟′𝑠 above we can convientely use them for the matrix A and 

vector b entries as follows 

Algorithm for Matrix A and Vector b 
 For  i from 1 to 4 do 

  For    j from 1 to 4 do 

    𝐼𝑅𝐶 = 9 −  𝑖 + 𝑗 𝑜𝑟 9 − 𝑖 − 𝑗 (𝑐𝑕𝑜𝑜𝑠𝑒 𝑎𝑛𝑦 𝑜𝑓 𝑡𝑕𝑒𝑚) 

   𝑎𝑖𝑗 = 𝑐 𝐼𝑅𝐶 𝑥 

  End do 

  𝐼𝑅 = 9 − 𝑖 
  𝑏𝑖 = −𝑐(𝐼𝑅) 
End do 

 

Algorithm Relations A(Ij), B(I) With The Coefficients 
By the equation results gotten, we have 

𝑎𝑖𝑗 = 𝑐9− 1+𝑗  ,𝑖, 𝑗 = 1 1 4         (3.15) 

Examples: 𝑎11 =  𝑐7 = 𝑐9−2,𝑎13 = 𝑐9−5 = 𝑐4 

while 

𝑏𝑖 = −𝑐9−𝑖 , 𝑖 = 1(4)         (3.16) 

The result stated in gave us  

𝑐𝑟 =
𝑕𝑟𝑦𝑛

(𝑟)

𝑟 ! 𝑥𝑛+1
𝑟 for each r a nonnegative integer. 

Note that the 9 in the relations (3.15) and (3.16) is related to the integrator rational approximant degrees sum 

= 4 from numerator and 4 from denominator which we all order 𝑝 = 8 ∴ 

𝑎𝑖𝑗 =  𝑐𝑝+1− 𝑖+𝑗  , 𝑖, 𝑗 = 1 1 4 .     (3.17) 

similarly for 𝑏𝑖 , 𝑖 = 1 1 4. 
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From the foregoing one can put down the algorithm for entering the coefficients for 𝑨𝒙 =  𝒃    where 𝑨 =

 𝑎𝑖𝑗  𝑎𝑛𝑑 𝒃 =  𝑏𝑖  𝑖 = 1 1 4 

 

Algorithm for Matrix A and Vector b Entries 

For      row     i          from            1       to       4         do 

𝑏𝑖 = −
𝑕9−𝑖𝑦𝑛

(9−𝑖)

(9 − 𝑖)! 𝑥𝑛+1
9−𝑖

 

For     column      j     from          1          to        4       do 

𝑎𝑖𝑗 =
𝑕9−(𝑖+𝑗 )𝑦𝑛

(9−(𝑖+𝑗 ))

(9 − (𝑖 + 𝑗)! 𝑥𝑛+1
9−(𝑖+𝑗 )

 

               End do 

End do 

For direct hand or desk computation we write 

𝑎𝑖𝑗 =
𝑕9−(𝑖+𝑗)𝑦𝑛

(9−(𝑖+𝑗))

(9−(𝑖+𝑗 )!𝑥𝑛+1
9−(𝑖+𝑗) 𝑖, 𝑗 = 1 1 4.       (3.18) 

𝑏𝑖 = −
𝑕9−𝑖𝑦𝑛

(9−𝑖)

(9−𝑖)!𝑥𝑛+1
9−𝑖 𝑖 = 1 1 4     (3.19) 

We conclude this chapter on implementation strategy by drawing up our Algorithm  

 

Implementation Algorithm 

1. Enter or initialize initial entries 𝑥0 , 𝑦0 , 𝜖, big etc 

2. Set 𝑥1 = 𝑥0 + 𝑕 

3. Obtain higher derivatives of 𝑦(1) = 𝑓 𝑥, 𝑦 , 𝑦 𝑥0 = 𝑦0  

4. Obtain the coefficients 𝑐𝑟′𝑠 

5. Enter 𝑎𝑖𝑗 ∈ 𝑨 𝑎𝑛𝑑 𝑏𝑖 ∈ 𝒃  

6. Compute 𝑑𝑖𝑗 ∈ 𝑫 and 𝑒𝑖 ∈ 𝒆 

7. Compute 𝑓𝑖𝑗 ∈ 𝑭 𝑎𝑛𝑑 𝑔𝑖 ∈ 𝒈 

8. Use the GEM results (3.4) – (3.7) to compute 𝑞4 , 𝑞3, 𝑞2 , 𝑞1 in that order by back substitution. 

9. Obtain Taylor, 𝑇𝑛 , series for 𝑦𝑛+1 

10. Compute your denominator 1 +  𝑞𝑖𝑥𝑛+1
𝑖4

𝑖=1 = 𝐷𝑒𝑛𝑜𝑚 

11. Compute your numerator  

a. 𝑇4 + 𝑇3𝑞1𝑥𝑛+1 + 𝑇2𝑞2𝑥𝑛+1
2 + 𝑇2𝑞3𝑥𝑛+1

3 + 𝑦𝑛𝑞4𝑥𝑛+1
4  

12.  If ⃒𝑑𝑒𝑛𝑜𝑚⃒ > 𝜖 then compute 𝑦1 =
𝑁𝑢𝑚

𝐷𝑒𝑛𝑜𝑚
 else make a comment you are at a singular point or simply 

leave the zone without comment 
13. Print the set result if desired 
14. Update your variables: 𝑥0 ← 𝑥1 ,    𝑦0 ← 𝑦1 return to step 2 
15. End        
 

IV. Convergence and Consistency Analysis of the Integrator 
 Every one-step method for numerical solution of ivp 

𝑦𝑛+1 = 𝑦𝑛 + 𝑕∅(𝑥𝑛 , 𝑦𝑛 ; 𝑕)      (4.1) 

is convergent if and only if  

lim𝑕→0  
𝑦𝑛+1−𝑦𝑛

𝑕
 = lim𝑕→0 ∅ 𝑥𝑛 , 𝑦𝑛 ;  𝑕 = 𝑓(𝑥𝑛 , 𝑦𝑛)      (4.2) 

1. where∅ 𝑥𝑛 , 𝑦𝑛 ;  𝑕  is commonly referred to as the potential function of the numerical method Momodu 

(1997). 

Theorem  

An Explicit One-Step Method of Rational Integrators is consistent and convergent. 

Proof:  Method 1 (Direct) 

From the preliminary discussion above, we must show that 

𝑓 𝑥𝑛 , 𝑦𝑛 = ∅ 𝑥𝑛 , 𝑦𝑛 ;  0 = lim
𝑕→0

 
𝑦𝑛+1 − 𝑦𝑛

𝑕
  

= lim
𝑕→0

∅ 𝑥𝑛 , 𝑦𝑛 ; 𝑕 = ∅ 𝑥𝑛 , 𝑦𝑛 ;  0 = 𝑓 𝑥𝑛 , 𝑦𝑛  

for our rational integrator. 

Indeed, since 

𝑦𝑛+1 =  
𝑝0 +𝑝1𝑥𝑛+1+𝑝2𝑥

2
𝑛+1+𝑝3𝑥

3
𝑛+1+𝑝4𝑥

4
𝑛+1

 1+𝑞1𝑥𝑛+1+𝑞𝑥2
𝑛+1+𝑞3𝑥

3
𝑛+1+𝑞4𝑥

4
𝑛+1
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where 

𝑞4 =  
𝑔2𝑓11−𝑔1𝑓21

𝑓22𝑓21−𝑓21𝑓12
𝑞3 =  

𝑔1−𝑓12𝑞4

𝑓11
 

𝑞2 =  
𝑒1−𝑑12𝑞3−𝑑13𝑞4

𝑒11
,   𝑞1 =  

𝑏1−𝑎12𝑞2−𝑎13𝑞3𝑎14𝑞4

𝑎11
 

so that: 

𝑦𝑛+1 − 𝑦𝑛 =  
 𝑦𝑛  +𝑝1𝑥𝑛+1+𝑝2𝑥

2
𝑛+1+𝑝3𝑥

3
𝑛+1+𝑝4𝑥

4
𝑛+1 −𝑦𝑛 ( 1+𝑞1𝑥𝑛+1+𝑞𝑥2

𝑛+1+𝑞3𝑥
3
𝑛+1+𝑞4𝑥

4
𝑛+1)

 1+𝑞1𝑥𝑛+1+𝑞𝑥2
𝑛+1+𝑞3𝑥

3
𝑛+1+𝑞4𝑥

4
𝑛+1

 (4.3) 

that is 

𝑦𝑛+1 − 𝑦𝑛 =
 𝑝1−𝑦𝑛𝑞1 𝑥𝑛+1+ 𝑝2−𝑦𝑛𝑞2 𝑥

2
𝑛+1+ 𝑝3−𝑦𝑛𝑞3 𝑥

3
𝑛+1+ 𝑝4−𝑦𝑛𝑞4 𝑥

4
𝑛+1

1+𝑞1𝑥𝑛+1+𝑞𝑥2
𝑛+1+𝑞3𝑥

3
𝑛+1+𝑞4𝑥

4
𝑛+1

   (4.4) 

Dividing through by 𝑕 

𝑥𝑛+1 =  𝑛 + 1 𝑕,we obtain 
𝑦𝑛+1−𝑦𝑛

𝑕
=

 𝑝1−𝑦𝑛𝑞1 (𝑛+1)+ 𝑝2−𝑦𝑛𝑞2 (𝑛+1)2𝑕+ 𝑝3−𝑦𝑛𝑞3 (𝑛+1)3𝑕2+ 𝑝4−𝑦𝑛𝑞4 (𝑛+1)4𝑕3

1+𝑞1𝑕 𝑛+1 +𝑞2𝑕
2(𝑛+1)2+𝑞3𝑕

3(𝑛+1)3+𝑞4𝑕
4(𝑛+1)4   (4.5) 

In the limit 𝑕 → 0, gives 

lim
𝑕→0

 
𝑦𝑛+1 − 𝑦𝑛

𝑕
 =  𝑝1 − 𝑦𝑛𝑞1 𝑛 + 1 

But recalling 

𝑝1 − 𝑦𝑛𝑞1 =
𝑕  𝑦𝑛

(1)

𝑥𝑛+1
hence, 

 =
𝑦𝑛

(1)

𝑛+1
  

Which gives 

lim𝑕→0  
𝑦𝑛+1−𝑦𝑛

𝑕
 = 𝑦𝑛

(1) = 𝑓(𝑥𝑛 , 𝑦𝑛)as required.  

      Conclusively, we report herein that our order eight rational integrator is convergent to the initial value 

problem and hence by Lambert (1973) every one-step numerical integrator is consistent if and only if it is 

convergent. 

      Hence, our order eight rational integrator is convergent and hence consistent. 

 
𝑕 = 0.0250 

   STEP    H       X0          X1                 Y1                    TSOL           INTE ERROR     

   1  0.0250  0.0000  0.0250     1.0513D+00     1.0513D+00     6.3800D-10 

   2  0.0250  0.0250  0.0500     1.1054D+00     1.1054D+00     1.8630D-09 

   3  0.0250  0.0500  0.0750     1.1625D+00     1.1625D+00     3.9634D-09 

   4  0.0250  0.0750  0.1000     1.2230D+00     1.2230D+00     7.2088D-09 

   5  0.0250  0.1000  0.1250     1.2874D+00     1.2874D+00     1.2093D-08 

   6  0.0250  0.1250  0.1500     1.3561D+00     1.3561D+00     1.9564D-08 

   7  0.0250  0.1500  0.1750     1.4296D+00     1.4296D+00     3.2288D-08 

   8  0.0250  0.1750  0.2000     1.5085D+00     1.5085D+00     5.7186D-08 

   9  0.0250  0.2000  0.2250     1.5936D+00     1.5936D+00     1.1820D-07 

  10  0.0250  0.2250  0.2500     1.6858D+00     1.6858D+00     5.6754D-07 

  11  0.0250  0.2500  0.2750     1.7861D+00     1.7861D+00    -3.0384D-07 

Table 1: Demonstrating using 𝑦(1) = 1 + 𝑦2 , 𝑦 0 = 1 0 ≤ 𝑥 ≤ 1 

V. Conclusions 
Using GEM, we have established an effective order 8 rational integrator. We have determined the 

stability nature of our formula. We also had proved that the method is convergent, consistent and A - stable in 

which case it can be used to carry out implementation. Hence, this integrator is fully recommended for users 

who are currently working in this area of research. 
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