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Abstract 
We present an adaptation of the classical algorithm of the decomposition of Bender to the b-complementary 

multisemigroup dual problem. Despite this decomposition has been shown in literature as a good tool for 

dealing with high dimensional mixed-integer linear programming, that is not the case for the presented one in 

this paper, which is better to be solved by the simplex algorithm without partitioning.  We present results from 

computer experiments to show that conclusion. 
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I. Introduction 
Aráoz in 1973 defined the Semigroup Problem (SP), characterizes the polyhedra, and shows the 

relation between the minimal system of linear inequality of the polyhedra and extreme points and rays. Aráoz 

and Johnson, in 1982, presented the polyhedra of a multivalued additive system problem. A particular case of 

multivalued additive systems is the b-complementary Multisemigroups (b-CMS).  A b-CMS is an associative, 

an abelian, a b-consistent, and a b-complementary additive system. Madriz, in 2016, constructed the dual 

problem associated with a b-CMS problem, extending the duality result of semigroup by Johnson in 1980. 

Madriz's work is based on the theorem presented by Ar´aoz and Johnson in 1989, where they determine that, 

given a base of the subadditive cone, it is possible to establish a system of equations and inequalities that define 

the polyhedron associated with a multivalued associative additive system.  Aráoz and Johnson in 1982 defined 

the finite  b-complementary multisemigroup as an associative, commutative, consistent, and complementary 

additive multivalued system and they showed the following characterization of the faces of the convex hull of 

multisemigroup solutions.  

Let  be an  b-complementary multisemigroup and  . The master corner polyhedron is 

defined as 

 
for some fixed right-hand side element  and  denotes the cardinality of the set   and  is the set 

of integer numbers. 

 

Let   be the subadditive cone associated with   (see [1]), Aráoz and Johnson in [2] showed the 

following characterization of the . 

 

Theorem 1.1 (Theorem 3.8 in [2])} Let (L,E) be a base of . The following system defined a  

  

  
 

In general, given a finite b-complementary multisemigroup A , the b-complementary multisemigroup master 

problem is defined as 
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where , and  is the set of real numbers.. 

Using theorem 3.8 proved by Aráoz and Johnson in 1982, Madriz in 2016 showed that the   problem is 

equivalent to the following problem 

 

 
where  is a base for and . In addition, Madriz in 2016 calculates the dual problem of  

and proves the duality theorem for  and   (see Theorem 4.3 of Madriz 2016 [4]). 

 
Let (L,E) be a base of C(A) and   , we denote with  the following problem,  

 
where  

 
for all . 

The dual problem of the   is the problem  

 
therefore the  problem  is equivalent to the problem 

 
where   is the solution of the problem . 

 

 

Now, let be X the polyhedron 

 
and  V(X) and R(X)  the  sets of vertices and the  extreme rays of the  X.    
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Note that in the case where X is empty, the dual problem   is infeasible. Moreover, from duality theory, the 

primal problem  has no feasible or it is unbounded. Therefore, we can assume that the set X is non-empty. On 

the other hand, since  the convex polyhedron X is independent of , the Benders inner problem for the 

dual of is defined as 

 
Therefore, the Benders master problem for the dual is the problem  

 
where  is the solution of the associated  problem. 

In this paper, we apply the Bender decomposition algorithm to solve the problem .The paper is divided as 

follows.  In section 2 we describe an algorithm using Benders decomposition for the dual problem associated 

with the problem of b-complementary multisemigroup. Finally, in section 3 we present experimental results for 

this algorithm, and conclusions in section 4.  

 

1. Material and methods. 

Give a base (L,E) of . since , L and E are finite sets, we can consider  where  

and    for all  

where  

where  

In addition, we consider: 

 

 

 

 

 

 
For the point , we associate the subset of defined by 

 
Finally, for a non-empty , we have 

 
Benders decomposition algorithm for   problem is presented in Algorithm [1] which is the original Benders' 

method presented in [3] with some modifications. To bound region space, we consider in line 16 only the 

vectors contained in hypercube for a given large real number M, because the space of subproblem (1) 

must be bounded as assumed in [3]. At line 28, dual of subproblem (2) can be obtained by a terminated simplex 

table. The extreme direction in line 37 can be obtained by terminating the simplex table of subproblem (2) at 

line 22. Additionally, we put a condition at line 45 to avoid infinite loops when there is no modification in 

and . 

We performed experiments using a notebook Lenovo g400s, with an Intel Core i3-3110M CPU @2.40GHz 64-

bit processor, and 4GB RAM. The operational system was Ubuntu 18.04.1 LTS, and Kernel 4.15.0-36-generic. 

For Benders' method and random numbers generators algorithms, we respectively used Python 2.7.15rc1 and 

Python 3.6.5 with the following libraries: NumPy 1.15.1, SciPy 1.1.0, Pandas 0.23.4, and Matplotlib 2.2.3. 

 

II. Experiments and Results 
We performed experiments to compare the execution of Benders' method and the simplex without 

partitioning running only the simplex to solve . So, we aim to find the best algorithm for the proposed 

problems. 

In Figures 1,2,3 and 4, we plotted the objective function values of each 100 random test. In these 

figures, we ordered the tests by the absolute value of objective function values difference between Benders' 

decomposition and simplex without partitioning. So, we see almost 60% of tests for each r value used has little 
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difference in objective functions. The simplex algorithm used in the experiments was linprog which is found in 

the optimize package of SciPy library. The classical Benders' method algorithm was developed in Python
1
 

 

 
Figure 1. Number of occurrences versus number of iterations  

for different  matrices sizes with r = 10. 

 
Figure 2. Number of occurrences versus number of iterations  

for different  matrices sizes with r = 15. 

 

 
Figure 3.Number of occurrences versus number of iterations f 

or different  matrices sizes with r = 20. 

 

 

1https://github.com/yuri-tavares/benders-decomposition. 
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Figure 4. Number of occurrences versus number of iterations for different  matrices sizes with r = 25 

 

 

In Figures 5,6,7 and 8, we plotted the objective function values of each 100 random tests. In these 

figures, we ordered the tests by the absolute value of objective function values difference between Benders' 

decomposition and simplex without partitioning. So, we see almost 60  of the tests for each r value used has 

little difference in the objective function. However, we expected that no difference at all should exist.  

 

 
Figure 5. Objective function values ordered by absolute  

difference with r = 10. 

 

 
Figure 6. Objective function values ordered by absolute  

difference with r = 15 

 



Why does the classical Benders decomposition algorithm not work well for the .. 

DOI: 10.9790/5728-1606022635                            www.iosrjournals.org                                                 31 | Page 

 
Figure 7. Objective function values ordered by absolute  

difference with r = 2. 

 

Figures 9, 10, and 11 show the theoretical number of iterations in the worst case for r = 10, 20, and 30. 

We see for up to a certain number $n$, Benders' method has fewer number of iterations than the simplex. 

However, in almost all cases  optimal objective function values differ, and, consequently, solution vectors do so. 

As shown in Figures 5 and 8 optimal objective function value difference significantly varies. 

 

 
Figure 8. Objective function values ordered by absolute 

difference with r = 25. 
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Figure 9. Theoretical number of iterations in the worst case for simplex  

without partitioning and Benders' method for r = 10. 

 

 
Figure 10. Theoretical number of iterations in the worst case for simplex 

without partitioning and Benders' method for r = 20. 

 
Figure 11. Theoretical number of iterations in the worst case for simplex  

without partitioning and Benders' method for r = 30. 

  

Additionally, Benders' decomposition algorithm returns no feasible solution for some matrices,  while 

simplex without partitioning returns a finite solution for these. One example of such matrices is shown in Figure 

12.  However, when we swap the roles of  and , Benders' decomposition algorithm gives the correct 

answer! From these experiments, we also infer that if the optimal value of the Benders coincides with the one of 
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Simplex, it is executed with a lesser or equal number of iterations, up to a certain n. For better optimization of 

the algorithm, this maximum n could be used as the stopping criterion, however, the random choice of 

submatrices can yield a different result by using Benders' decomposition. So, the simplex algorithm is better 

suited for the presented problem. All experiments were carried out with the premise that  e = l = r-1 . We 

executed 100 random tests for each r in {10, 15, 20,25}.  

 
Figure 12.  Example of c, and which yields a contradictory result by using Benders' decomposition. 

 

III. Conclusions 
We presented an algorithm for solving b-complementary multisemigroup problems using Benders' 

decomposition and simplex algorithm. We assumed that the basis of the convex cone was given for this problem 

to solve it. It is still an open problem on how to get a basis of the convex cone from a b-complementary 

multisemigroup problem. We aim to solve this problem as future work.  

Besides this open problem, we implemented computational experiments for comparing Benders' 

method and simplex without partitioning by assuming a basis of the convex cone was given. Two kinds of 

experiments were made, one for verifying closeness of solution and the number of iterations to obtain it, and 

others for analyzing the theoretical number of iterations in the worst case.  

We observed in the first kind of experiment that results were not close to the solution using simplex 

without partitioning and almost all cases gave different results. Also, we have found out that the order of 

parameters given to Benders decomposition algorithm matters.  

As observed from our tests for the theoretical number of iterations, we noted that as the size of matrices 

increases, there are numbers of iterations that the classical Benders' method returns the result faster than using 

simplex without partitioning in the worst case. By these experiments,  Benders decomposition is faster up to a 

certain value that depends on input size (i.e., restriction matrices and objective function vector).  Above this 

value, the results have shown that it is better to use simplex without partitioning. 

Although the Benders' decomposition is faster for these values, there are inconsistencies in the results 

from the decomposition algorithm against the simplex algorithm, as shown in the first kind of experiments. So, 

we conclude that using the classical Benders decomposition algorithm does not work well for the b-

complementary multisemigroup dual problem. 
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