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Why does the classical Benders decomposition algorithm not
work well for the b-Complementary Multisemigroup Dual
Problem?
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Abstract

We present an adaptation of the classical algorithm of the decomposition of Bender to the b-complementary
multisemigroup dual problem. Despite this decomposition has been shown in literature as a good tool for
dealing with high dimensional mixed-integer linear programming, that is not the case for the presented one in
this paper, which is better to be solved by the simplex algorithm without partitioning. We present results from
computer experiments to show that conclusion.
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. Introduction

Araoz in 1973 defined the Semigroup Problem (SP), characterizes the polyhedra, and shows the
relation between the minimal system of linear inequality of the polyhedra and extreme points and rays. Araoz
and Johnson, in 1982, presented the polyhedra of a multivalued additive system problem. A particular case of
multivalued additive systems is the b-complementary Multisemigroups (b-CMS). A b-CMS is an associative,
an abelian, a b-consistent, and a b-complementary additive system. Madriz, in 2016, constructed the dual
problem associated with a b-CMS problem, extending the duality result of semigroup by Johnson in 1980.
Madriz's work is based on the theorem presented by Ar"aoz and Johnson in 1989, where they determine that,
given a base of the subadditive cone, it is possible to establish a system of equations and inequalities that define
the polyhedron associated with a multivalued associative additive system. Ardoz and Johnson in 1982 defined
the finite b-complementary multisemigroup as an associative, commutative, consistent, and complementary
additive multivalued system and they showed the following characterization of the faces of the convex hull of
multisemigroup solutions.

Let (A,+) be an b-complementary multisemigroup and A+ = A — {0, 00}, The master corner polyhedron is
defined as

P(A.b) = conv. hull{t € Z™! :be Y ()g).

EEA,
for some fixed right-hand side element & € A and | A+ | denotes the cardinality of the set A+ and Z is the set
of integer numbers.

Let C(A+) be the subadditive cone associated with P(A+, b) (see [1]), Araoz and Johnson in [2] showed the
following characterization of the P(A+, b).

Theorem 1.1 (Theorem 3.8 in [2])} Let (L,E) be a base of C(A4). The following system defined a P(Ay, b)

Z p()t(g) = p(b), forall p€ L

8EA4
Y 2(9)(g) > (b). z€E
gEAL
1(g)>0,g € As,.

In general, given a finite b-complementary multisemigroup A , the b-complementary multisemigroup master
problem is defined as
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Py min ) c(8)i(g)

ZEAL

stbe Y g

§EA;
Hg)EZ,, g€ A,
where c(2) € R4+ and R is the set of real numbers..

Using theorem 3.8 proved by Aréoz and Johnson in 1982, Madriz in 2016 showed that the F.s problem is
equivalent to the following problem

P, : min Z c(g)t(g)

gEA4
st ) p(@)i(g) = p(b). p € L:
gEAL
Y #(®(g) > a(b). € E:
8EA;

I(g) Z 01 g € A+1
where (L. E) is a base for C(A+)and ¢ € R+, In addition, Madriz in 2016 calculates the dual problem of £
and proves the duality theorem for P and Fu (see Theorem 4.3 of Madriz 2016 [4]).

P; : max Z p(b)v(p) + Z x(b)w(r)

pEL reE
sti ) p@u(p) + Y a(@w(n) < c(g). 8 € Ay
pEL n€E

v(p) unrestricted, p € L;

w(r) >0, m€E.
Let (L,E) be a base of C(A) and v € L, we denote with P the following problem,

P, : max Z m(b)w(r)

reFE
s.L.: Z n(gw(r) < K,(g), g€ Ay

reE

w(r) >0, n € E.
where
Ko(g) = c(@) - ) p(@)v(p)

pEL

forall & € A+,

The dual problem of the P.: is the problem
Py :min Y K, (2)(2)

BEAY

st ) (g)(g) > (b), € E

gEAL

1(g) 20, g€ Ay,
therefore the Fu problem is equivalent to the problem
max Z p(byo(p) + Zj

pEL

s.t.: v(p) unrestricted, p € L,
where “F. is the solution of the problem Pra.

Now, let be X the polyhedron

X={reRM: Y a(gie) 2 x(b), 7 € E)
gEAL

and V(X) and R(X) the sets of vertices and the extreme rays of the X.
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Note that in the case where X is empty, the dual problem F.q is infeasible. Moreover, from duality theory, the
primal problem P has no feasible or it is unbounded. Therefore, we can assume that the set X is non-empty. On
the other hand, since the convex polyhedron X is independent of » € L, the Benders inner problem for the
dual of Puis defined as

By :max p
st f< ) pbwp)+ Y Ku(@i(e)
pEL gEAL
1€ V(X)

Therefore, the Benders master problem for the dual Fuis the problem
B4 1 max Z p(bYyv(p) + Z”ém

pelL

st Y Ku(g)(g) <0,
8EA+
t € R(X),
) 4‘u(,a) unrestricted, forall p € L,

where ZE. is the solution of the associated Bia problem.

In this paper, we apply the Bender decomposition algorithm to solve the problem Py The paper is divided as
follows. In section 2 we describe an algorithm using Benders decomposition for the dual problem associated
with the problem of b-complementary multisemigroup. Finally, in section 3 we present experimental results for
this algorithm, and conclusions in section 4.

1. Material and methods.

Give a base (L,E) of C(A4). since A+, L and E are finite sets, we can consider A+ = {&1---. &} where
r=|Asland eite =g forallj€(L,....rh

L={p1,....p \where! = |L|;

E={m,...,m}where e = |E|.

In addition, we consider:
t=(t;,...,t,) where t; = t(g;), foralli € {1,...,r};

pr =(p1(&)s. s pu(gr))s 7 = (1 (&), s e (8r )
I' = [pijlixr, where p;; = pi(g;) forie {1,...,I}and j€ {1,...,r};
IT = [mgjlexr, Where my; = mi(g;) for k € {1,...,eland j € {1,...,r};
C = {(tp,1) € RXR" |1t = = 19,1 2 0,15 = 0};
Co={teR |It>0,t >0}
P={te R |1t > x,,t > 0}.
For the point (fo. 1) € C we associate the subset of R"*'defined by
{(x0,0) € RX R | xot0 + (T = 19p,)v < 1€},
Finally, for a non-empty @ € C, we have
H(Q) = ﬂ {(x0,0) € Rx R' | xpty + 1L 0) — ty(p,v) < fe}.

(1p.1)EQ

Benders decomposition algorithm for P problem is presented in Algorithm [1] which is the original Benders'
method presented in [3] with some modifications. To bound region space, we consider in line 16 only the
vectors contained in hypercube [0, M]"*'for a given large real number M, because the space of subproblem (1)
must be bounded as assumed in [3]. At line 28, dual of subproblem (2) can be obtained by a terminated simplex
table. The extreme direction d"in line 37 can be obtained by terminating the simplex table of subproblem (2) at
line 22. Additionally, we put a condition at line 45 to avoid infinite loops when there is no modification in Xg
and v".
We performed experiments using a notebook Lenovo g400s, with an Intel Core i3-3110M CPU @2.40GHz 64-
bit processor, and 4GB RAM. The operational system was Ubuntu 18.04.1 LTS, and Kernel 4.15.0-36-generic.
For Benders' method and random numbers generators algorithms, we respectively used Python 2.7.15rc1 and
Python 3.6.5 with the following libraries: NumPy 1.15.1, SciPy 1.1.0, Pandas 0.23.4, and Matplotlib 2.2.3.

1. Experiments and Results
We performed experiments to compare the execution of Benders' method and the simplex without
partitioning running only the simplex to solve Fa. So, we aim to find the best algorithm for the proposed
problems.
In Figures 1,2,3 and 4, we plotted the objective function values of each 100 random test. In these
figures, we ordered the tests by the absolute value of objective function values difference between Benders'
decomposition and simplex without partitioning. So, we see almost 60% of tests for each r value used has little
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difference in objective functions. The simplex algorithm used in the experiments was linprog which is found in
the optimize package of SciPy library. The classical Benders' method algorithm was developed in Python®

Number of occurrences

Number of occurrences

Number of occurrences

r=10,1=9,e=0

100 4

e Simplex

@
o

=
=]

.
o

204

2 4 6 8 10 12
Number of iterations

Figure 1. Number of occurrences versus number of iterations

for different matrices sizes with r = 10.
r=151=14,e =14

B Benders

1004

@
=}

o
=]

s Benders
e Simplex
40 4
204 I
0- T T
0.0 25 5.0 75 125 15.0 17.5

10.0 20.0

Number of iterations
Figure 2. Number of occurrences versus number of iterations
for different matrices sizes with r = 15.

r=20,1=19,e=19

100 mmm Benders

e Simplex

80

60 q

40

204

2 4 6 8 10 12 14
Number of iterations

Figure 3.Number of occurrences versus humber of iterations f
or different matrices sizes with r = 20.

1https://github.com/yuri-tavares/benders-decomposition.
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Figure 4. Number of occurrences versus number of iterations for different matrices sizes with r = 25

In Figures 5,6,7 and 8, we plotted the objective function values of each 100 random tests. In these
figures, we ordered the tests by the absolute value of objective function values difference between Benders'
decomposition and simplex without partitioning. So, we see almost 60 of the tests for each r value used has
little difference in the objective function. However, we expected that no difference at all should exist.
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Figure 6. Objective function values ordered by absolute
difference with r = 15
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Figures 9, 10, and 11 show the theoretical number of iterations in the worst case for r = 10, 20, and 30.
We see for up to a certain number $n$, Benders' method has fewer number of iterations than the simplex.
However, in almost all cases optimal objective function values differ, and, consequently, solution vectors do so.
As shown in Figures 5 and 8 optimal objective function value difference significantly varies.
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Figure 8. Objective function values ordered by absolute
difference with r = 25.
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Figure 9. Theoretical number of iterations in the worst case for simplex
without partitioning and Benders' method for r = 10.
r=20,l=e=19,s=1
— Simplex
107% 1 Benders
1015 -
v 1012 4
S
s
E 10° 4
106 -
103 i
(') EIS 1|0 1I5 2|0 2I5 3IO
n
Figure 10. Theoretical number of iterations in the worst case for simplex
without partitioning and Benders' method for r = 20.
r=30,l=e=29,s=1
1024 -
1021 .
1018 -
t£ 1015 -
S
© 12 |
E 10
109 -
106 .
102 4 — Simplex
Benders
0 5 10 15 20 25 30

n

Figure 11. Theoretical number of iterations in the worst case for simplex
without partitioning and Benders' method for r = 30.

Additionally, Benders' decomposition algorithm returns no feasible solution for some matrices, while
simplex without partitioning returns a finite solution for these. One example of such matrices is shown in Figure

12. However, when we swap the roles of rand I1, Benders' decomposition algorithm gives the correct
answer! From these experiments, we also infer that if the optimal value of the Benders coincides with the one of
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Simplex, it is executed with a lesser or equal number of iterations, up to a certain n. For better optimization of
the algorithm, this maximum n could be used as the stopping criterion, however, the random choice of
submatrices can yield a different result by using Benders' decomposition. So, the simplex algorithm is better

suited for the presented problem. All experiments were carried out with the premise that e =1 =r-1 . We

executed 100 random tests for each r in {10, 15, 20,25}.
. 908 965 583 45 883 455 184 816 398 108 )
_'_; ( 57 589 935 141 191 110 REO 119 158 813
i),l)_: 947 500 454 354 254 113 661 469 297 583
109 i 983 855 951 8|57 084 664 632 547 370 954

c 854 | 218 230 268 5350 31 67 8O3 118 764 646
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[ 983 823 652 T20 354 197 514 296 135 O
548 934 534 172 802 262 587 889 197 678
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o806 10 308 581 15 857 73 325 394 695
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132 157 358 KO8 178 949 223 954 216 338
L 679 170 332 187 187 173 80 102 226 810 J

Figure 12. Example of ¢, 'and I Iwhich yields a contradictory result by using Benders' decomposition.

I11. Conclusions

We presented an algorithm for solving b-complementary multisemigroup problems using Benders'
decomposition and simplex algorithm. We assumed that the basis of the convex cone was given for this problem
to solve it. It is still an open problem on how to get a basis of the convex cone from a b-complementary
multisemigroup problem. We aim to solve this problem as future work.

Besides this open problem, we implemented computational experiments for comparing Benders'
method and simplex without partitioning by assuming a basis of the convex cone was given. Two kinds of
experiments were made, one for verifying closeness of solution and the number of iterations to obtain it, and
others for analyzing the theoretical number of iterations in the worst case.

We observed in the first kind of experiment that results were not close to the solution using simplex
without partitioning and almost all cases gave different results. Also, we have found out that the order of
parameters given to Benders decomposition algorithm matters.

As observed from our tests for the theoretical number of iterations, we noted that as the size of matrices
increases, there are numbers of iterations that the classical Benders' method returns the result faster than using
simplex without partitioning in the worst case. By these experiments, Benders decomposition is faster up to a
certain value that depends on input size (i.e., restriction matrices and objective function vector). Above this
value, the results have shown that it is better to use simplex without partitioning.

Although the Benders' decomposition is faster for these values, there are inconsistencies in the results
from the decomposition algorithm against the simplex algorithm, as shown in the first kind of experiments. So,
we conclude that using the classical Benders decomposition algorithm does not work well for the b-
complementary multisemigroup dual problem.
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Algorithm 1 The Algorithm from the P; problem, part 1.

Input: p, e R m, e RS T e R I € R, c € R"; M € R, a large

value.

Output: (v, w") € R! x R®: solution of P.

1 n=0;
2: Select a finite set Q™ C (;
3: if H(Q") =0 then
4: Algorithm terminates;
5: else
6: if there are {g > 0 and ¢ € R’} such that (fy,7) € Q" then
7: solveMaxProblem = True;
8: else
9: put xg = +o00 and take any v" such that (o', v") € H(Q") for any
a’;
10: solveMaxProblem = False;
11: end if
12: end if
13: terminated = False;
14: repeat
15: if solveMaxProblem then
16: Solve the problem max{zy | (z0,v) € H(Q™) N[0, M]'™1}; (1)
17: if problem (1) is not feasible then
18: Algorithm terminates;
19: end if
20: Take (xf,v™) the optimal solution of the problem (1):
21: end if
22: Solve the problem min{(c — TTv™)t | It > 7.t > 0}; (2)
23: if problem (2) is not feasible then
24: terminated = True;
25: else B> continues in Algorithm
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Algorithm 2 The Algorithm from the Py problem, part 2.

26: if problem (2) has a finite optimal solution #"; then

27 if (c—TTu")t" =28 — p,v" then

28: Solve the dual of the problem (2) and store this solution in
w';

29: Take (v™,w™) the optimal solution of problem Py;

30: terminated = True;

31 else

32: if (c—TTv™)t" < 2} — p,v™ then

33: Q"M =Q U {(1,t")};

34: end if

35: end if

36: else

a7: Select a vertex t" € P and extreme direction d"* € C} such
that ¢ + Ad™® — oo, where A\ — +00;

38: if (c—TTu™)t™ > 2l — pv™ then

39: QM = QU {(0,d")}:

40: else

41: QU = QMU {(1,¢),(0,d™)};

12 end if

43: end if

44: end if

45: if solveMaxProblem and z} ' = 2§ and v" ! = v" then

46: Take (v, w™) the optimal solution of problem Pj;

47 end if

48: solveM axProblem = True:

49: n=n+1;
50: until terminated
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