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Abstract： 
By using Krasnoselskii’s fixed point theorem in cones to study the existence of periodic solutions for a 

higher-dimensional of second order nonlinear functional differential equations of the form 

( ) ( ) ( ) ( ) ( ) ( ) ( , ( ), ( ( )),x t A t x t B t x t C t f t x t x t t t R        

where

1 2 1 2 1( ) [ ( ), ( ), , ( )], ( ) [ ( ), ( ), , ( )], ( ) [ ( ), , ( )],n n nA t diag a t a t a t B t diag b t b t b t C t diag c t c t    

, , : ,j j ja b c R R : R R  are all continuousT -periodic functions, 0  , : n n nf R R R R   is 

continuous and T -periodic function. 
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I. Introduction 
In the past two decades, nonlinear second-order differential equations have developed very rapidly 

owing to their many applications in almost all the branches of science. For example, Liu and Ge [1] investigated 

the following nonlinear Duffing equation with delay and variable coefficients:  

( ) ( ) ( ) ( ) ( ) ( ) ( , ( ( )) ( )x t p t x t q t x t h t f t x t t r t       . 

The existence and nonexistence of positive periodic solutions are obtained with suitable conditions imposed 

on f by using a fixed point theorem in cones. 

However, there are few results on the existence of periodic solutions for higher-dimensional of high order 

functional differential equations. Motivated by the works of [1-8], in this paper, we shall use Krasnoselskii’s 

fixed point theorem in cones to study the existence of periodic solutions for a higher-dimensional of second 

order nonlinear functional differential equations with periodic coefficients  

( ) ( ) ( ) ( ) ( ) ( ) ( , ( ), ( ( )), ,x t A t x t B t x t C t f t x t x t t t R               (1) 

where 

(A1) 

1 2 1 2 1( ) [ ( ), ( ), , ( )], ( ) [ ( ), ( ), , ( )], ( ) [ ( ), , ( )]n n nA t diag a t a t a t B t diag b t b t b t C t diag c t c t     ; 

(A2) , , : ,j j ja b c R R  : R R   are all continuous T -periodic functions, and 
0

( ) 0,
T

ja s ds   

0
( ) 0,

T

jb s ds   1,2, ,j n  ; 

(A3) f  is a function defined on 
nR BC R  , satisfying ( , ( ), ) ( , ( ), )f t T x t T y f t x t y    for all 

,t R , ,nx BC y R   where BC  denotes the Banach space of bounded continuous functions 

: nR R   with the norm 
1

sup ( )
n

R jj   
   where 1 2( , , )T

n     . In the sequel, we 

denote 1 2( , , )T

nf f f f  . 

Let 
1 2( , ), (0, ), {( , , ) : 0, 1,2, }n T n

n jR R R x x x R x j n           . We say that x  

is positive whenever 
nx R . For every 1 2{( , , )T n

nx x x x R  , the norm of x  is defined as 
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0 1

n

jj
x x


 . ( )BC X Y  denotes the set of bounded continuous function : X Y  . 

For convenience, we first introduce the related definition and the fixed point theorem applied in the paper. 

Definition 1.1 Let X  be a Banach space and K  be a closed nonempty sunset of X , K  is a cone if   

(1) u v K    for all ,u v K and all , 0   ; 

(2) ,u u K  imply 0u  . 

Theorem 1.1 (Krasnoselkii [9]) Let X be a Banach space, and let K X be a cone in X . Assume that 

1 2,   are open bounded subsets of X  with 
1 1 20 ,   , and let  

2 1: ( \ )K K     

be a completely continuous operator such that either  

(1) 
1,y y y K      and 

2,y y y K     ; or 

(2) 
1,y y y K      and 

2,y y y K     . 

Then   has a fixed point in 
2 1( \ )K K   . 

In this paper we always assume that  

(H1) ( , , ) 0jf t     for all ( , , ) ( , ) , 1, 2,n nt R BC R R R j n        . 

 

II. Some preparation 

Let T be a positive constant. We define two sets  

{ : ( , ), ( ) ( ), }nX x C R R x t T x t t R     

endow with the usual linear structure as well as the norm  

1

sup ( )
n

t R j

j

x x t



  , 
0

1

( ) ,
n

j

j

x x t


  

and  

 1 2, ( ) , [0, ], ( , , ) .T

j j nK x X x t x t T x x x x       

Obviously, X is a Banach space and K  is a cone. 

  Similar to the proof in [1], we can get: 

Lemma 2.1. Suppose that (A1, A2) holds and  

                 
1

0

1

[exp( ( ) ) 1]
1,

T

j j

j

R a u du

Q T





                               (2) 

 
2

2

1 [0, ] 1 1
0

0

exp( ( ) )
max ( ) , 1 exp( ( ) ) .

exp( ( ) ) 1

s

t T Tj
t

j t T j j j jTt

j

a u du
R b s ds Q a u du R

a u du



  



 


 

Then there exist continuous T -periodic functions jp  and jq  such that ( ) 0jq t  , 
0

( ) 0
T

jp u du  , 

and  

( ) ( ) ( ), ( ) ( ) ( ) ( )j j j j j j jp t q t a t q t p t q t b t     for all t R , 1,2,j n  . 

Therefore  

( ) ( ) ( ), ( ) ( ) ( ) ( ), ,p t q t A t q t p t q t B t t R      

where 1 2 1 2[ , , , ], [ , , , ].n np diag p p p q diag q q q    

Similar to the proof in [3], we can get the following lemmas. 

Lemma 2.2. Suppose the conditions of Lemma 2.1 hold and ( )t X  . Then the equation 

                 ( ) ( ) ( ) ( ) ( ) ( )x t A t x t B t x t t                            (3) 

has aT -periodic solution. Moreover, the periodic solutions can be expressed by 
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                      ( ) ( , ) ( ) ,
t T

t
x t G t s s ds



                            (4) 

where                  1 2( , ) [ ( , ), ( , ), , ( , )],nG t s diag G t s G t s G t s   

and   

0 0

exp[ ( ) ( ) ] exp[ ( ) ( ) ]
( , ) .

[exp( ( ) ) 1][exp( ( ) ) 1]

s u s t T u s T

j j j j
t t u s t u

j T T

j j

q v dv p v dv du q v dv p v dv du
G t s

p u du q u du

 

  


 

     

 
 

So Eq.(1) has a T -periodic solution, it can be expressed by 

                      ( ) ( , ) ( ) ( , ( ), ( ( ))) ,
t T

t
x t G t s C s f s x s x s s ds 



               (5)      

and by (H1), we have   
2( , ) ( ) ( , ( ), ( ( ))) 0, 1,2, ,( , ) .j j jG t s c s f s x s x s s j n t s R      

Corollary 2.1. Green’s function ( , )G t s  satisfies the following properties: 

( , ) ( , )j jG t t T G t t  , ( , ) ( , ),j jG t T s T G t s    

0

exp ( )
( , ) ( ) ( , ) ,

exp ( ) 1

s

j
t

j j j T

j

q v dv
G t s p s G t s

s q v dv


 

 




 

0

exp ( )
( , ) ( ) ( , )

exp ( ) 1

s

j
t

j j j T

j

p v dv
G t s q s G t s

t p v dv


  

 




, 1,2, , .j n   

Lemma 2.3. Let 
2

0 0

1
( ) , exp( ln ( ) )

T T

j j j jH a u du I T b u du
T

   . If 
2 4 ,j jH I          (6) 

then 

  2

0 0

1
min ( ) , ( ) ( 4 ) : ,

2

T T

j j j j j jp u du q u du H H I l      

      2

0 0

1
max ( ) , ( ) ( 4 ) :

2

T T

j j j j j jp u du q u du H H I m     , 1,2, , .j n   

Therefore the function ( , )jG t s  satisfies 

0

2 2

exp( ( ) )
0 : ( , ) : , [ , ],

( 1) ( 1)

( , )
1 : min , 1,2, , 0,

j j

T

j

j j jm l

j j j

j j j

T a u duT
N G t s M s t t T

e e

G t s N N
j n

M M M


      
 

  
      

  





 

and we denote 

1 1min , maxj n j j n jl l m m     ,  1 1min , max .j n j j n jN N M M      

Now, before presenting our main results, we give the following assumptions. 

(H2) ( , ( ), ( ( )))f t t t t    is a continuous function of t  for each ( , )nBC R R  . 

(H3)  For any 0L   and 0  , there exists 0  , such that  

{ , , , , ,0 }BC L L s T              

imply 
0

( , ( ), ( ( ))) ( , ( ), ( ( )))f s s s s f s s s s          . 

 

 

III. Main Results 

Now we define a mapping :T K K , 
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( )( ) ( , ) ( ) ( , ( ), ( ( )) .
t T

t
Tx t G t s C s f s x s x s s ds 



   

We denote 1 2( ) ( , , )T

nTx T x T x T x  . 

Lemma 3.1. :T K K  is well-defined. 

Proof.  For each x K , by (H2) we have ( )( )Tx t  is continuous in t  and  

2

( )( ) ( , ) ( ) ( , ( ), ( ( ))

( , ) ( ) ( , ( ), ( ( ))

( , ) ( ) ( , ( ), ( ( ))

( )( ).

t T

t T

t T

t

t T

t

Tx t T G t s C s f s x s x s s ds

G t T v T C v T f v T x v T x v T v T dv

G t v C v f v x v x v v dv

Tx t

 

 

 









  

        

 









 

Thus, Tx X , since 

( , )j j jN G t s M  , [ , ].s t t T   

Hence, for x K , we have  

    
0

( ) ' ( ( ) ) ( , ( ) , ( ( ) )
T

j j j jT x M c s x s s f s x s x s s d s     ,                (7) 

and 

0

0

( )( ) ( ) ( , ( ), ( ( ))

( ) ( , ( ), ( ( ))

.

T

j j j j

Tj

j j j

j

j

T x t N c s f s x s x s s ds

N
M c s f s x s x s s ds

M

T x

 

 



 

 





  

Therefore, Tx K . This completes the proof. 

Lemma 3.2. :T K K  is completely continuous. 

Proof. We first show that T  is continuous. 

By (H3), for any 0L   and 0  , there exists a 0   such that  

 , , , ,BC L L            imply  

0 0
sup ( , ( ), ( ( )) ( , ( ), ( ( )) ,s T f s s s s f s s s s

MTC


     


       

where 
1max j n jC c  . 

If ,x y K  with , ,x L y L x y     , then  

0 0

00

( )( ) ( )( ) ( , ) ( ) ( , ( ), ( ( )) ( ) ( , ( ), ( ( ))

( , ) ( ) ( , ( ), ( ( )) ( ) ( , ( ), ( ( ))

t T

t

T

Tx t Ty t G t s C s f s x s x s s C s f s y s y s s ds

G t s C s f s x s x s s C s f s y s y s s ds

M TC
M TC

   

   


 





    

   

 



  

for all [0, ]t T , where 
1( , ) max ( , )j n jG t s G t s  , this yields Tx Ty   , thus T is continuous. 

Next we show that T maps any bounded sets in K  into relatively compact sets. Now we first prove that 

f maps bounded sets into bounded sets. Indeed, let 1  , by (H3), for any 0  , there exists 0   such 

that  , , , , ,0x y BC x y x y s T          imply 

0
( , ( ), ( ( )) ( , ( ), ( ( )) 1.f s x s x s s f s y s y s s      
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Choose a positive integer N such that 
N


 . Let x BC  and define  

( )
( ) , 0,1,2 ,k x t k

x t k N
N

   .   

If x  , then  

1 ( ) ( )( 1) 1
sup .k k

t R

x t k x t k
x x x

N N N N







       

Thus, 
1 1

0
( , ( ), ( ( )) ( , ( ), ( ( )) 1k k k kf s x s x s s f s x s x s s       

for all [0, ]s T , this yields  

      

0

1 1

00
1

( , ( ), ( ( )) ( , ( ), ( ( ))

( , ( ), ( ( )) ( , ( ), ( ( )) ( ,0,0)

: .

N N

N
k k k k

k

f s x s x s s f s x s x s s

f s x s x s s f s x s x s s f s

N f W

 

  



  

    

  

          (8) 

It follows from (7) that 

0
1 1

sup ( )( ) ( , ( ), ( ( )) .
n n T

t R j j j

j j

Tx T x t M C f s x s x s s ds M CTW  

 

       

Finally, for t R , we have  

0

exp ( )
( ) ( ) ( ) ( , ) ( ) ( , ( ), ( ( ))

exp ( ) 1

s

t T j
t

j j j j jTt

j

p v dv
T x t q s G t s c s f s x s x s s ds

p v dv
 


 
     
   





,    (9) 

                                    1,2, , .j n   

Combine (7), (8), (9) and Corollary 2.1, we obtain  

10

1

0

1

( )( ) ( ) ( )

exp ( )
( ) ( , ( ), ( ( )) ( ) ( , )

exp ( ) 1

( ) ( , ( ), ( ( ))
1

( ) ,
1

n

j

j

s

n t T j
t

j j j j Tt
j

j

mn t T

j jl t
j

m

l

d
Tx t T x t

dt

p v dv
c s f s x s x s s q s G t s ds

p v dv

e
C M Q f s x s x s s ds

e

e
C M Q TW

e

 

 















   


  


 









 

 

where 
1max j n jQ q  . 

Hence  : ,Tx x K x   is a family of uniformly bounded and equicontinuous functions on [0, ]T . By a 

theorem of Ascoli-Arzela, the function T is completely continuous. 

Theorem 3.1. Suppose that (H1)-(H3), (2) and (6) and that there are positive constants 1R  and 2R  with 

1 2R R  such that 

      
1

1, 00
sup ( , ( ), ( ( )) : ,

T

R K
f s s s s ds P

 
  

 
                                  (10) 

and  
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2

2, 00
inf ( , ( ), ( ( )) : ,

T

R K
f s s s s ds P

 
  

 
                     (11) 

for each   satisfy 

                
2 1

2 1

.
R R

MCP MCP
                               (12) 

Then Eq.(1) has a positiveT -periodic solution x  with 
1 2R x R  . 

Proof.  Let x K  and 
1x R . By (10) and (12), we have   

0 0

0

1
10

1

( )( ) ( ) ( , ( ), ( ( ))

( , ( ), ( ( ))

( , ( ), ( ( ))

t T

t

t T

t

t T

t

Tx t M C s f s x s x s s ds

MC f s x s x s s ds

R
MC f s x s x s s ds R

MCP

 

 









 

 

  







 

for all [0, ]t T . This implies that Tx x  for  1 1 1, ,x K x X x R      .  

If x K  and 
2x R . By (11) and (12), we have  

0 0

0

2
20

2

( )( ) ( ) ( , ( ), ( ( ))

( , ( ), ( ( ))

( , ( ), ( ( ))

t T

t

t T

t

t T

t

Tx t N C s f s x s x s s ds

NC f s x s x s s ds

R
NC f s x s x s s ds R

NCP

 

 









 

 

  







 

for all [0, ]t T . Thus, Tx x  for  2 2 2, ,x K x X x R      .  

By Krasnoselskii’s fixed point theorem, T  has a fixed point in 
2 1( \ )K   . It is easy to say that Eq.(1) 

has a positive T -periodic solution x  with 
1 2R x R  . This completes the proof. 
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