Periodic solutions for a class of second order higher-dimensional functional differential equations

Lili Wang
School of Mathematics and Statistics, Anyang Normal University, Anyang, Henan 455000, China

Abstract

: By using Krasnoselskii's fixed point theorem in cones to study the existence of periodic solutions for a higher-dimensional of second order nonlinear functional differential equations of the form $$
x^{\prime \prime}(t)+A(t) x^{\prime}(t)+B(t) x(t)=\lambda C(t) f(t, x(t), x(t-\tau(t)), t \in R
$$ where $A(t)=\operatorname{diag}\left[a_{1}(t), a_{2}(t), \cdots, a_{n}(t)\right], B(t)=\operatorname{diag}\left[b_{1}(t), b_{2}(t), \cdots, b_{n}(t)\right], C(t)=\operatorname{diag}\left[c_{1}(t), \cdots, c_{n}(t)\right]$, $a_{j}, b_{j}, c_{j}: R \rightarrow R^{+}, \tau: R \rightarrow R$ are all continuous T-periodic functions, $\lambda>0, f: R \times R^{n} \times R^{n} \rightarrow R^{n}$ is continuous and T-periodic function.

Keywords: Periodic solution; Delay differential equations; Fixed point theorem; Parameter

I. Introduction

In the past two decades, nonlinear second-order differential equations have developed very rapidly owing to their many applications in almost all the branches of science. For example, Liu and Ge [1] investigated the following nonlinear Duffing equation with delay and variable coefficients:

$$
x^{\prime \prime}(t)+p(t) x^{\prime}(t)+q(t) x(t)=\lambda h(t) f(t, x(t-\tau(t))+r(t) .
$$

The existence and nonexistence of positive periodic solutions are obtained with suitable conditions imposed on f by using a fixed point theorem in cones.
However, there are few results on the existence of periodic solutions for higher-dimensional of high order functional differential equations. Motivated by the works of [1-8], in this paper, we shall use Krasnoselskii's fixed point theorem in cones to study the existence of periodic solutions for a higher-dimensional of second order nonlinear functional differential equations with periodic coefficients

$$
\begin{equation*}
x^{\prime \prime}(t)+A(t) x^{\prime}(t)+B(t) x(t)=\lambda C(t) f(t, x(t), x(t-\tau(t)), t \in R \tag{1}
\end{equation*}
$$

where
(A1)
$A(t)=\operatorname{diag}\left[a_{1}(t), a_{2}(t), \cdots, a_{n}(t)\right], B(t)=\operatorname{diag}\left[b_{1}(t), b_{2}(t), \cdots, b_{n}(t)\right], C(t)=\operatorname{diag}\left[c_{1}(t), \cdots, c_{n}(t)\right] ;$
(A2) $a_{j}, b_{j}, c_{j}: R \rightarrow R^{+}, \quad \tau: R \rightarrow R$ are all continuous T-periodic functions, and $\int_{0}^{T} a_{j}(s) d s>0$, $\int_{0}^{T} b_{j}(s) d s>0, \quad j=1,2, \cdots, n ;$
(A3) f is a function defined on $R \times B C \times R^{n}$, satisfying $f(t+T, x(t+T), y)=f(t, x(t), y)$ for all $t \in R, x \in B C, y \in R^{n}$, where $B C$ denotes the Banach space of bounded continuous functions $\eta: R \rightarrow R^{n}$ with the norm $\|\eta\|=\sup _{\theta \in R} \sum_{j=1}^{n} \mid \eta_{j}(\theta \mid)$ where $\eta=\left(\eta_{1}, \eta_{2}, \cdots \eta_{n}\right)^{T}$. In the sequel, we denote $f=\left(f_{1}, f_{2}, \cdots f_{n}\right)^{T}$.
Let $R=(-\infty,+\infty), R_{+}=(0,+\infty), R_{+}^{n}=\left\{\left(x_{1}, x_{2}, \cdots x_{n}\right)^{T} \in R^{n}: x_{j}>0, j=1,2, \cdots n\right\}$. We say that x is positive whenever $x \in R_{+}{ }^{n}$. For every $x=\left\{\left(x_{1}, x_{2}, \cdots x_{n}\right)^{T} \in R^{n}\right.$, the norm of x is defined as
$\left|x_{0}\right|=\sum_{j=1}^{n}\left|x_{j}\right| . B C(X \rightarrow Y)$ denotes the set of bounded continuous function $\phi: X \rightarrow Y$.
For convenience, we first introduce the related definition and the fixed point theorem applied in the paper.
Definition 1.1 Let X be a Banach space and K be a closed nonempty sunset of X, K is a cone if
(1) $\alpha u+\beta v \in K$ for all $u, v \in K$ and all $\alpha, \beta \geq 0$;
(2) $u,-u \in K$ imply $u=0$.

Theorem 1.1 (Krasnoselkii [9]) Let X be a Banach space, and let $K \subset X$ be a cone in X. Assume that Ω_{1}, Ω_{2} are open bounded subsets of X with $0 \in \Omega_{1}, \overline{\Omega_{1}} \subset \Omega_{2}$, and let

$$
\phi: K \bigcap\left(\overline{\Omega_{2}} \backslash \Omega_{1}\right) \rightarrow K
$$

be a completely continuous operator such that either
(1) $\|\phi y\| \leq\|y\|, \forall y \in K \bigcap \partial \Omega_{1}$ and $\|\phi y\| \geq\|y\|, \forall y \in K \bigcap \partial \Omega_{2}$; or
(2) $\|\phi y\| \geq\|y\|, \forall y \in K \bigcap \partial \Omega_{1}$ and $\|\phi y\| \leq\|y\|, \forall y \in K \bigcap \partial \Omega_{2}$.

Then ϕ has a fixed point in $K \bigcap\left(\overline{\Omega_{2}} \backslash K \bigcap \partial \Omega_{1}\right)$.
In this paper we always assume that
(H1) $f_{j}(t, \xi, \eta) \geq 0$ for all $(t, \xi, \eta) \in R \times B C\left(R, R_{+}{ }^{n}\right) \times R_{+}{ }^{n}, j=1,2, \cdots n$.

II. Some preparation

Let T be a positive constant. We define two sets

$$
X=\left\{x: C\left(R, R^{n}\right), x(t+T)=x(t), t \in R\right\}
$$

endow with the usual linear structure as well as the norm

$$
\|x\|=\sup _{t \in R} \sum_{j=1}^{n}\left|x_{j}(t)\right|, \quad|x|_{0}=\sum_{j=1}^{n}\left|x_{j}(t)\right|,
$$

and

$$
K=\left\{x \in X, x_{j}(t) \geq \sigma\left\|x_{j}\right\|, t \in[0, T], x=\left(x_{1}, x_{2}, \cdots x_{n}\right)^{T}\right\} .
$$

Obviously, X is a Banach space and K is a cone.
Similar to the proof in [1], we can get:
Lemma 2.1. Suppose that (A1, A2) holds and

$$
\begin{gather*}
\frac{R_{1 j}\left[\exp \left(\int_{0}^{T} a_{j}(u) d u\right)-1\right]}{Q_{1 j} T} \geq 1 \tag{2}\\
R_{1 j}=\max _{t \in[0, T]}\left|\int_{t}^{t+T} \frac{\exp \left(\int_{t}^{s} a_{j}(u) d u\right)}{\exp \left(\int_{0}^{T} a_{j}(u) d u\right)-1} b_{j}(s) d s\right|, Q_{1 j}=\left(1+\exp \left(\int_{0}^{T} a_{j}(u) d u\right)\right)^{2} R_{1 j}{ }^{2} .
\end{gather*}
$$

Then there exist continuous T-periodic functions p_{j} and q_{j} such that $q_{j}(t)>0, \int_{0}^{T} p_{j}(u) d u>0$, and

$$
p_{j}(t)+q_{j}(t)=a_{j}(t), q_{j}^{\prime}(t)+p_{j}(t) q_{j}(t)=b_{j}(t) \text { for all } t \in R, j=1,2, \cdots n .
$$

Therefore

$$
p(t)+q(t)=A(t), q^{\prime}(t)+p(t) q(t)=B(t), t \in R,
$$

where $p=\operatorname{diag}\left[p_{1}, p_{2}, \cdots, p_{n}\right], q=\operatorname{diag}\left[q_{1}, q_{2}, \cdots, q_{n}\right]$.
Similar to the proof in [3], we can get the following lemmas.
Lemma 2.2. Suppose the conditions of Lemma 2.1 hold and $\varphi(t) \in X$. Then the equation

$$
\begin{equation*}
x^{\prime \prime}(t)+A(t) x^{\prime}(t)+B(t) x(t)=\varphi(t) \tag{3}
\end{equation*}
$$

has a T-periodic solution. Moreover, the periodic solutions can be expressed by

$$
\begin{equation*}
x(t)=\int_{t}^{t+T} G(t, s) \varphi(s) d s \tag{4}
\end{equation*}
$$

where

$$
G(t, s)=\operatorname{diag}\left[G_{1}(t, s), G_{2}(t, s), \cdots, G_{n}(t, s)\right],
$$

and

$$
G_{j}(t, s)=\frac{\int_{t}^{s} \exp \left[\int_{t}^{u} q_{j}(v) d v+\int_{u}^{s} p_{j}(v) d v\right] d u+\int_{s}^{t+T} \exp \left[\int_{t}^{u} q_{j}(v) d v+\int_{u}^{s+T} p_{j}(v) d v\right] d u}{\left[\exp \left(\int_{0}^{T} p_{j}(u) d u\right)-1\right]\left[\exp \left(\int_{0}^{T} q_{j}(u) d u\right)-1\right]} .
$$

So Eq.(1) has a T-periodic solution, it can be expressed by

$$
\begin{equation*}
x(t)=\int_{t}^{t+T} G(t, s) \lambda C(s) f(s, x(s), x(s-\tau(s))) d s \tag{5}
\end{equation*}
$$

and by (H1), we have

$$
G_{j}(t, s) \lambda c_{j}(s) f_{j}(s, x(s), x(s-\tau(s))) \geq 0, j=1,2, \cdots n,(t, s) \in R^{2}
$$

Corollary 2.1. Green's function $G(t, s)$ satisfies the following properties:

$$
\begin{gather*}
G_{j}(t, t+T)=G_{j}(t, t), G_{j}(t+T, s+T)=G_{j}(t, s), \\
\frac{\partial}{\partial s} G_{j}(t, s)=p_{j}(s) G_{j}(t, s)-\frac{\exp \int_{t}^{s} q_{j}(v) d v}{\exp \int_{0}^{T} q_{j}(v) d v-1}, \\
\frac{\partial}{\partial t} G_{j}(t, s)=-q_{j}(s) G_{j}(t, s)+\frac{\exp \int_{t}^{s} p_{j}(v) d v}{\exp \int_{0}^{T} p_{j}(v) d v-1}, j=1,2, \cdots, n . \tag{6}
\end{gather*}
$$

Lemma 2.3. Let $H_{j}=\int_{0}^{T} a_{j}(u) d u, I_{j}=T^{2} \exp \left(\frac{1}{T} \int_{0}^{T} \ln b_{j}(u) d u\right)$. If $H_{j}{ }^{2} \geq 4 I_{j}$,
then

$$
\begin{aligned}
\min \left\{\int_{0}^{T} p_{j}(u) d u, \int_{0}^{T} q_{j}(u) d u\right\} \geq \frac{1}{2}\left(H_{j}-\sqrt{H_{j}^{2}-4 I_{j}}\right):=l_{j}, \\
\max \left\{\int_{0}^{T} p_{j}(u) d u, \int_{0}^{T} q_{j}(u) d u\right\} \leq \frac{1}{2}\left(H_{j}+\sqrt{H_{j}^{2}-4 I_{j}}\right):=m_{j}, \quad j=1,2, \cdots, n .
\end{aligned}
$$

Therefore the function $G_{j}(t, s)$ satisfies

$$
\begin{gathered}
0<N_{j}=: \frac{T}{\left(e^{m_{j}}-1\right)^{2}} \leq G_{j}(t, s) \leq \frac{T \exp \left(\int_{0}^{T} a_{j}(u) d u\right)}{\left(e^{l_{j}}-1\right)^{2}}:=M_{j}, s \in[t, t+T], \\
1 \geq \frac{G_{j}(t, s)}{M_{j}} \geq \frac{N_{j}}{M_{j}} \geq \sigma:=\min \left\{\frac{N_{j}}{M_{j}}, j=1,2, \cdots, n\right\}>0,
\end{gathered}
$$

and we denote

$$
l=\min _{1 \leq j \leq n} l_{j}, \quad m=\max _{1 \leq j \leq n} m_{j}, \quad N=\min _{1 \leq j \leq n} N_{j}, \quad M=\max _{1 \leq j \leq n} M_{j} .
$$

Now, before presenting our main results, we give the following assumptions.
(H2) $f(t, \phi(t), \phi(t-\tau(t)))$ is a continuous function of t for each $\phi \in B C\left(R, R_{+}{ }^{n}\right)$.
(H3) For any $L>0$ and $\varepsilon>0$, there exists $\delta>0$, such that

$$
\{\phi, \psi \in B C,\|\phi\| \leq L,\|\psi\| \leq L,\|\phi-\psi\|<\delta, 0 \leq s \leq T\}
$$

imply $|f(s, \phi(s), \phi(s-\tau(s)))-f(s, \psi(s), \psi(s-\tau(s)))|_{0}<\varepsilon$.

III. Main Results

Now we define a mapping $T: K \rightarrow K$,

$$
(T x)(t)=\int_{t}^{t+T} G(t, s) \lambda C(s) f(s, x(s), x(s-\tau(s)) d s
$$

We denote $(T x)=\left(T_{1} x, T_{2} x, \cdots T_{n} x\right)^{T}$.
Lemma 3.1. $T: K \rightarrow K$ is well-defined.
Proof. For each $x \in K$, by (H2) we have $(T x)(t)$ is continuous in t and

$$
\begin{aligned}
(T x)(t+T) & =\int_{t+T}^{t+2 T} G(t, s) \lambda C(s) f(s, x(s), x(s-\tau(s)) d s \\
& =\int_{t}^{t+T} G(t+T, v+T) \lambda C(v+T) f(v+T, x(v+T), x(v+T-\tau(v+T)) d v \\
& =\int_{t}^{t+T} G(t, v) \lambda C(v) f(v, x(v), x(v-\tau(v)) d v \\
& =(T x)(t)
\end{aligned}
$$

Thus, $T x \in X$, since
$N_{j} \leq G_{j}(t, s) \leq M_{j}, s \in[t, t+T]$.
Hence, for $x \in K$, we have

$$
\left.\left\|T_{j} x\right\| \leq M_{j} \int_{0}^{T} \mid \lambda \quad d_{j}\right) s \quad ' x\left(-s \tau \quad(\quad j)_{j} f\left(\begin{array}{cc}
s & x(s)-x(s \mid \tag{7}
\end{array}\right.\right.
$$

and

$$
\begin{aligned}
\left(T_{j} x\right)(t) & \geq N_{j} \int_{0}^{T} \mid \lambda c_{j}(s) f_{j}(s, x(s), x(s-\tau(s)) \mid d s \\
& \left.=\frac{N_{j}}{M_{j}} M_{j} \int_{0}^{T} \right\rvert\, \lambda c_{j}(s) f_{j}(s, x(s), x(s-\tau(s)) \mid d s \\
& \geq \sigma\left\|T_{j} x\right\|
\end{aligned}
$$

Therefore, $T x \in K$. This completes the proof.
Lemma 3.2. $T: K \rightarrow K$ is completely continuous.
Proof. We first show that T is continuous.
By (H3), for any $L>0$ and $\varepsilon>0$, there exists a $\delta>0$ such that $\{\phi, \psi \in B C,\|\phi\| \leq L,\|\psi\| \leq L,\|\phi-\psi\| \leq \delta\}$ imply

$$
\sup _{0 \leq s \leq T} \left\lvert\, f\left(s, \phi(s), \phi(s-\tau(s))-f\left(s, \psi(s),\left.\psi(s-\tau(s))\right|_{0}<\frac{\varepsilon}{\lambda M T C}\right.\right.\right.
$$

where $C=\max _{1 \leq j \leq n}\left\|c_{j}\right\|$.
If $x, y \in K$ with $\|x\| \leq L,\|y\| \leq L,\|x-y\| \leq \delta$, then

$$
\begin{aligned}
|(T x)(t)-(T y)(t)|_{0} & \leq \int_{t}^{t+T}|G(t, s)| \mid \lambda C(s) f\left(s, x(s), x(s-\tau(s))-\lambda C(s) f\left(s, y(s),\left.y(s-\tau(s))\right|_{0} d s\right.\right. \\
& \leq \int_{0}^{T}|G(t, s)| \mid \lambda C(s) f\left(s, x(s), x(s-\tau(s))-\lambda C(s) f\left(s, y(s),\left.y(s-\tau(s))\right|_{0} d s\right.\right. \\
& <M \lambda T C \frac{\varepsilon}{M \lambda T C}=\varepsilon
\end{aligned}
$$

for all $t \in[0, T]$, where $|G(t, s)|=\max _{1 \leq j \leq n}\left|G_{j}(t, s)\right|$, this yields $\|T x-T y\|<\varepsilon$, thus T is continuous.
Next we show that T maps any bounded sets in K into relatively compact sets. Now we first prove that f maps bounded sets into bounded sets. Indeed, let $\varepsilon=1$, by (H3), for any $\mu>0$, there exists $\delta>0$ such that $\{x, y \in B C,\|x\| \leq \mu,\|y\| \leq \mu,\|x-y\| \leq \delta, 0 \leq s \leq T\}$ imply

$$
\mid f\left(s, x(s), x(s-\tau(s))-f\left(s, y(s),\left.y(s-\tau(s))\right|_{0}<1\right.\right.
$$

Choose a positive integer N such that $\frac{\mu}{N}<\delta$. Let $x \in B C$ and define $x^{k}(t)=\frac{x(t) k}{N}, k=0,1,2 \cdots, N$.
If $\|x\|<\mu$, then

$$
\left\|x^{k}-x^{k-1}\right\|=\sup _{t \in R}\left|\frac{x(t) k}{N}-\frac{x(t)(k-1)}{N}\right| \leq\|x\| \frac{1}{N} \leq \frac{\mu}{N}<\delta .
$$

Thus,

$$
\mid f\left(s, x^{k}(s), x^{k}(s-\tau(s))-f\left(s, x^{k-1}(s),\left.x^{k-1}(s-\tau(s))\right|_{0}<1\right.\right.
$$

for all $s \in[0, T]$, this yields

$$
\begin{aligned}
& \mid f\left(s, x(s),\left.x(s-\tau(s))\right|_{0}=\mid f\left(s, x^{N}(s), x^{N}(s-\tau(s)) \mid\right.\right. \\
& \leq \sum_{k=1}^{N} \mid f\left(s, x^{k}(s), x^{k}(s-\tau(s))-f\left(s, x^{k-1}(s),\left.x^{k-1}(s-\tau(s))\right|_{0}+|f(s, 0,0)|_{0}\right.\right. \\
& <N+\|f\|=: W
\end{aligned}
$$

It follows from (7) that

$$
\|T x\|=\sup _{t \in R} \sum_{j=1}^{n}\left|\left(T_{j} x\right)(t)\right| \leq \sum_{j=1}^{n} M_{j} \lambda C \int_{0}^{T} \mid f_{j}(s, x(s), x(s-\tau(s)) \mid d s \leq M \lambda C T W .
$$

Finally, for $t \in R$, we have

$$
\begin{equation*}
\left(T_{j} x\right)^{\prime}(t)=\int_{t}^{t+T}\left[-q_{j}(s) G_{j}(t, s)+\frac{\exp \int_{t}^{s} p_{j}(v) d v}{\exp \int_{0}^{T} p_{j}(v) d v-1}\right] \lambda c_{j}(s) f_{j}(s, x(s), x(s-\tau(s)) d s \tag{9}
\end{equation*}
$$

$$
j=1,2, \cdots, n
$$

Combine (7), (8), (9) and Corollary 2.1, we obtain

$$
\begin{aligned}
& \left|\frac{d}{d t}(T x)(t)\right|_{0}=\sum_{j=1}^{n}\left|\left(T_{j} x\right)^{\prime}(t)\right| \\
& \leq \sum_{j=1}^{n} \int_{t}^{t+T} \left\lvert\, \lambda c_{j}(s) f_{j}\left(s, x(s), x(s-\tau(s))| |-q_{j}(s) G_{j}(t, s)+\frac{\exp \int_{t}^{s} p_{j}(v) d v}{\exp \int_{0}^{T} p_{j}(v) d v-1 \mid} d s\right.\right. \\
& \left.\leq \sum_{j=1}^{n} \lambda C\left(M_{j}\|Q\|+\frac{e^{m}}{e^{l}-1}\right) \int_{t}^{t+T} \right\rvert\, f_{j}(s, x(s), x(s-\tau(s)) \mid d s \\
& \leq \lambda C\left(M\|Q\|+\frac{e^{m}}{e^{l}-1}\right) T W,
\end{aligned}
$$

where $\|Q\|=\max _{1 \leq j \leq n}\left|q_{j}\right|$.
Hence $\{T x: x \in K,\|x\| \leq \mu\}$ is a family of uniformly bounded and equicontinuous functions on $[0, T]$. By a theorem of Ascoli-Arzela, the function T is completely continuous.
Theorem 3.1. Suppose that (H1)-(H3), (2) and (6) and that there are positive constants R_{1} and R_{2} with $R_{1}<R_{2}$ such that

$$
\begin{equation*}
\sup _{\|\phi\|=R_{1}, \phi \in K} \int_{0}^{T} \mid f\left(s, \phi(s),\left.\phi(s-\tau(s))\right|_{0} d s:=P_{1}\right. \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\inf _{\| \phi \mid=R_{2}, \phi \in K} \int_{0}^{T} \mid f\left(s, \phi(s),\left.\phi(s-\tau(s))\right|_{0} d s:=P_{2}\right. \tag{11}
\end{equation*}
$$

for each λ satisfy

$$
\begin{equation*}
\frac{R_{2}}{M C P_{2}}<\lambda<\frac{R_{1}}{M C P_{1}} . \tag{12}
\end{equation*}
$$

Then Eq.(1) has a positive T-periodic solution x with $R_{1} \leq\|x\| \leq R_{2}$.
Proof. Let $x \in K$ and $\|x\|=R_{1}$. By (10) and (12), we have

$$
\begin{aligned}
|(T x)(t)|_{0} & \leq M \int_{t}^{t+T} \mid \lambda C(s) f\left(s, x(s),\left.x(s-\tau(s))\right|_{0} d s\right. \\
& \leq \lambda M C \int_{t}^{t+T} \mid f\left(s, x(s),\left.x(s-\tau(s))\right|_{0} d s\right. \\
& \left.<\frac{R_{1}}{M C P_{1}} M C \int_{t}^{t+T} \right\rvert\, f\left(s, x(s),\left.x(s-\tau(s))\right|_{0} d s \leq R_{1}\right.
\end{aligned}
$$

for all $t \in[0, T]$. This implies that $\|T x\| \leq\|x\|$ for $x \in K \bigcap \partial \Omega_{1}, \Omega_{1}=\left\{x \in X,\|x\|<R_{1}\right\}$.
If $x \in K$ and $\|x\|=R_{2}$. By (11) and (12), we have

$$
\begin{aligned}
|(T x)(t)|_{0} & \geq N \int_{t}^{t+T} \mid \lambda C(s) f\left(s, x(s),\left.x(s-\tau(s))\right|_{0} d s\right. \\
& \geq \lambda N C \int_{t}^{t+T} \mid f\left(s, x(s),\left.x(s-\tau(s))\right|_{0} d s\right. \\
& \left.>\frac{R_{2}}{N C P_{2}} N C \int_{t}^{t+T} \right\rvert\, f\left(s, x(s),\left.x(s-\tau(s))\right|_{0} d s \geq R_{2}\right.
\end{aligned}
$$

for all $t \in[0, T]$. Thus, $\|T x\| \geq\|x\|$ for $x \in K \bigcap \partial \Omega_{2}, \Omega_{2}=\left\{x \in X,\|x\|<R_{2}\right\}$.
By Krasnoselskii's fixed point theorem, T has a fixed point in $K \bigcap\left(\overline{\Omega_{2}} \backslash \Omega_{1}\right)$. It is easy to say that Eq.(1) has a positive T-periodic solution x with $R_{1} \leq\|x\| \leq R_{2}$. This completes the proof.

References

[1]. Y. Liu, W. Ge, Positive solutions Positive solutions for nonlinear Duffing equations with delay and variable coefficients, Tamsui Oxf. J. Math. sci., 20 (2004) 235-255.
[2]. W. Han, J. Ren, Some results on second-order neutral functional differential equations with infinite distributed delay, Nonlinear Anal., (2008), 1-14.
[3]. Y. Wang, H. Lian, W. Ge, Periodic solutions for a second order nonlinear functional differential equation, Appl. Math. Lett., (2007) 110-115.
[4]. Y. Li, L. Zhu, Periodic solutions for a class of higher-dimensional state-dependent delay functional differential equations with feedback control. Appl. Math. Comput., (2003) 783-795
[5]. A. Wan, D. Jiang, Existence of Positive solutions Positive solutions functional differential equations, Kyushu J. Math., 56 (2002) 193-202
[6]. A. Bouakkaz, A. Ardjouni, A. Djoudi, Periodic solutions for a second order nonlinear functional differential equation with iterative terms by Schauder fixed point theorem. Acta Math. Univ. Comen. LXXXVII(2), 223-235 (2018).
[7]. Y. Li, Positive Periodic solutions of neutral differential equations with distributed delays, Electron. J. Diff. Equ., 2006 (13) 655-666.
[8]. Y. Li, Y. Kuang, Periodic solutions in periodic state-dependent delay equations and population models, Proc. Aer. math. Soc., 130(5) (2002) 1345-1353.
[9]. D. Smart, Fixed Points Theorems, Cambridge University Press, Cambridge, 1980.

Lili Wang. "Periodic solutions for a class of second order higher-dimensional functional differential equations." IOSR Journal of Mathematics (IOSR-JM), 16(6), (2020): pp. 44-49.

