On the Qualitative Study of some Difference Equations

Hamdy A. El-Metwally
DepartmentofMathematics,FacultyofScience, Mansoura University, Mansoura 35516, Egypt

Abstract

In this paper, we study some qualitative properties of the solutions for the following difference equation

$$
\begin{equation*}
y_{n+1}=\frac{\alpha+\alpha_{0} y_{n}^{r}+\alpha_{1} y_{n-1}^{r}+\cdots+\alpha_{k} y_{n-k}^{r}}{\beta+\beta_{0} y_{n}^{r}+\beta_{1} y_{n-1}^{r}+\cdots+\beta_{k} y_{n-k}^{r}}, \quad n \geq 0, \tag{*}
\end{equation*}
$$

where $r, \alpha, \alpha_{0}, \alpha_{1}, \ldots, \alpha_{k}, \beta, \beta_{0}, \beta_{1}, \ldots, \beta_{k} \in(0, \infty)$ and k isanonnegativeinteger number. We find the equilibrium points for Eq. $\left(^{*}\right.$) and then classify these points in terms of local stability or not. We investigate the boundedness and the global stability of the considered equation. Also we study the existence of periodic solutions ofEq.(*).

Keywords: boundedness, local stability, periodicity, global stability.
MathematicsSubjectClassification:39A10

I. Introduction

Inthispaperwestudytheboundednessandtheglobalattractvityofthesolutionsof the differenceequation

$$
\begin{equation*}
y_{n+1}=\frac{\alpha+\alpha_{0} y_{n}^{r}+\alpha_{1} y_{n-1}^{r}+\cdots+\alpha_{k} y_{n-k}^{r}}{\beta+\beta_{0} y_{n}^{r}+\beta_{1} y_{n-1}^{r}+\cdots+\beta_{k} y_{n-k}^{r}}, \quad n \geq 0 \tag{1}
\end{equation*}
$$

where $r, \alpha, \alpha_{0}, \alpha_{1}, \ldots, \alpha_{k}, \beta, \beta_{0}, \beta_{1}, \ldots, \beta_{\mathrm{k}} \in(0, \infty)$ and kisanonnegativeintegernumber. Also we investigate the periodicity character of the solutions ofEq.(1).
The study of the properties of the solutions for the difference equations such as periodicity, global stability and boundedness has been discussed by many authors. See, for examples the following papers and the references therein:
Cinar [1] studied the properties of the positive solution for the equation

$$
\mathrm{x}_{\mathrm{n}+1}=\frac{\mathrm{x}_{\mathrm{n}-1}}{1+\mathrm{x}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}-1}}, \quad \mathrm{n}=0,1, \ldots
$$

Yang et al [17] investigated the qualitative behavior of the recursive sequence

$$
\mathrm{x}_{\mathrm{n}+1}=\frac{a \mathrm{x}_{\mathrm{n}-1}+b \mathrm{x}_{\mathrm{n}-2}}{\mathrm{c}+\mathrm{dx}_{\mathrm{n}-1} \mathrm{x}_{\mathrm{n}-2}}, \quad \mathrm{n}=0,1, \ldots .
$$

Li etal[13]studiedtheglobalasymptoticofthefollowingnonlineardifferenceequation

$$
\mathrm{x}_{\mathrm{n}+1}=\frac{a+\mathrm{x}_{\mathrm{n}-1}+\mathrm{x}_{\mathrm{n}-2}+\mathrm{x}_{\mathrm{n}-3}+\mathrm{x}_{\mathrm{n}-1} \mathrm{x}_{\mathrm{n}-2} \mathrm{x}_{\mathrm{n}-3}}{a+\mathrm{x}_{\mathrm{n}-1} \mathrm{x}_{\mathrm{n}-2}+\mathrm{x}_{\mathrm{n}-1} \mathrm{x}_{\mathrm{n}-3}+\mathrm{x}_{\mathrm{n}-2} \mathrm{x}_{\mathrm{n}-3}+1}, \quad \mathrm{n}=0,1, \ldots,
$$

with $a \geq 0$.

Kulenovic and Ladas [10] presented a summary of a recent work and a large of openproblemsandconjecturesonthethirdorderrationalrecursivesequenceofthe form

$$
\mathrm{x}_{\mathrm{n}+1}=\frac{\alpha+\beta \mathrm{x}_{\mathrm{n}}+\gamma \mathrm{x}_{\mathrm{n}-1}+\delta \mathrm{x}_{\mathrm{n}-2}}{A+B \mathrm{x}_{\mathrm{n}}+C \mathrm{x}_{\mathrm{n}-1}+D \mathrm{x}_{\mathrm{n}-2}}, \quad \mathrm{n}=0,1, \ldots
$$

In [15],Xianyi and Deming proved that the positive equilibrium of the difference equations

$$
\mathrm{x}_{\mathrm{n}+1}=\frac{\mathrm{x}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}-1}+\mathrm{x}_{\mathrm{n}-2}+a}{\mathrm{x}_{\mathrm{n}}+\mathrm{x}_{\mathrm{n}-1} \mathrm{x}_{\mathrm{n}-2}+a}, \quad \text { and } \quad \mathrm{x}_{\mathrm{n}+1}=\frac{\mathrm{x}_{\mathrm{n}-1}+\mathrm{x}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}-2}+a}{\mathrm{x}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}-1}+\mathrm{x}_{\mathrm{n}-2}+a}, \quad \mathrm{n}=0,1, \ldots,
$$

withpositive initialvalues x_{-2}, x_{-1}, x_{0} and a nonnegativeparametera, isgloballyasymptotically stable.
Simsek et al [14] obtained the solutions of the following difference equation

$$
\mathrm{x}_{\mathrm{n}+1}=\frac{\mathrm{x}_{\mathrm{n}-3}}{1+\mathrm{x}_{\mathrm{n}-1}}, \quad \mathrm{n}=0,1, \ldots
$$

In [5], Yalçınkaya et al. investigated the dynamics of the difference equation

$$
\mathrm{x}_{\mathrm{n}+1}=\frac{a \mathrm{x}_{\mathrm{n}-\mathrm{k}}}{\mathrm{~b}+\mathrm{cx}_{\mathrm{n}}^{\mathrm{p}} \mathrm{x}_{\mathrm{n}-1}}, \quad \mathrm{n}=0,1, \ldots
$$

For more related results see [2-5], [7-8] and[11-12].
Inthefollowingwepresentsomedefinitionsandsomeknownresultsthatwillbe useful in the investigation ofEq.(1).
Now consider the difference equation

$$
\begin{equation*}
\mathrm{x}_{\mathrm{n}+1}=\mathrm{f}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}-1}, \ldots, \mathrm{x}_{\mathrm{n}-\mathrm{k}}\right), \quad \mathrm{n}=0,1, \ldots, \tag{2}
\end{equation*}
$$

withx ${ }_{-\mathrm{k}}, \mathrm{x}_{-\mathrm{k}+1}, \ldots, \mathrm{x}_{0} \in I$, for some interval $I \subset R$ andf: $\mathrm{I}^{\mathrm{k}+1} \rightarrow \mathrm{R}$ be a continuous function.
Defintion 1: Eq.(2) is saidto be permanent if there exist numbers m and M with $0<m<M<\infty$ such that for any initial conditions $\mathrm{x}_{-\mathrm{k}}, \mathrm{x}_{-\mathrm{k}+1}, \ldots, \mathrm{x}_{0} \in(0, \infty)$ there exists sa positive integer N which depends on these initial conditions such that

$$
m<\mathrm{x}_{\mathrm{n}}<M \quad \text { for all } \quad n \geq N
$$

Defintion 2:

(i) The equilibrium point $\overline{\mathrm{x}}$ of Eq.(2) is locally stable if for every >0 there exists $\delta>0$ such that for all $\mathrm{x}_{-\mathrm{k}}, \mathrm{x}_{-\mathrm{k}+1}, \ldots$, $\mathrm{x}_{0} \in \mathrm{I}$ with $\left|\mathrm{x}_{-\mathrm{k}}-\overline{\mathrm{x}}\right|+\left|\mathrm{x}_{-\mathrm{k}+1}-\overline{\mathrm{x}}\right|+\ldots+\left|\mathrm{x}_{0}-\overline{\mathrm{x}}\right|<\delta$ we have $\left|\mathrm{x}_{\mathrm{n}}-\overline{\mathrm{x}}\right|<\varepsilon$ for all $\mathrm{n} \geq-\mathrm{k}$.
(ii) The equilibrium point \bar{x} of Eq.(2) is globally asymptotically stable if x is locally stable and there exists $\lambda>0$,such that for all $\mathrm{x}_{-\mathrm{k}}, \mathrm{x}_{-\mathrm{k}+1}, \ldots, \mathrm{x}_{0} \in \mathrm{I}$ with $\left|\mathrm{x}_{-\mathrm{k}}-\overline{\mathrm{x}}\right|+\left|\mathrm{x}_{-\mathrm{k}+1}-\overline{\mathrm{x}}\right|+\ldots+\left|\mathrm{x}_{0}-\overline{\mathrm{x}}\right|<\lambda$,we havelim $\mathrm{m}_{\mathrm{n} \rightarrow \infty} \mathrm{x}_{\mathrm{n}}=\overline{\mathrm{x}}$.
(iii) The equilibrium point \bar{x} of Eq.(2) is global attractor if for all $x_{-k}, x_{-k+1}, \ldots, x_{0} \in I$, we havelim ${ }_{n \rightarrow \infty} x_{n}=\bar{x}$.
(iv) The equilibrium point $\overline{\mathrm{x}}$ of Eq.(2) is globally asymptotically stable if $\overline{\mathrm{x}}$ is locally stable, and $\overline{\mathrm{x}}$ is also a global attractor of Eq.(2).
(v) The equilibrium point \bar{x} of Eq.(2) is unstable if \bar{x} is not locally stable.

Observe that, the linearized equation of Eq.(2) about the equilibrium point $\overline{\mathrm{x}}$ is

$$
\mathrm{y}=\mathrm{p}_{0} y_{\mathrm{n}}+\mathrm{p}_{1} y_{\mathrm{n}-1}+\cdots+\mathrm{p}_{\mathrm{k}} y_{\mathrm{n}-\mathrm{k}},(3)
$$

where

$$
\mathrm{p}_{0}=\frac{\partial f(\bar{x}, \bar{x}, \ldots, \bar{x})}{\partial x_{\mathrm{n}}}, \mathrm{p}_{1}=\frac{\partial f(\bar{x}, \bar{x}, \ldots, \bar{x})}{\partial x_{\mathrm{n}-1}}, \ldots, \mathrm{p}_{\mathrm{k}}=\frac{\partial f(\bar{x}, \bar{x}, \ldots, \bar{x})}{\partial x_{\mathrm{n}-\mathrm{k}}},
$$

and the characteristic equation of Eq .(3) is

$$
\lambda^{k+1}-\sum_{i=0}^{k} p_{i} \lambda^{k-i}=0
$$

Theorem A [9]:Assume that $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, p_{k} \in \mathrm{R}$. Then the condition;

$$
\sum_{i=0}^{k}\left|p_{i}\right|<1
$$

is a sufficient condition for the locally stability of Eq.(3).
Theorem B [6]: Let J be some interval of real numbers, $\mathrm{f} \in \mathrm{C}\left[J^{v+1}, \mathrm{~J}\right]$ and let $\left\{x_{n}\right\}_{n=-v}^{\infty}$ be a bounded solution of the difference equation

$$
\begin{equation*}
\mathrm{x}_{\mathrm{n}+1}=\mathrm{f}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}-1}, \ldots, \mathrm{x}_{\mathrm{n}-\mathrm{v}}\right), \quad \mathrm{n}=0,1, \ldots, \tag{4}
\end{equation*}
$$

with

$$
I=\lim _{\mathrm{n} \rightarrow \infty} \inf \mathrm{x}_{\mathrm{n}}, \quad S=\lim _{\mathrm{n} \rightarrow \infty} \sup \mathrm{x}_{\mathrm{n}}, \quad I, S \in J .
$$

Then there exist two solutions $\left\{I_{n}\right\}_{n=-\infty}^{\infty}$ and $\left\{S_{n}\right\}_{n=-\infty}^{\infty}$ of Eq.(4) with

$$
I_{0}=I, \quad S_{0}=S, \quad I_{n} S_{n} \in[I, s] \text { for all } n \in Z
$$

and such that for everyN $\in \mathrm{Z}, I_{N}$ and S_{N} are limit points of $\left\{x_{n}\right\}_{n=-v}^{\infty}$.
Furthermore, for every $\mathrm{m} \leq-v$, there exist two subsequences $\left\{x_{r_{n}}\right\}$ and $\left\{x_{l_{n}}\right\}$ of the solution $\left\{x_{n}\right\}_{n=-v}^{\infty}$ such that the following are true

$$
\lim _{\mathrm{n} \rightarrow \infty} \mathrm{x}_{r_{n}}=I_{N} \text { and } \lim _{\mathrm{n} \rightarrow \infty} \mathrm{x}_{l_{n}}=S_{N} \text { for every } \quad N \geq m
$$

The solutions $\left\{I_{n}\right\}_{n=-\infty}^{\infty}$ and $\left\{S_{n}\right\}_{n=-\infty}^{\infty}$ are called full limiting sequences of Eq.(4).

II. Boundedness for the solutions of Eq.(1)

In this section we study the boundedness of the solutions for Eq.(1).
Theorem1:Every solution of Eq.(1) is bounded and persists.
Proof Let $\left\{y_{n}\right\}_{n=-k}^{\infty}$ be a solution of Eq.(1) and assume that $\alpha^{*}=\min \left\{\alpha, \alpha_{0}, \alpha_{1}, \ldots, \alpha_{k}\right\}, \alpha^{* *}=\max \left\{\alpha, \alpha_{0}, \alpha_{1}, \ldots, \alpha_{k}\right\}, \beta^{*}=\min \left\{\beta, \beta_{0}, \beta_{1}, \ldots, \beta_{k}\right\} \quad$ and $\quad \beta^{* *}=$ $\max \left\{\beta, \beta_{0}, \beta_{1}, \ldots, \beta_{k}\right\}$. It follows from Eq.(1) that

$$
\begin{gathered}
y_{\mathrm{n}+1}=\frac{\alpha+\alpha_{0} y_{n}^{r}+\alpha_{1} y_{n-1}^{\mathrm{r}}+\cdots+\alpha_{\mathrm{k}} y_{\mathrm{n}-\mathrm{k}}^{\mathrm{r}}}{\beta+\beta_{0} y_{n}^{r}+\beta_{1} y_{n-1}^{\mathrm{r}}+\cdots+\beta_{\mathrm{k}} y_{n-k}^{\mathrm{r}}} \\
\leq \frac{\max \left\{\alpha, \alpha_{0}, \alpha_{1}, \ldots, \alpha_{\mathrm{k}}\right\}\left(1+y_{\mathrm{n}}^{\mathrm{r}}+\mathrm{y}_{\mathrm{n}-1}^{\mathrm{r}}+\cdots+\mathrm{y}_{\mathrm{n}-\mathrm{k}}^{\mathrm{r}}\right)}{\min \left\{\beta, \beta_{0}, \beta_{1}, \ldots, \beta_{\mathrm{k}}\right\}\left(1+\mathrm{y}_{\mathrm{n}}^{\mathrm{r}}+\mathrm{y}_{\mathrm{n}-1}^{\mathrm{r}}+\cdots+\mathrm{y}_{\mathrm{n}-\mathrm{k}}^{\mathrm{r}}\right)} \\
=\frac{\max \left\{\alpha, \alpha_{0}, \alpha_{1}, \ldots, \alpha_{\mathrm{k}}\right\}}{\min \left\{\beta, \beta_{0}, \beta_{1}, \ldots, \beta_{\mathrm{k}}\right\}}=\frac{\alpha^{* *}}{\beta^{*}} .
\end{gathered}
$$

Similarly it easy to see that

$$
y_{\mathrm{n}} \geq \frac{\min \left\{\alpha, \alpha_{0}, \alpha_{1}, \ldots, \alpha_{\mathrm{k}}\right\}}{\max \left\{\beta, \beta_{0}, \beta_{1}, \ldots, \beta_{\mathrm{k}}\right\}}=\frac{\alpha^{*}}{\beta^{* *}} .
$$

Thus we get

$$
0<\gamma:=\frac{\alpha^{*}}{\beta^{* *}} \leq \mathrm{y}_{\mathrm{n}} \leq \frac{\alpha^{* *}}{\beta^{*}}:=\delta<\infty, \quad \text { for all } \quad n \geq 1
$$

Therefore every solution of Eq.(1) is bounded and persists. Hence the result holds.
Theorem 2: Every solution of Eq.(1) is bounded and persists.
Proof Let $\left\{y_{n}\right\}_{n=-k}^{\infty}$ be a positive solution of Eq.(1). Then it follows that

$$
\begin{gathered}
\mathrm{y}_{\mathrm{n}+1}=\frac{\alpha}{\beta+\beta_{0} \mathrm{y}_{\mathrm{n}}^{\mathrm{r}}+\cdots+\beta_{\mathrm{k}} \mathrm{y}_{\mathrm{n}-\mathrm{k}}^{\mathrm{r}}}+\frac{\alpha_{\mathrm{k}} \mathrm{y}_{\mathrm{n}-\mathrm{k}}^{\mathrm{r}}}{\beta+\beta_{0} \mathrm{y}_{\mathrm{n}}^{\mathrm{r}}+\cdots+\beta_{\mathrm{k}} \mathrm{y}_{\mathrm{n}-\mathrm{k}}^{\mathrm{r}}}+\cdots \\
\cdots+\frac{\mathrm{y}_{\mathrm{n}}^{\mathrm{r}}}{\beta+\beta_{0} \mathrm{y}_{\mathrm{n}}^{\mathrm{r}}+\beta_{1} \mathrm{y}_{\mathrm{n}-1}^{\mathrm{r}}+\cdots+\beta_{\mathrm{k}} \mathrm{y}_{\mathrm{n}-\mathrm{k}}^{\mathrm{r}}} \\
\leq \frac{\alpha}{\beta}+\frac{\alpha_{0}}{\beta_{0}}+\frac{\alpha_{1}}{\beta_{1}}+\cdots+\frac{\alpha_{k}}{\beta_{\mathrm{k}}}=\frac{\alpha}{\beta}+\sum_{i=0}^{k} \frac{\alpha_{i}}{\beta_{\mathrm{i}}}:=D .
\end{gathered}
$$

Then $\left\{y_{n}\right\}_{n=-k}^{\infty}$ is bounded from above by D, that is $y_{n} \leq D$ for all $n \geq 1$.
Now we can obtain the lower bound of $\left\{y_{n}\right\}_{n=-k}^{\infty}$ by two ways;
(I) By the change of variablesy $y_{n}=\frac{1}{z_{n}}$ for all $n \geq 1$,Eq.(1) can be rewritten in the form

$$
\begin{aligned}
z_{n+1} & =\frac{\beta z_{n}^{r} z_{n-1}^{r} \cdots z_{n-k}^{r}+\beta_{0} z_{n-1}^{r} z_{n-2}^{r} \cdots z_{n-k}^{r}+\cdots+\beta_{k} z_{n}^{r} z_{n-1}^{r} \cdots z_{n-k+1}^{r}}{\alpha z_{n}^{r} z_{n-1}^{r} \cdots z_{n-k}^{r}+\alpha_{0} z_{n-1}^{r} z_{n-2}^{r} \cdots z_{n-k}^{r}+\cdots+\alpha_{k} z_{n}^{r} z_{n-1}^{r} \cdots z_{n-k+1}^{r}} \\
& \leq \frac{\beta}{\alpha}+\frac{\beta_{0}}{\alpha_{0}}+\frac{\beta_{1}}{\alpha_{1}}+\cdots+\frac{\beta_{k}}{\alpha_{k}}=\frac{\beta}{\alpha}+\sum_{i=0}^{k} \frac{\beta_{i}}{\alpha_{i}}:=d^{*} .
\end{aligned}
$$

That is $\mathrm{y}_{\mathrm{n}} \geq \frac{1}{d^{*}}$ for all $n \geq 1$ and therefore

$$
d:=\frac{1}{d^{*}}=\frac{1}{\frac{\beta}{\alpha}+\sum_{i=0}^{k} \frac{\beta_{i}}{\alpha_{i}}} \leq \mathrm{y}_{\mathrm{n}} \leq \frac{\alpha}{\beta}+\sum_{i=0}^{k} \frac{\alpha_{i}}{\beta_{\mathrm{i}}}=D, \quad \text { for all } n \geq 1,
$$

and this completes the proof.
(II) Since $\mathrm{y}_{\mathrm{n}} \leq D$ for all $n \geq 1$, we get from Eq.(1) that

$$
\mathrm{y}_{\mathrm{n}+1} \geq \frac{\alpha}{\beta+\beta_{0} \mathrm{y}_{\mathrm{n}}^{\mathrm{r}}+\beta_{1} \mathrm{y}_{\mathrm{n}-1}^{\mathrm{r}}+\cdots+\beta_{\mathrm{k}} y_{\mathrm{n}-\mathrm{k}}^{\mathrm{r}}} \geq \frac{\alpha}{\beta+D^{r} \sum_{i=0}^{k} \beta_{\mathrm{i}}}:=d^{* *} .
$$

Then we see again that

$$
d^{* *}=\frac{\alpha}{\beta+D^{r} \sum_{i=0}^{k} \beta_{\mathrm{i}}} \leq \mathrm{y}_{\mathrm{n}} \leq \frac{\alpha}{\beta}+\sum_{i=0}^{k} \frac{\alpha_{i}}{\beta_{\mathrm{i}}}=D, \quad \text { for all } n \geq 1,
$$

thus the proof is so completed.

III. Stability Analysis

In this section we investigate the global asymptotic stability of Eq.(1). Observe that the equilibrium points of Eq.(1) are given by $\overline{\mathrm{y}}=\frac{\alpha+A(\overline{\mathrm{y}})^{r}}{\beta+B(\overline{\mathrm{y}})^{r}}$, where $A=\sum_{i=0}^{k} \alpha_{i}$ and $B=\sum_{i=0}^{k} \beta_{\mathrm{i}}$.
Lemma 1: Eq.(1) has a unique positive equilibrium point if one of the following is true:
(i) $A \beta \leq B \alpha$,
(ii) $r<1$,
(iii) $r A \beta<A \beta+\alpha\left[B(r+1)+\beta(\bar{y})^{r}\right]+A B(\bar{y})^{r}$, or
(iv) $r A \beta<B\left(r \alpha+2 \beta \bar{y}+B(\bar{y})^{r+1}\right)+\beta^{2}(\bar{y})^{1-r}$.

ProofDefine the function $f(x)=\frac{\alpha+A x^{r}}{\beta+B x^{r}}-x, x \in R$.Therefore

$$
\grave{f}(x)=\frac{r x^{r-1}(A \beta-B \alpha)}{\left(\beta+B x^{r}\right)^{2}}-1, f(0)=\frac{\alpha}{\beta}>0, \lim _{\mathrm{n} \rightarrow \infty} f(x)=-\infty \text { and } \lim _{\mathrm{n} \rightarrow-\infty} f(x)=\infty .
$$

Thus inparticular $\grave{f}(\bar{y})=\frac{r(\bar{y})^{r-1}(A \beta-B \alpha)}{\left(\beta+B(\bar{y})^{r}\right)^{2}}-1$.Now we discuss the following cases:
(I) If (i) holds we obtain that $f(\bar{y})<0$ for all $\bar{y} \in R^{+}$and then Eq.(1) has a unique positive equilibrium point \bar{y} satisfies the relation $\overline{\mathrm{y}}=\frac{\alpha+A(\overline{\mathrm{y}})^{r}}{\beta+B(\overline{\mathrm{y}})^{r}}$, and this completes the proof of (I).
(II) Note that

$$
\begin{gathered}
\grave{f}(\bar{y})<0 \Leftrightarrow r(\bar{y})^{r-1}(A \beta-B \alpha)<\left[\beta+B(\bar{y})^{r}\right]^{2} \\
\Leftrightarrow r(\bar{y})^{r}(A \beta-B \alpha)<\left[\alpha+A(\bar{y})^{r}\right]\left[\beta+B(\bar{y})^{r}\right] \\
\Leftrightarrow r A \beta(\bar{y})^{r}-r B \alpha(\bar{y})^{r}<\alpha \beta+\alpha B(\bar{y})^{r}(r+1)+A B(\bar{y})^{2 r} \\
\Leftrightarrow A \beta(\bar{y})^{r}(r-1)<\alpha \beta+\alpha B(\bar{y})^{r}(r+1)+A B(\bar{y})^{2 r},
\end{gathered}
$$

which is true by (ii), then the result follows.
(III) Again, we see from case (iii) that

$$
\begin{aligned}
\grave{f}(\bar{y}) & <0 \Leftrightarrow A \beta(r-1)<B \alpha(r+1)+\alpha \beta(\bar{y})^{-r}+A B(\bar{y})^{r} \\
& \Leftrightarrow r A \beta<A \beta+\alpha\left[B(r+1)+\beta(\bar{y})^{-r}\right]+A B(\bar{y})^{r} .
\end{aligned}
$$

Therefore again Eq.(1) has a unique positive equilibrium point \bar{y}.
(IV) The proof of the case wherever (iv) holds is similar to the previous cases and will be omitted. Thus the proof of the theorem is so completed.
Define the function F by

$$
\begin{equation*}
F\left(y_{n}, y_{n-1}, \ldots, y_{n-k}\right)=\frac{\alpha+\alpha_{0} y_{n}^{\mathrm{r}}+\alpha_{1} \mathrm{y}_{\mathrm{n}-1}^{\mathrm{r}}+\cdots+\alpha_{\mathrm{k}} \mathrm{y}_{\mathrm{n}-\mathrm{k}}^{\mathrm{r}}}{\beta+\beta_{0} \mathrm{y}_{\mathrm{n}}^{\mathrm{r}}+\beta_{1} \mathrm{y}_{\mathrm{n}-1}^{\mathrm{r}}+\cdots+\beta_{\mathrm{k}} \mathrm{y}_{\mathrm{n}-\mathrm{k}}^{\mathrm{r}}} . \tag{5}
\end{equation*}
$$

Then

$$
\frac{\partial F}{\partial y_{\mathrm{n}-\mathrm{i}}}=\frac{\left.\operatorname{ry}_{\mathrm{n}-\mathrm{i}}^{\mathrm{r}-1}\left[\alpha_{i} \beta-\alpha \beta_{i}\right)+\sum_{j=0, j \neq i}^{k}\left(\alpha_{i} \beta_{j}-\alpha_{j} \beta_{i}\right) \mathrm{y}_{\mathrm{n}-\mathrm{i}}^{\mathrm{r}}\right]}{\left(\beta+\beta_{0} \mathrm{y}_{\mathrm{n}}^{\mathrm{r}}+\beta_{1} \mathrm{y}_{\mathrm{n}-1}^{\mathrm{r}}+\cdots+\beta_{\mathrm{k}} \mathrm{y}_{\mathrm{n}-\mathrm{k}}^{\mathrm{r}}\right)^{2}}, \quad i=0,1, \ldots
$$

Thus the linearized equation of Eq.(5) about the equilibrium point \bar{y} of Eq.(5) is the linear difference equation

$$
w_{n+1}-\frac{r(\bar{y})^{r-1}}{\left[\beta+\mathrm{B}(\bar{y})^{r}\right]^{2}} \sum_{i=0}^{k}\left[\left(\alpha_{i} \beta-\alpha \beta_{i}\right)+(\bar{y})^{r} \sum_{j=0}^{k}\left(\alpha_{i} \beta_{j}-\alpha_{j} \beta_{i}\right)\right] w_{n-i}=0,
$$

whose characteristic equation is

$$
\phi^{k+1}-\frac{r(\bar{y})^{r-1}}{\left[\beta+\mathrm{B}(\bar{y})^{r}\right]^{2}} \sum_{i=0}^{k}\left[\left(\alpha_{i} \beta-\alpha \beta_{i}\right)+(\bar{y})^{r} \sum_{j=0}^{k}\left(\alpha_{i} \beta_{j}-\alpha_{j} \beta_{i}\right)\right] \varnothing^{k-i}=0 .
$$

Then it follows by Theorem A that the equilibrium point \bar{y} of Eq.(1) is locally as-ymptotically stable if

$$
\sum_{i=0}^{k} r \bar{y}^{r}\left|\left(\alpha_{i} \beta-\alpha \beta_{i}\right)+\bar{y}^{r} \sum_{j=0}^{k}\left(\alpha_{i} \beta_{j}-\alpha_{j} \beta_{i}\right)\right|<\left(\alpha+A \bar{y}^{r}\right)\left(\beta+B \bar{y}^{r}\right)
$$

Remark 1: For any partial order of the quotients $\frac{\alpha}{\beta}, \frac{\alpha_{0}}{\beta_{0}}, \frac{\alpha_{1}}{\beta_{1}}, \ldots, \frac{\alpha_{k}}{\beta_{k}}$, the function $\mathrm{F}\left(y_{n}, y_{n-1}, \ldots, y_{n-k}\right)$ defined by relation (5) has the monotonicity character in some of its arguments.
Therom 3: Every solution of Eq.(1) is globally asymptotically stable if one of the following holds
(i) $A>2 G$ and $B>2 L$
(ii) $A<2 G, B<2 L$ and

$$
\begin{equation*}
\beta+L\left(\gamma^{r}+\bar{y}^{r}\right)>(2 G-A) \delta^{r-1}+\left(2 L-B+\frac{2 G-A}{\bar{y}}\right) \sum_{j=0}^{r-1} \bar{y}^{2 r-i} \delta^{i} \tag{6}
\end{equation*}
$$

(iii) $A<2 G, B>2 L$ and

$$
\begin{equation*}
\beta+L\left(\gamma^{r}+\bar{y}^{r}\right)+(B-2 L) \sum_{i=0}^{r-1} \gamma^{r-i} \bar{y}^{i}>(2 G-A)\left(\gamma^{r-1}+\sum_{i=0}^{r-1} \delta^{i} \bar{y}^{r-i}\right) \tag{7}
\end{equation*}
$$

(iv) $A>2 G, B<2 L$ and

$$
\begin{equation*}
\beta+L\left(\gamma^{r}+\bar{y}^{r}\right)+(A-2 G)\left(\delta^{r-1}+\sum_{i=0}^{r-1} \gamma^{r-i} \bar{y}^{i}\right)>(2 L-B) \sum_{i=0}^{r-1} \delta^{i} \bar{y}^{r-i} \tag{8}
\end{equation*}
$$

Proof: Assume that $\left\{y_{n}\right\}_{n=-k}^{\infty}$ be a solution of Eq.(1). Observe that it was proven in
Theorem 4:that every solution of Eq.(1) is bounded and therefore it follows by Theorem B (Method of Full Limiting Sequences [6])that there exist solutions $\left.\left\{I_{n}\right\}_{n=-\infty}^{\infty}\right)$ and $\left\{S_{n}\right\}_{n=-\infty}^{\infty}$ of Eq.(1) with

$$
\gamma \leq I=I_{0}=\lim _{n \rightarrow \infty} \inf y_{n} \leq \lim _{n \rightarrow \infty} \sup y_{n}=S_{0}=S \leq \delta,
$$

where

$$
I_{n}, S_{n} \in[I, S], n=\cdots,-1,0,1, \ldots
$$

Now since $\mathrm{S} \geq 1$, it suffices to show that $\mathrm{I} \geq S$, Now we obtain from Eq.(1) that

$$
I=I_{0}=\frac{\alpha+\alpha_{0} I_{-1}^{r}+\alpha_{1} I_{-2}^{r}+\cdots+\alpha_{k} I_{-k}^{r}}{\beta+\beta_{0} I_{-1}^{r}+\beta_{1} I_{-2}^{r}+\cdots+\beta_{k} I_{-k}^{r}} \geq \frac{\alpha+G I^{r}+H S^{r}}{\beta+K I^{r}+L S^{r}},
$$

where $H=A-G$ and $K=B-L$. Then we obtain

$$
\alpha+G I^{r}+H S^{r} \leq \beta I+K I^{r+1}+L I S^{r},
$$

or equivalently

$$
\alpha \leq \beta I+K I^{r+1}+L I S^{r}-G I^{r}-H S^{r}
$$

Similarly it is easy to see that

$$
\alpha \geq \beta S+K S^{r+1}+L S I^{r}-G S^{r}-H I^{r} .
$$

Therefore it follows from Eqs.(7) and (8) that

$$
\beta S+K S^{r+1}+L S I^{r}-G S^{r}-H I^{r} \leq \beta I+K I^{r+1}+L I S^{r}-G I^{r}-H S^{r}
$$

or

$$
\beta(I-S)+K\left(I^{r+1}-S^{r+1}\right)-\operatorname{LI} S\left(I^{r-1}-S^{r-1}\right)-(G-H)\left(I^{r}-S^{r}\right) \geq 0
$$

or equivalently

$$
\begin{aligned}
& \beta(I-S)-K\left(I^{r}+I^{r-1} S+\cdots+S^{r-1} I+S^{r}\right)-\operatorname{LIS}\left(I^{r-2}+I^{r-3} S+I^{r-4} S^{2}+\cdots\right. \\
& \left.\quad \ldots+I S^{r-3}+S^{r-2}\right)-(\mathrm{G}-\mathrm{H})\left[\left(I^{r-1}+I^{r-2} S+\cdots+I S^{r-2}+S^{r-1}\right)\right] \geq 0
\end{aligned}
$$

or

$$
(I-S)\left[\beta+K\left(I^{r}+S^{r}\right)+(H-G) S^{r-1}+\left(K-L-\frac{G-H}{S}\right)\left(I^{r-1} S+\cdots+I S^{r-1}\right)\right] \geq 0
$$

Note that $H=A-G$ and $K=B-L$, then

$$
\begin{equation*}
(I-S)\left[\beta+K\left(I^{r}+S^{r}\right)+(A-2 G) S^{r-1}+\left(B-2 L+\frac{A-2 G}{S}\right) \sum_{i=0}^{r-1} I^{r-i} S^{i}\right] \geq 0 \tag{9}
\end{equation*}
$$

Note that if (i) is true then we obtain that

$$
\beta+K\left(I^{r}+S^{r}\right)+(A-2 G) S^{r-1}+\left(B-2 L+\frac{A-2 G}{S}\right) \sum_{i=0}^{r-1} I^{r-i} S^{i}>0
$$

Thus it follows from (9) that $I \geq S$ and the this completes the proof (i).
Proof of (ii): Note that $\gamma \leq I \leq \bar{y} \leq S \leq \delta$, therefore we see that

$$
\begin{equation*}
\beta+L\left(\gamma^{r}+\bar{y}^{r}\right)<\beta+L\left(I^{r}+S^{r}\right) \tag{10}
\end{equation*}
$$

and

$$
\begin{align*}
& (A-2 G) S^{r-1}+\left(B-2 L+\frac{A-2 G}{S}\right) \sum_{i=0}^{r-1} I^{r-i} S^{i}<(2 G-A) \delta^{r-1} \\
& \left(B-2 L+\frac{A-2 G}{S}\right) \sum_{i=0}^{r-1} \bar{y}^{r-i} \delta^{i} . \tag{11}
\end{align*}
$$

Then we get from (6), (10) and (11) that

$$
\beta+L\left(I^{r}+S^{r}\right)+(A-2 G) S^{r-1}+\left(B-2 L+\frac{A-2 G}{S}\right) \sum_{i=0}^{r-1} I^{r-i} S^{i}>0
$$

Thus it follows again from (9) that $I \geq S$ and this completes the proof of (ii).
The proofs of cases (iii) and (iv) are similar to the proofs of the previous cases and will be omitted. The proof of the theorem is so completed.

IV. Existence of Periodic Solutions of Eq.(1)

In this section we investigate the existence of periodic solutions of prime period two of Eq.(1). In fact to achieve the existence of periodic solutions of Eq.(1) we need some very complicated computations so we here consider the case whenever $r=1$ the cases when $r>1$ and $r<1$ are similar. Let

$$
D=\sum_{\substack{i=0 \\ i-\text { odd }}} \alpha_{i}, \quad E=D=\sum_{\substack{j=0 \\ j-\text { even }}} \alpha_{j}, \quad F=\sum_{\substack{i=0 \\ i-\text { odd }}} \beta_{i} \text { and } R=\sum_{\substack{j=0 \\ j-\text { ven }}} \beta_{j} .
$$

Theorem 5: Assume that $r=1, D>E+\beta$ and $\mathrm{R}>F$ then Eq.(1) has periodic solutions of prime period two if and only if

$$
\begin{equation*}
(R-F)(D-E-\beta)^{2}>4 F[\alpha F+E(D-E-\beta)] \tag{12}
\end{equation*}
$$

Proof First suppose that there exists a periodic solution $\{\ldots, \phi, \psi, \phi, \psi, \phi, \psi, \ldots\}$ of Eq.(1), where ϕ and ψ are distinct positive real numbers. Then it follows from Eq.(1) that ϕ, ψ satisfy the following

$$
\phi=\frac{\alpha+D \phi^{r}+E \psi^{r}}{\beta+F \phi^{r}+R \psi^{r}} \text { and } \quad \psi=\frac{\alpha+D \psi^{r}+E \phi^{r}}{\beta+F \psi^{r}+R \phi^{r}}
$$

which are equivalent to

$$
\begin{equation*}
\phi \beta+F \phi^{r+1}+R \phi \psi^{r}=\alpha+D \phi^{r}+E \psi^{r}, \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi \beta+F \psi^{r+1}+R \psi \phi^{r}=\alpha+D \psi^{r}+E \phi^{r} . \tag{14}
\end{equation*}
$$

Subtracting (14) from (13) gives

$$
\beta(\phi-\psi)+F\left(\phi^{r+1}-\psi^{r+1}\right)+R \phi \psi\left(\psi^{r-1}-\phi^{r-1}\right)=(D-E)\left(\phi^{r}-\psi^{r}\right) .
$$

Wherever $r=1$ we see that

$$
\beta(\phi-\psi)+\beta(\phi-\psi)(\phi+\psi)=(D-E) \beta(\phi-\psi)
$$

Since $\phi \neq \psi$, we have

$$
\begin{equation*}
\phi+\psi=\frac{D-E-\beta}{F} . \tag{15}
\end{equation*}
$$

By adding (13) and (14) we obtain

$$
\begin{equation*}
\beta(\phi+\psi)+F\left(\phi^{2}+\psi^{2}\right)+2 R \phi \psi=(D+E)(\phi+\psi) \tag{16}
\end{equation*}
$$

and therefore

$$
\phi \psi=\frac{\alpha F+E(D-E-\beta)}{F(R-F)} .
$$

Thus ϕ and ψ are the roots of the following quadratic equation

$$
\begin{equation*}
u^{2}-\frac{D-E-\beta}{F} u+\frac{\alpha F+E(D-E-\beta)}{F(R-F)}=0 . \tag{17}
\end{equation*}
$$

Again since $\phi \neq \psi$, we obtain

$$
\left(\frac{D-E-\beta}{F}\right)^{2}>\frac{4[\alpha F+E(D-E-\beta)]}{F(R-F)},
$$

which implies that $(R-F)(D-E-\beta)^{2}>4[\alpha F+E(D-E-\beta)]$. Thus (12) holds.
Second suppose that the condition (12) is true. We will show that Eq.(1) has positive prime period two solutions.
Now assume that k is odd (the case wherever k is even is similar and will be left to the reader). Choose

$$
y_{-k}=\cdots=y_{-3}=y_{-1}=\phi=\frac{\frac{D-E-\beta}{F}+\sqrt{\left(\frac{D-E-\beta}{F}\right)^{2}-\frac{4[\alpha F+E(D-E-\beta)]}{F(R-F)}}}{2},
$$

and

$$
y_{-k+1}=\cdots=y_{-2}=y_{0}=\psi=\frac{\frac{D-E-\beta}{F}-\sqrt{\left(\frac{D-E-\beta}{F}\right)^{2}-\frac{4[\alpha F+E(D-E-\beta)]}{F(R-F)}}}{2} .
$$

It is easy by direct substitution in Eq.(1) to prove that $y_{1}=y_{-1}=\phi$ and $y_{2}=y_{0}=\psi$ and then it follows by Mathematical Induction that

$$
y_{2 n+1}=\phi \quad \text { and } \quad y_{2 n}=\psi \quad \text { for all } \quad n \geq 1
$$

Thus Eq.(1) has the positive prime period two solution

$$
\{\ldots, \phi, \psi, \phi, \psi, \phi, \psi, \ldots\}
$$

where ϕ and ψ are the distinct roots of the quadratic equation (17) and so the proof is completed.

References

[1]. C. Cinar, On the positive solutions of the difference equation Appl. Math. Comp. 150 (2004) 21-24.
[2]. J.H. Conway, H.S.M. Coxeter, Triangulated polygons and frieze patterns, Math.Gaz. 57 (400) (1973) 87-94.
[3]. Eduardo Liz, On explicit conditions for the asymptotic stability of linear higher order difference equations, J. Math. Anal. Appl. 303 (2) (2005) 492498.
[4]. E.M. Elabbasy, H. El-Metwally, E.M. Elsayed, Global attractivity and periodiccharacter of a fractional difference equation of order three, Yokohama Math. J. 53 (2007) 91-102.
[5]. H. El-Metwally, "Qualitative Proprieties of some Higher Order Difference Equations", Computers and Mathematics with Applications. Vol.58, No.4, (2009)686-692.
[6]. H. El-Metwally, E. A. Grove and G. Ladas, A global convergence result withapplications to periodic solutions, J. Math. Anal. Appl. 245 (2000) 161-170.
[7]. H. El-Metwally, E.A. Grove, G. Ladas, H.D. Voulov, On the global attractivityand the periodic character of some diderence equations, J. Dixerence Equ. Appl. 7 (2001) 837-850.
[8]. E.A. Grove, G. Ladas, L.C. McGrath, H. El-Metwally, On the difference equation $y_{n+1}=\frac{y_{n-(2 k+1)}+p}{y_{n-(2 k+1)}+9 y_{n-21}}$, in: New Progress in Difference Equations, CRC, 2004,pp. 433-453.
[9]. V.L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations ofHigher Order with Applications, Kluwer Academic Publishers, Dordrecht, 1993.
[10]. M.R.S. Kulenovic, G. Ladas, Dynamics of Second Order Rational DifferenceEquations with Open Problems and Conjectures. Chapman and Hall, CRCPress, 2001.
[11]. M.R.S. Kulenovic, G. Ladas, W.S. Sizer, On the Recursive Sequence $x_{n+1}=\frac{\alpha x_{\mathrm{n}}+\beta x_{\mathrm{n}-1}}{\delta x_{\mathrm{n}}+\delta x_{\mathrm{n}-1}}$, Math. Sci. Res. Hot-Line 2 (5) (1998) 1-16.
[12]. J. Leech, The rational cuboid revisited, Amer. Math. Monthly 84 (1977) 518-533.
[13]. X. Li, Global behavior for a fourth-order rational difference equation, J. Math. Anal. Appl. 312(2005),103-111.
[14]. D. Simsek, C. Cinar and I. Yalcinkaya, On the recursive sequence, Int. J. Contemp. Math. Sci., 1 (10) (2006), 475-480.
[15]. L. Xianyi and Z. Deming, Global asymptotic stability for two recursive differenceequations, Appl. Math. Comput., 150 (2004), 481-492.
[16]. I. Yalçinkaya, and C. Cinar, On the dynamics of the difference equation, FasciculiMathematici, 42 (2009)
[17]. X. Yang, W. Su, B. Chen, G.M. Megson and D. J. Evans, On the recursivesequence, Appl. Math. Comp. 162(2005), 1485-1497.

