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Abstract 

The paper analyzes the representation of even number as a sum of two odd summands. To describe even 

numbers and their representations, arithmetic progressions of a special kind are used, which allow us to divide 

(split) the set of even numbers into classes, in each of which the representation depends on a small number of 

generators. On this basis the proof of Goldbach’s binary conjecture is given. The connection of this conjecture 

with other problems of number theory is considered. 
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I. Introduction 
Goldbach's binary conjecture is the statement: every even number 2n > 2 admits a representation as a 

sum of two primes. Experimental studies and calculations confirm its validity for large numbers [1 – 3]. The 

purpose of this article is to study the connection between the Goldbach's conjecture and the problem of 

representing natural numbers and to prove the Goldbach's binary conjecture. The article is a development of the 

author's previous work on this problem [4]. The representation of an arbitrary even number 2n as a sum of two 

odd terms consists of the set of pairs {gi, (2n – gi)}. The number n is the center of the representation. The 

numbers gi are to the left of the center. We will call them representation generators of even number, or shortly 

representation generators, because they completely define the structure of representation and the number of 

pairs. The numbers (2n – gi) are to the right of the center. The sum of the numbers in each pair is 2n. The pair 

[gi, (2n – gi)] will be called the pair of conjugate numbers. If both numbers in a pair are prime, then we call it a 

pair of prime conjugate numbers. To avoid duplication, we will assume that always gi ≤ (2n – gi). If n is an even 

number, then the representation of the even number 2n can be written as 

 

       2 1 (2 1) 3 (2 3) ... ( 3) ( 3) ( 1) ( 1)n= + n = + n = = n + n+ n + n+     .   (1) 

If n is an odd number, then the representation has the form 

 

       2 1 (2 1) 3 (2 3) ... ( 2) ( 2)n= + n = + n = = n + n+ n+n    .     (2)  

If the number in a pair is composite, then its smallest prime divisor we call the generator of this composite 

number, and the composite number we call the number formed by this generator. If the numbers gi and (2n – gi) 

are composite, then they are formed using the generators of the number 2n. The number of generators forming 

composite numbers participating in the representation is less (or much less) than the number of conjugate pairs 

in the representation 2n, as well as the number of prime representation generators. To describe even numbers 

and their representations, we use arithmetic progressions of a special kind, which allow us to divide the set of 

even numbers into classes, in each of which the representation depends on a small number of representation 

generators. All odd numbers participating in the representation belong to these progressions. Representations of 

even numbers of one class form a connected system. We will prove that a system of equations describing the 

representation of an arbitrary even number from a given class cannot have a solution that does not include a pair 

of prime conjugate numbers. This conclusion is valid for even numbers of an arbitrary class, which is equivalent 

to the validity of the Goldbach’s binary conjecture. 

 

II. Choice of representation 
Analysis of the tables of prime numbers shows that the distance between adjacent primes, as a rule, 

does not exceed 30. For example, exceeding the distance by 2, 4 and 6 as compared to 30 is observed once 

among the first 10000 primes. We can assume that an interval of 30 or a multiple of 30 is characteristic for the 
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distribution of prime numbers. This is one of the arguments we take into account to choose a representation and 

an interval for analyze of the distribution of even numbers. It is easily verified that the triplet (x = 3k, y = 9k
2
 –

 1, z = 9k
2
 + 1), where k is an even number, i.e. k = 2, 4, 6, etc., is a solution of the quadratic Fermat equation 

222 zyx  (see [5, 6]). The expression for y is the product of two factors y = (3k – 1)  (3k + 1). Odd 

numbers in the sequences (3k – 1) and (3k + 1) follow each other with step of 6 units. Numbers in these 

sequences differ by 2 for the same value of k. If we combine sequences and rank the numbers in ascending 

order, they alternate with step 2 – 4 – 2 – 4 etc., namely, we have pairs 5 – 7 (k = 2), 11 – 13 (k = 4), 17 – 19 (k 

= 6), etc. The first number in each pair corresponds to (3k – 1) and the second number corresponds to (3k + 1). 

Let us prove two assertions. Lemma 1: “Any prime number (except for numbers 2 and 3) belongs to one of the 

sequences (3k – 1) or (3k + 1)”. Lemma 2: “Any even number (except for numbers 2, 4, 6 and 8) can be 

represented as a sum of two odd numbers belonging to sequences (3k – 1) or (3k + 1)”. To prove the first 

assertion, we note that the prime number is odd and it is not divisible by 3. Consider odd numbers 2n + 3, where 

n = 1, 2, 3, etc. We put 2n + 3 = 3k – 1, then n = (3k – 4)/2. From this it follows that n can take values 1, 4, 7, 

etc. with step 3. Put 2n + 3 = 3k + 1, then n = (3k – 2)/2. From this it follows that n takes values 2, 5, 8, etc. with 

step 3. It can be seen that the sequences (3k – 1) and (3k + 1) do not include the numbers n = 3, 6, 9, etc. with 

step 3. However, these numbers are divided by 3; therefore they are not prime numbers (we excluded number 3), 

which proves the first assertion. To prove the second assertion, we consider even numbers 2n, where n = 5, 6, 7, 

etc. Divide the set of even numbers into 6 subsets (series). In the first series, we put 2n = (3k – 1) + (3k – 

1) = 6k – 2, then n = 3k – 1. From this it follows that n can take values n = 5, 11, 17, etc. with step 6. In the 

second series, we put 2n = (3k – 1) + (3k + 1) = 6k, then n = 3k. From this it follows that n can take values n = 6, 

12, 18, etc. with step 6. In the third series, we put 2n = (3k + 1) + (3k + 1) = 6k + 2, then n = 3k + 1. From this it 

follows that n can take values n = 7, 13, 19, etc. with step 6. In the fourth series, we put 2n = (3k – 1) + (3(k + 2) 

– 1) = 6k + 4, then n = 3k + 2. From this it follows that n can take values n = 8, 14, 20, etc. with step 6. In the 

fifth series, we put 2n = (3k – 1) + (3(k + 2) + 1) = 6k + 6, then n = 3k + 3. From this it follows that n can take 

values n = 9, 15, 21, etc. with step 6. In the sixth series, we put 2n = (3k + 1) + (3(k + 2) + 1) = 6k + 8, then n = 

3k + 4. From this it follows that n can take values n = 10, 16, 22, etc. with step 6. We see that the six considered 

series cover all even numbers, which proves the second assertion. It also follows from the above analysis that 

prime numbers n belong only to the first or third series. If we put k + 2 = k
1
, then series 4, 5, 6 are described in 

the same way as series 1, 2, 3, respectively; the difference is the change in the parity of the center. We divide 

even numbers belonging to one series into 5 groups, in each of which the numbers have the same ends, namely, 

the numbers with the end 0 form the first group, with the end 2 – the second, with the end 4 – the third, with the 

end 6 – the fourth, with end 8 – the fifth. The sequence of ends is different for different series. We divide the 

numbers in each group into two subgroups; in the first subgroup, the center of representation of even number 2n 

is even, and in the second subgroup, the center is odd. Every even number is completely determined by 

indicating three numbers (m1, m2, m3), where m1 is the series number, m2 is the group number, m3 is the number 

of the subgroup. We will say that even numbers corresponding to each combination (m1, m2, m3) belong to one 

class. If m1 and m2 are given, then this defines m3; if m2 and m3 are given, then this defines m1. Therefore, some 

of the combinations are excluded. In total, there are 30 permissible combinations or classes. In each subgroup, 

the distance between adjacent numbers is 60. Arbitrary even number can be written in the form 2n = n0 + 60(t –

 1), where n0 is initial number, t is the ordinal number of even number; t = 1, 2, 3, etc. We will also use the 

notation 2n = n0 + 60t, then t = 0, 1, 2, 3, etc. For even numbers ending in 0, n0 can take values 10, 20, 30, 40, 

50 and 60 depending on class of even number. In particular, for the class (2, 1, 1), which includes even numbers 

of the form 60 + 60(t – 1), n0 is 60; for the class (5, 1, 2) including numbers of the form 30 + 60(t – 1), n0 is 30, 

etc. For even numbers ending in 2, n0 can take values 12, 22, 32, 42, 52 and 62 depending on class. For even 

numbers ending in 4, n0 can take values 14, 24, 34, 44, 54 and 64 depending on class. For even numbers ending 

in 6, n0 can take values 16, 26, 36, 46, 56 and 66 depending on class. For even numbers ending in 8, n0 can take 

values 18, 28, 38, 48, 58 and 68 depending on class. We use sequences (3k – 1) and (3k + 1) to represent even 

numbers as the sum of two odd summands. The advantages of such a representation are obvious. Prime numbers 

appear regularly in sequences consisting of the solutions of the quadratic Fermat equation. In the representation 

of an arbitrary even number 2n, the first pair (1, 2n – 1) is absent, since the number 1 does not belong to the 

sequences (3k – 1) or (3k + 1). At the same time, the number 1 is not a prime number. In these sequences, there 

is no number 3, which has the shortest repetition period, and no odd numbers that are divisible by 3. In the 

general case, an arbitrary prime number g generates (forms) two sequences (arithmetic progressions) of 

composite numbers (g, 6g) and (5g, 6g), where g and 5g are the initial values, and 6g is the period. We call the 

period 6g a small period. Depending on the value of the number g, one of the progressions belongs to the 

sequence (3k + 1), and the other belongs to the sequence (3k – 1). The value 5∙6g = 30g corresponds to the 

complete cycle of changing of ends in the series and we will call it a large half-period. After each large half-

period, the number, position and ends of the composite numbers are repeated. The value 60g we will call a large 

period. After each large period, the entire set (spectrum) of combinations of composite numbers participating in 
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the representation of even numbers of a given class is repeated. The interval between adjacent numbers of the 

first and second progression can take the value 2g or 4g. Within a large half-period, the sum of the intervals is 

28g. We have 4g + 2g + 4g + 2g + 4g + 2g + 4g + 2g + 4g = 28g. If we exclude numbers divisible by 5, then the 

equality takes the form 6g + 4g + 2g + 4g + 2g + 4g + 6g = 28g. The adjacent numbers, separated by an interval 

of 6g, belong to the same progression. The alternation (sequence) of intervals is repeated in each large half-

period. In addition, for generators with the same endings, the endings of the composite numbers formed by them 

are repeated with the same sequence. In the future, we exclude from the representation generators 3 and 5, as 

well as numbers that are multiples of 3 or 5. If necessary, numbers 3 and 5 are taken into account additionally 

(see below). 

 

III. Properties of representation of numbers from different classes 
It is easy to verify the validity of two statements. Lemma 3: “Any odd number more than 31 can be 

obtained from the numbers 7, 11, 13, 17, 19, 23, 29, 31 by adding the number 30 or a multiple of 30”. Lemma 4: 

“Any odd number more than 61 can be obtained from the numbers 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 

49, 53, 59, 61 by adding the number 60, or a multiple of 60”. We will call these numbers the initial numbers. 

Using Lemma 3, we define arithmetic progressions corresponding to odd numbers with different endings. Any 

odd number ending in 7 belongs to one of the arithmetic progressions (7 + 30l7) or (17 + 30l17). Any odd 

number ending in 1 belongs to one of the arithmetic progressions (11 + 30l11) or (31 + 30l31); any odd number 

ending in 3 belongs to one of the arithmetic progressions (13 + 30l13) or (23 + 30l23); any odd number ending in 

9 belongs to one of the arithmetic progressions (19 + 30l19) or (29 + 30l29). We write the representation of even 

numbers with different endings using Lemma 3. The representation of even numbers with different endings is 

obtained by combining numbers from the corresponding arithmetic progressions.  The representation for even 

numbers ending in 0 has the form {[(7 + 30l7) or (17 + 30l17)] + [(13 + 30l13) or (23 + 30l23)]} or {[(11 + 30l11) 

or (31 + 30l31)] + [(19 + 30l19) or (29 + 30l29)]}. Hereinafter, the choice of pairs depends on the class to which 

an even number belongs. If the even number is not divisible by 3, then the following pairs are additionally taken 

into account {3 + [(7 + 30l7) or (17 + 30l17)]}; the choice of one or another pair depends on the class to which an 

even number belongs. The representation for even numbers ending in 2 has the form {[(11 + 30l11) or (31 + 

30l31)] + [(11 + 30l11) or (31 + 30l31)]} or {[(13 + 30l13) or (23 + 30l23)] + [(19 + 30l19) or (29 + 30l29)]} or {5 

+ [(7 + 30l7) or (17 + 30l17)]}. If the even number is not divisible by 3, then the following pairs are additionally 

taken into account {3 + [(19 + 30l19) or (29 + 30l29)]}. The representation for even numbers ending in 4 has the 

form {[(7 + 30l7) or (17 + 30l17)] + [(7 + 30l7) or (17 + 30l17)]} or {[(11 + 30l11) or (31 + 30l31)] + [(13 + 30l13) 

or (23 + 30l23)]} or {5 + [(19 + 30l19) or (29 + 30l29)]}. If the even number is not divisible by 3, then the 

following pairs are additionally taken into account {3 + [(11 + 30l11) or (31 + 30l31)]}. The representation for 

even numbers ending in 6 has the form {[(7 + 30l7) or (17 + 30l17)] + [(19 + 30l19) or (29 + 30l29)]} or {[(13 + 

30l13) or (23 + 30l23)] + [(13 + 30l13) or (23 + 30l23)]} or {5 + [(11 + 30l11) or (31 + 30l31)]}. If the even number 

is not divisible by 3, then the following pairs are additionally taken into account {3 + [(13 + 30l13) or (23 + 

30l23)]}. The representation for even numbers ending in 8 has the form {[(7 + 30l7) or (17 + 30l17)] + [(11 + 

30l11) or (31 + 30l31)]} or {[(19 + 30l19) or (29 + 30l29)] + [(19 + 30l19) or (29 + 30l29)]} or {5 + [(13 + 30l13) or 

(23 + 30l23)]}. The numbers l7, l17, l11, l31, etc. can take values 0, 1, 2, 3, etc. The index shows their connection 

with the corresponding initial numbers. Lemma 3 allows us to establish a connection between arithmetic 

progressions, as well as between representations of even numbers from classes that differ only in the parity of 

the center. We define arithmetic progressions corresponding to odd numbers with different endings using 

Lemma 4. Any odd number ending in 7 belongs to one of the arithmetic progressions (7 + 60l7) or (17 + 60l17) 

or (37 + 60l37) or (47 + 60l47). Any odd number ending in 1 belongs to one of the arithmetic progressions (11 + 

60l11) or (31 + 60l31) or (41 + 60l41) or (61 + 60l61). Any odd number ending in 3 belongs to one of the 

arithmetic progressions (13 + 60l13) or (23 + 60l23) or (43 + 60l43) or (53 + 60l53); any odd number ending in 9 

belongs to one of the arithmetic progressions (19 + 60l19) or (29 + 60l29) or (49 + 60l49) or (59 + 60l59). The 

representation of even numbers with different endings is obtained in the same way as in the case of Lemma 3 by 

combining numbers from the corresponding arithmetic progressions. The representation for even numbers 

ending in 0 has the form {[(7 + 60l7) or (17 + 60l17) or (37 + 60l37) or (47 + 60l47)] + [(13 + 60l13) or (23 + 60l23) 

or (43 + 60l43) or (53 + 60l53)]} or {[(11 + 60l11) or (31 + 60l31) or (41 + 60l41) or (61 + 60l61)] + [(19 + 60l19) or 

(29 + 60l29) or (49 + 60l49) or (59 + 60l59)]}. Hereinafter, the choice of combinations of pairs depends on the 

class to which an even number belongs (see below). If the even number is not divisible by 3, then the following 

pairs are additionally taken into account {3 + [(7 + 60l7) or (17 + 60l17) or (37 + 60l37) or (47 + 60l47)]}. The 

representation of even numbers ending in 2 has the form {[(11 + 60l11) or (31 + 60l31) or (41 + 60l41) or (61 + 

60l61)] + [(11 + 60l11) or (31 + 60l31) or (41 + 60l41) or (61 + 60l61)]} or {[(13 + 60l13) or (23 + 60l23) or 

(43 + 60l43) or (53 + 60l53)] + [(19 + 60l19) or (29 + 60l29) or (49 + 60l49) or (59 + 60l59)]} or {5 + [(7 + 60l7) or 

(17 + 60l17) or (37 + 60l37) or (47 + 60l47)]}. If the even number is not divisible by 3, then the following pairs 

are additionally taken into account {3 + [(19 + 60l19) or (29 + 60l29) or (49 + 60l49) or (59 + 60l59)]}. The 
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representation for even numbers ending in 4 has the form {[(7 + 60l7) or (17 + 60l17) or (37 + 60l37) or 

(47 + 60l47)] + [(7 + 60l7) or (17 + 60l17) or (37 + 60l37) or (47 + 60l47)]} or {[(11 + 60l11) or (31 + 60l31) or (41 

+ 60l41) or (61 + 60l61)] + [(13 + 60l13) or (23 + 60l23) or (43 + 60l43) or (53 + 60l53)]} or {5 + [(19 + 60l19) or 

(29 + 60l29) or (49 + 60l49) or (59 + 60l59)]}. If the even number is not divisible by 3, then the following pairs 

are additionally taken into account {3 + [(11 + 60l11) or (31 + 60l31) or (41 + 60l41) or (61 + 60l61)]}. The 

representation for even numbers ending in 6 has the form {[(7 + 60l7) or (17 + 60l17) or (37 + 60l37) or 

(47 + 60l47)] + [(19 + 60l19) or (29 + 60l29) or (49 + 60l49) or (59 + 60l59)]} or {[(13 + 60l13) or (23 + 60l23) or 

(43 + 60l43) or (53 + 60l53)] + [(13 + 60l13) or (23 + 60l23) or (43 + 60l43) or (53 + 60l53)]} or {5 + [(11 + 60l11) 

or (31 + 60l31) or (41 + 60l41) or (61 + 60l61)]}. If the even number is not divisible by 3, then the following pairs 

are additionally taken into account {3 + [(13 + 60l13) or (23 + 60l23) or (43 + 60l43) or (53 + 60l53)]}. The 

representation for even numbers ending in 8 has the form {[(7 + 60l7) or (17 + 60l17) or (37 + 60l37) or 

(47 + 60l47)] + [(11 + 60l11) or (31 + 60l31) or (41 + 60l41) or (61 + 60l61)]} or {[(19 + 60l19) or (29 + 60l29) or 

(49 + 60l49) or (59 + 60l59)] + [(19 + 60l19) or (29 + 60l29) or (49 + 60l49) or (59 + 60l59)]} or {5 + [(13 + 60l13) 

or (23 + 60l23) or (43 + 60l43) or (53 + 60l53)]}. We write the arithmetic progressions corresponding to Lemma 4 

in explicit form. Hereinafter, primes are shown in bold. For odd numbers ending in 7, we have four arithmetic 

progressions 7, 67, 127, 187, 247, 307, 367, 427, 487, 547, 607, 667, 727, 787, 847, etc.; 17, 77, 137, 197, 257, 

317, 377, 437, 497, 557, 617, 677, 737, 797, 857, etc.; 37, 97, 157, 217, 277, 337, 397, 457, 517, 577, 637, 697, 

757, 817, 877, etc.; 47, 107, 167, 227, 287, 347, 407, 467, 527, 587, 647, 707, 767, 827, 887, etc. For odd 

numbers ending in 1, we have four arithmetic progressions 11, 71, 131, 191, 251, 311, 371, 431, 491, 551, 611, 

671, 731, 791, 851, 911, 971, etc.; 31, 91, 151, 211, 271, 331, 391, 451, 511, 571, 631, 691, 751, 811, 871, 931, 

991,  etc.; 41, 101, 161, 221, 281, 341, 401, 461, 521, 581, 641, 701, 761, 821, 881, etc.; 61, 121, 181, 241, 301, 

361, 421, 481, 541, 601, 661, 721, 781, 841, 901, 961, 1021, etc. For odd numbers ending in 3, we have four 

arithmetic progressions 13, 73, 133, 193, 253, 313, 373, 433, 493, 553, 613, 673, 733, 793, etc.; 23, 83, 143, 

203, 263, 323, 383, 443, 503, 563, 623, 683, 743, 803, etc.; 43, 103, 163, 223, 283, 343, 403, 463, 523, 583, 

643, 703, 763, 823, etc.; 53, 113, 173, 233, 293, 353, 413, 473, 533, 593, 653, 713, 773, 833, etc. For odd 

numbers ending in 9, we have four arithmetic progressions 19, 79, 139, 199, 259, 319, 379, 439, 499, 559, 619, 

679, 739, 799, 859, 919, etc.; 29, 89, 149, 209, 269, 329, 389, 449, 509, 569, 629, 689, 749, 809, 869, 929, etc.; 

49, 109, 169, 229, 289, 349, 409, 469, 529, 589, 649, 709, 769, 829, 889, 949, etc.; 59, 119, 179, 239, 299, 359, 

419, 479, 539, 599, 659, 719, 779, 839, 899, 959, etc. Progressions corresponding to a certain class of even 

numbers we call basic progressions. Any prime number, except 3 and 5, participating in the representation of 

even numbers of a given class, belongs to one of the basic progressions. For example, the representation of 

numbers of the form 60 + 60(t – 1)  from the class (2, 1, 1) is obtained by combining numbers from 16 

arithmetic progressions: (7 + 60l7) and (53 + 60l53), (17 + 60l17) and (43 + 60l43), (23 + 60l23) and (37 + 60l37), 

(13 + 60l13) and (47 + 60l47); (11 + 60l11) and (49 + 60l49), (29 + 60l29) and (31 + 60l31), (19 + 60l19) and (41 + 

60l41), (59 , 60l59) and (61 + 60l61). The relation t = li + lk + 1 is satisfied; li , lk  take values 0, 1, 2, etc., where li 

we denote l7, l17, l23, l13, l11, l29, l19, l59, and lk, respectively, l53, l43, l37, l47, l49, l31, l41, l61. Determine the number of 

pairs participating in the representation of even numbers from different classes. To avoid duplication, we 

assume that the smaller number in a pair is always to the left of the center, and the larger number is to the right 

of the center. The representation of an arbitrary even number of the form 2n = 60 + 60(t – 1) from the class (2, 

1, 1) consists of 8t – 1 pairs (combinations) of numbers from the corresponding arithmetic progressions. The 

representation of an arbitrary even number of the form 2n = 30 + 60(t – 1) from the class (5, 1, 2) consists of 

8t – 5 pairs (combinations). For even numbers from the classes (2, 1, 1) and (5, 1, 2), if t increases by 1, then the 

number of pairs in the representation increases by 8. The representation of an arbitrary even number of the form 

2n = 50 + 60(t – 1) from the class (3, 1, 2) consists of 4t – 1 pairs (combinations). If we take into account an 

additional pair (3, 2n – 3), then the number of pairs will be 4t. For even numbers of the form 2n = 20 + 60(t – 1) 

from the class (6, 1, 1), the number of pairs is 4t – 3; if we take into account the pair (3, 2n – 3), the number of 

pairs is 4t – 2. For even numbers from the classes (3, 1, 2) and (6, 1, 1), if t increases by 1, then the number of 

pairs in the representation increases by 4. For even numbers of the form 2n = 10 + 60(t – 1) from the class (1, 1, 

2), the number of pairs is 4t – 4; if we take into account the pair (3, 2n – 3), the number of pairs is 4t – 3. For 

even numbers of the form 2n = 40 + 60(t – 1) from the class (4, 1, 1), the number of pairs is 4t – 2; if we take 

into account the pair (3, 2n – 3), the number of pairs is 4t – 1. For even numbers from the classes (1, 1, 2) and 

(4, 1, 1), if t increases by 1, then the number of pairs in the representation increases by 4. For even numbers of 

the form 2n = 12 + 60(t – 1) from the class (2, 2, 1), the number of pairs is 6t – 6; if we take into account the 

pair (5, 2n – 5), the number of pairs is 6t – 5. For even numbers of the form 2n = 42 + 60(t – 1) from the class 

(5, 2, 2), the number of pairs is 6t – 3; if we take into account the pair (5, 2n – 5), the number of pairs is 6t – 2. 

For even numbers from the classes (2, 2, 1) and (5, 2, 2), if t increases by 1, then the number of pairs in the 

representation increases by 6. For even numbers of the form 2n = 22 + 60(t – 1) from the class (1, 2, 2), the 

number of pairs is 3t – 2; if we take into account two pairs (3, 2n – 3) and (5, 2n – 5), the number of pairs is 3t. 

For even numbers of the form 2n = 52 + 60(t – 1) from the class (4, 2, 1), the number of pairs is 3t – 1; if we 
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take into account two pairs (3, 2n – 3) and (5, 2n – 5), the number of pairs is 3t + 1. For even numbers from the 

classes (1, 2, 2) and (4, 2, 1), if t increases by 1, then the number of pairs in the representation increases by 3. 

For even numbers of the form 2n = 62 + 60(t – 1) from the class (3, 2, 2), the number of pairs is 3t; if we take 

into account the pair (3, 2n – 3), the number of pairs is 3t + 1. For even numbers of the form 2n = 32 + 60(t – 1) 

from the class (6, 2, 1), the number of pairs is 3t – 2; if we take into account the pair (3, 2n – 3), the number of 

pairs is 3t –1. For even numbers from the classes (3, 2, 2) and (6, 2, 1), if t increases by 1, then the number of 

pairs in the representation increases by 3. For even numbers of the form 2n = 14 + 60(t – 1) from the class (3, 3, 

2), the number of pairs is 3t – 2; if we take into account the pair (3, 2n – 3), the number of pairs is 3t – 1. For 

even numbers of the form 2n = 44 + 60(t – 1) from the class (6, 3, 1), the number of pairs is 3t – 1; if we take 

into account the pair (3, 2n – 3), the number of pairs is 3t. For even numbers from the classes (3, 3, 2) and (6, 3, 

1), if t increases by 1, then the number of pairs in the representation increases by 3. For even numbers of the 

form 2n = 24 + 60(t – 1) from the class (2, 3, 1), the number of pairs is 6t – 4; if we take into account the pair (5, 

2n – 5), the number of pairs is 6t – 3. For even numbers of the form 2n = 54 + 60(t – 1) from the class (5, 3, 2), 

the number of pairs is 6t – 1; if we take into account the pair (5, 2n – 5), the number of pairs is 6t. For even 

numbers from the classes (2, 3, 1) and (5, 3, 2), if t increases by 1, then the number of pairs in the representation 

increases by 6. For even numbers of the form 2n = 34 + 60(t – 1) from the class (1, 3, 2), the number of pairs is 

3t – 1; if we take into account two pairs (3, 2n – 3) and (5, 2n – 5), the number of pairs is 3t + 1. For even 

numbers of the form 2n = 64 + 60(t – 1) from the class (4, 3, 1), the number of pairs is 3t; if we take into 

account two pairs (3, 2n – 3) and (5, 2n – 5), the number of pairs is 3t + 2. For even numbers from the classes 

(1, 3, 2) and (4, 3, 1), if t increases by 1, then the number of pairs in the representation increases by 3. For even 

numbers of the form 2n = 46 + 60(t – 1) from the class (1, 4, 2), the number of pairs is 3t – 1; if we take into 

account two pairs (3, 2n – 3) and (5, 2n – 5), the number of pairs is 3t + 1. For even numbers of the form 

2n = 16 + 60(t – 1) from the class (4, 4, 1), the number of pairs is 3t – 3; if we take into account two pairs (3, 

2n – 3) and (5, 2n – 5), the number of pairs is 3t – 1. For even numbers from the classes (1, 4, 2) and (4, 4, 1), if 

t increases by 1, then the number of pairs in the representation increases by 3. For even numbers of the form 

2n = 26 + 60(t – 1) from the class (3, 4, 2), the number of pairs is 3t –1; if we take into account the pair (3, 2n –

 3), the number of pairs is 3t. For even numbers of the form 2n = 56 + 60(t – 1) from the class (6, 4, 1), the 

number of pairs is 3t; if we take into account the pair (3, 2n – 3), the number of pairs is 3t + 1. For even 

numbers from the classes (3, 4, 2) and (6, 4, 1), if t increases by 1, then the number of pairs in the representation 

increases by 3. For even numbers of the form 2n = 36 + 60(t – 1) from the class (2, 4, 1), the number of pairs is 

6t – 3; if we take into account the pair (5, 2n – 5), the number of pairs is 6t – 2. For even numbers of the form 

2n = 66 + 60(t – 1) from the class (5, 4, 2), the number of pairs is 6t; if we take into account the pair (5, 2n – 5), 

the number of pairs is 6t + 1. For even numbers from the classes (2, 4, 1) and (5, 4, 2), if t increases by 1, then 

the number of pairs in the representation increases by 6. For even numbers of the form 2n = 48 + 60(t – 1) from 

the class (2, 5, 1), the number of pairs is 6t – 2; if we take into account the pair (5, 2n – 5), the number of pairs is 

6t – 1. For even numbers of the form 2n = 18 + 60(t – 1) from the class (5, 5, 2), the number of pairs is 6t – 5; if 

we take into account the pair (5, 2n – 5), the number of pairs is 6t – 4. For even numbers from the classes (2, 5, 

1) and (5, 5, 2), if t increases by 1, then the number of pairs in the representation increases by 6. For even 

numbers of the form 2n = 58 + 60(t – 1) from the class (1, 5, 2), the number of pairs is 3t; if we take into 

account the pair (5, 2n – 5), the number of pairs is 3t + 1. For even numbers of the form 2n = 28 + 60(t – 1) from 

the class (4, 5, 1), the number of pairs is 3t – 2; if we take into account the pair (5, 2n – 5), the number of pairs is 

3t – 1. For even numbers from the classes (1, 5, 2) and (4, 5, 1), if t increases by 1, then the number of pairs in 

the representation increases by 3. For even numbers of the form 2n = 38 + 60(t – 1) from the class (3, 5, 2), the 

number of pairs is 3t – 1. For even numbers of the form 2n = 68 + 60(t – 1) from the class (6, 5, 1), the number 

of pairs is 3t. For even numbers from the classes (3, 5, 2) and (6, 5, 1), if t increases by 1, then the number of 

pairs in the representation increases by 3. Thus, when t increases by 1, which corresponds to the increase of the 

even number by 60, the number of pairs in the representation increases by 3, 4, 6, or 8, depending on the class to 

which the even number belongs. Thus, all odd numbers (composite and prime) participating in the 

representation of a given even number belong to one of the arithmetic progressions determined by the class to 

which the even number belongs. At the same time, any composite number belongs to one of the arithmetic 

progressions formed by generators, the number of which depends on the order of magnitude of an even number. 

It should be borne in mind that the generators participating in the formation of composite numbers located on 

the right of the center of the representation do not necessarily coincide with the prime representation generators 

(prime numbers on the left of the center), which depends on the class of even numbers (see below). Generators 

of composite numbers in the representation of even number 2n are prime numbers (remind that numbers 1, 2, 3, 

and 5, as well as numbers that are divisible by 3 or 5 are excluded), that do not exceed [(2n)
1/2

], where [(2n)
1/2

] 

is the integer part of the number (2n)
1/2

. The number of generators is a small part of the total number of pairs in 

the representation of the number 2n. For the number of generators, we have the following upper estimate ng 

< [[(2n)
1/2

]]/4. Therefore, in addition to generators, there are other primes on the left of the center outside the 



Study of the representation of even numbers and the proof of the Goldbach's binary conjecture  

DOI: 10.9790/5728-1701010113                              www.iosrjournals.org                                               6 | Page 

boundary value [(2n)
1/2

]. Analysis of even numbers from different classes confirms that the number of 

generators is less than the total number of prime representation generators (primes to the left of the center in the 

representation of 2n). For large t, with the increase of the parameter t by 1, which corresponds to the increase of 

the even number by 60, i.e. from 2n to 2n + 60, the number of generators remains the same as for 2n or can 

increase by 1 due to the “accumulated effect”, as a rule, when the number 2n + 60 coincides with the large 

period 60g for certain generator g. This new generator in the representation of 2n + 60 forms a pair (g, g
2
) or 

(2n + 60 – g, g
2
). The value of the numbers in this pair depends on the class of even numbers and the order of 

magnitude of the numbers. For example, the pair (7, 7
2
) first appears in the representation of 56; a pair (11, 11

2
) 

– in the representation of the number 132; a pair (13, 13
2
) – in the representation of the number 182; a pair (17, 

17
2
) – in the representation of the number 306, etc., a pair (59, 59

2
) – in the representation of the number 3540, a 

pair (61, 61
2
) – in the representation of the number 3782, etc. Analysis of even numbers from different classes 

allows us to establish the validity of Lemma 5: “Any even number 2n > 154 is not divisible by all its generators; 

moreover, any even number 2n > 168 is less than the product of its generators”. Since the number of prime 

representation generators is more than the number of generators, Lemma 5 is undoubtedly valid for the prime 

representation generators. Analysis of the block structure of the representation of even numbers for different 

classes (see below) shows that Corollary 1 is valid: “There is no even number 2n satisfying one of the conditions 

2n ≥ n0 or 2n ≥ n0 + 60, that is divisible by all its prime representation generators (primes to the left of the center 

of the representation); moreover, any even number satisfying one of these conditions is less than the product of 

its prime representation generators”. The first part of Corollary 1 is valid under the condition 2n ≥ n0 + 60, if n0 

= 10, 12, 22, 14, 16, and under the condition 2n ≥ n0 for all other n0 (see the distribution of even numbers by 

classes). The second part of Corollary 1 is valid under the condition 2n ≥ n0 + 60, if n0 = 10, 20, 12, 22, 32, 14, 

16, 18, 28, and under the condition 2n ≥ n0 for all other n0. Taking into account additional generators 3 and 5, 

the estimates of Lemma 5 and Corollary 1 are shifted towards lower values. The first part of Lemma 5 is valid 

for 2n > 30, and the second – for 2n > 120. Corollary 1 is valid in this case under the condition 2n ≥ n0; the 

exception is the values n0 = 12 and n0 = 16, for which the second part of Corollary 1 is fulfilled under the 

condition 2n ≥ n0 + 60. 

 

IV. Block structure of representations of even numbers  
Consider the structure of representation for even numbers of a certain class. We use Lemma 4, since 

such a representation is more convenient than using Lemma 3. Divide the representation of an arbitrary even 

number 2n from this class into blocks. The first block can include pairs (7, 2n – 7), (11, 2n – 11), (13, 2n – 13), 

etc., (61, 2n – 61). If some generators are absent in the representation of numbers of this class, then the 

corresponding pairs are excluded. The second block is obtained from the first block by increasing the first 

number in each pair by 60, at the same time, the second number in each pair is decreasing by 60. So the second 

block can include pairs (67, 2n – 7 – 60), (71, 2n – 11 – 60), etc., (121, 2n – 61 – 60). The third block is 

obtained from the first one by increasing the first number in each pair by 120, at the same time, the second 

number in each pair is decreasing by 120. So the third block can include pairs (127, 2n – 7 – 120), (131, 2n –

 11 – 120), etc., (181, 2n – 61 – 120). In all pairs in which the first numbers differ by 60 or a multiple of 60, the 

second numbers belong to the same arithmetic progression. Subsequent blocks are obtained similarly. The 

structure of the blocks depends on the class of even numbers, while the last block may be incomplete. The 

representation of even numbers of one class has vertical-horizontal symmetry. Thus, with a sequential increase 

of the number 2n by 60, the numbers to the right of the center in each pair of the first block in the  representation 

of 2n coincide with the numbers to the right of the center of the second block in the representation of 2n + 60, 

with the numbers to the right of the center of the third block in the representation of 2n + 120, etc. 

Simultaneously, the numbers to the right of the center in each pair of the first block in the representation of 2n + 

60 coincide with the numbers to the right of the center of the second block in the representation of 2n + 120, etc. 

With a sequential decrease of the number 2n by 60, the numbers to the right of the center in each pair of the 

second block in the representation of 2n coincide with the numbers to the right of the center of the first block in 

the representation of 2n – 60. Simultaneously, the numbers to the right of the center in each pair of the third 

block in the representation of 2n coincide with the numbers to the right of the center of the second block in the 

representation of 2n – 60, with the numbers to the right of the center of the first block in the representation of 2n 

– 120. Similar relations take place for other blocks in the representation of even numbers that differ by 60 or a 

multiple of 60. Lemma 6 is valid: “The numbers on the right of the center in the representation of 2n(n0, 60t) 

located in block k + l coincide with the corresponding numbers on the right of the center in the representation of 

2n(n0, 60t) – 60l located in block k”. Here k and l can take values 1, 2, 3, etc. The value of k + l does not exceed 

the number of blocks in the representation of 2n. Hereinafter, we accept that the numeration of blocks increases 

towards the center of the representation of the number 2n. We determine the range of variation of quantities that 

influence the use of Lemma 6. The number of complete blocks in the representation of an arbitrary even number 

2n = n0 + 60(t – 1) is determined by the relation N = min{[(n – g11)/60] + 1, [(n – g1m)/60] + 1}, where g11 and  
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g1m  are respectively the smallest and largest generators of the first block in the representation of even numbers 

of this class; [·] – integer part of a number in square brackets. If the equality {[(n – g11)/60] + 1 = [(n –

 g1m)/60] + 1 holds, then all blocks are complete; if {[(n – g11)/60] + 1 > [(n – g1m)/60] + 1, then the last block is 

incomplete. We put t0 = (2n – n0)/60. The numbers to the right of the center in the last (incomplete) block of the 

representation of the number 2n coincide with the numbers to the right of the center in the first block of the 

representation of the number 2nth. The numbers to the right of the center in the penultimate (complete) block of 

the representation of the number 2n coincide with the numbers to the right of the center in the first block of the 

representation of the number 2nth + 60. If t0 is an even number, then 2nth = n0 + 60t0/2; if t0 is an odd number, 

then 2nth = n0 + 60 + 60(t0 – 1)/2. We designate 2nth – the threshold number, which is the closest even number to 

the number 2n/2 from the considered class of even numbers. Calculations assume that n0 ≥ 30, so that not to 

consider exceptions. If n0 < 30, then the value of n0 should be increased by 60, for example, if n0 =10, then we 

take n0 =10 + 60 = 70, which corresponds to the displacement of the beginning of the counting for numbers of 

this class. We write explicitly the representation generators (numbers to the left of the center) of the first block 

for even numbers from different classes. In the representation of even numbers from classes that differ only in 

the parity of the center, the representation generators in the first block are the same. For classes (1, 1, 2) and (4, 

1, 1) including even numbers of the form 10 + 60(t –1) and 40 + 60(t –1), respectively, the representation 

generators in the first block are 11, 17, 23. 29, 41, 47, 53, 59; so there are 8 numbers. For classes (3, 1, 2) and 

(6, 1, 1) including even numbers of the form 50 + 60(t –1) and 20 + 60(t –1), respectively, the representation 

generators in the first block are 7, 13, 19, 31, 37, 43, 49, 61; so there are 8 numbers. For classes (2, 1, 1) and (5, 

1, 2) including even numbers of the form 60 + 60(t –1) and 30 + 60(t –1), respectively, the representation 

generators in the first block are 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61; so there are 16 

numbers. For classes (2, 2, 1) and (5, 2, 2) including even numbers of the form 12 + 60(t –1) and 42 + 60(t –1), 

respectively, the representation generators in the first block are 11, 13, 19, 23, 29, 31, 41, 43, 49, 53, 59, 61; so 

there are 12 numbers. For classes (1, 2, 2) and (4, 2, 1) including even numbers of the form 22 + 60(t –1) and 

52 + 60(t –1), respectively, the representation generators in the first block are 11, 23, 29, 41, 53, 59; so there are 

6 numbers. For classes (3, 2, 2) and (6, 2, 1) including even numbers of the form 62 + 60(t –1) and 32 + 60(t –

1), respectively, the representation generators in the first block are 13, 19, 31, 43, 49, 61; so there are 6 numbers. 

For classes (3, 3, 2) and (6, 3, 1) including even numbers of the form 14 + 60(t –1) and 44 + 60(t –1), 

respectively, the representation generators in the first block are 7, 13, 31, 37, 43, 61; so there are 6 numbers. For 

classes (2, 3, 1) and (5, 3, 2) including even numbers of the form 24 + 60(t –1) and 54 + 60(t –1), respectively, 

the representation generators in the first block are 7, 11, 13, 17, 23, 31, 37, 41, 43, 47, 53, 61; so there are 12 

numbers. For classes (1, 3, 2) and (4, 3, 1) including even numbers of the form 34 + 60(t –1) and 64 + 60(t –1), 

respectively, the representation generators in the first block are 11, 17, 23, 41, 47, 53; so there are 6 numbers. 

For classes (1, 4, 2) and (4, 4, 1) including even numbers of the form 46 + 60(t –1) and 16 + 60(t –1), 

respectively, the representation generators in the first block are 17, 23, 29, 47, 53, 59; so there are 6 numbers. 

For classes (3, 4, 2) and (6, 4, 1) including even numbers of the form 26 + 60(t –1) and 56 + 60(t –1), 

respectively, the representation generators in the first block are 7, 13, 19, 37, 43, 49; so there are 6 numbers. For 

classes (2, 4, 1) and (5, 4, 2) including even numbers of the form 36 + 60(t –1) and 66 + 60(t –1), respectively, 

the representation generators in the first block are 7, 13, 17, 19, 23, 29, 37, 43, 47, 49, 53, 59; so there are 12 

numbers. For classes (2, 5, 1) and (5, 5, 2) including even numbers of the form 48 + 60(t –1) and 18 + 60(t –1), 

respectively, the representation generators in the first block are 7, 11, 17, 19, 29, 31, 37, 41, 47, 49, 59, 61; so 

there are 12 numbers. For classes (1, 5, 2) and (4, 5, 1) including even numbers of the form 58 + 60(t –1) and 

28 + 60(t –1), respectively, the representation generators in the first block are 11, 17, 29, 41, 47, 59; so there are 

6 numbers. For classes (3, 5, 2) and (6, 5, 1) including even numbers of the form 38 + 60(t –1) and 68 + 60(t –

1), respectively, the representation generators are 7, 19, 31, 37, 49, 61; so there are 6 numbers. Thus, classes (2, 

1, 1) and (5, 1, 2) each have 16 representation generators (numbers to the left of center) in the first block, that 

are the same for both classes. Pairs of classes (1, 1, 2) and (4, 1, 1), as well as (3, 1, 2) and (6, 1, 1) have 8 

generators, that are the same for the classes of each pair. The pairs of classes (2, 2, 1) and (5, 2, 2), as well as (2, 

3, 1) and (5, 3, 2), (2, 4, 1) and (5, 4, 2), (2, 5, 1) and (5, 5, 2) have 12 generators that are the same for the 

classes of each pair. The pairs of classes (1, 2, 2) and (4, 2, 1), (3, 2, 2) and (6, 2, 1), (3, 3, 2) and (6, 3, 1), (1, 3, 

2) and (4, 3, 1), (1, 4, 2) and (4, 4, 1), (3, 4, 2) and (6, 4, 1), (1, 5, 2) and (4, 5, 1), (3, 5, 2) and (6, 5, 1), have 6 

generators that are the same for the classes of each pair. The composition and number of representation 

generators in the first block completely determine the structure of other blocks in representation of even 

numbers. Therefore, the representation of even numbers in each pair of classes with the same number of 

representation generators in the first block has the same block structure of representation, which is different 

from the structure in other pairs of classes. Pairs of classes with the same number and composition of 

representation generators in the first block have the same distribution of endings for representation generators 

(numbers to the left of the center of the representation) in all blocks. If the number of generators in the first 

block is 16, then in the first and subsequent complete blocks there are 4 generators with the end 7, 4 generators 
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with the end 1, 4 generators with the end 3 and 4 generators with the end 9 (taking into account the number 49). 

If the number of generators is 12, then the distribution depends on the ends of the even numbers. For even 

numbers with the end 2, in the first and subsequent complete blocks, there are 4 generators with the end 1, 4 

generators with the end 3 and 4 generators with the end 9, but there are not generators with the end 7. For even 

numbers with the end 4, in the first and subsequent complete blocks, there are 4 generators with the end 7, 4 

generators with the end 1 and 4 generators with the end 3, but there are not generators with the end 9. For even 

numbers with the end 6, in the first and subsequent complete blocks, there are 4 generators with the end 7, 4 

generators with the end 3 and 4 generators with the end 9, but there are not generators with the end 1. For even 

numbers with the end 8, in the first and subsequent complete blocks, there are 4 generators with the end 7, 4 

generators with the end 1 and 4 generators with the end 9, but there are not generators with the end 3. If the 

number of generators is 8, then in the first and subsequent complete blocks there are 2 generators with the end 7, 

2 generators with the end 1, 2 generators with the end 3 and 2 generators with the end 9. If the number of 

generators is 6, then the distribution depends on the ends of the even numbers. For even numbers with the end 2, 

in the first and subsequent complete blocks, there are 2 generators with the end 1, 2 generators with the end 3 

and 2 generators with the end 9, but there are not generators with the end 7. For even numbers with the end 4, in 

the first and subsequent complete blocks, there are 2 generators with the end 7, 2 generators with the end 1 and 2 

generators with the end 3, but there are not generators with the end 9. For even numbers with the end 6, in the 

first and subsequent complete blocks, there are 2 generators with the end 7, 2 generators with the end 3 and 2 

generators with the end 9, but there are not generators with the end 1. For even numbers with the end 8, in the 

first and subsequent complete blocks, there are 2 generators with the end 7, 2 generators with the end 1 and 2 

generators with the end 9, but there are not generators with the end 3. The numbers on the right of the center, 

which form pairs with numbers on the left of the center, belong to arithmetic progressions defined according to 

Lemma 4. For even numbers of a given class, all representation generators (numbers on the left of the center) 

obtained from the same generator of the first block by Lemma 4 form conjugate pairs with numbers on the right 

of the center belonging to the same arithmetic progression. In the general case, for even numbers of the form 

2n = n0 + 60(t –1) from an arbitrary class, an arbitrary representation generator (number to the left of the center) 

gi forms a pair with a number (prime or composite) belonging to the arithmetic progression with the initial term 

n0 – gi,, if n0 > g, or progressions with an initial term n0 + 60 – gi, if n0 < gi. Thus, all odd numbers participating 

in the representation of even numbers of a given class belong to one of the arithmetic progressions. The period 

(difference) of each progression is 60, and the first member coincides with one of representation generators in 

the first block. We call these progressions basic for this class. The number of basic progressions is equal to the 

number of representation generators in the first block. Prime representation generators (prime numbers to the 

left of center) in the representation of an even number 2n do not necessarily coincide with generators that 

participate in the formation of composite numbers to the right of center. A coincidence is possible in classes 

with the maximum number of representation generators in the first block. For other classes such a coincidence 

may not take place, since the generators participating in the formation of composite numbers to the right of the 

center can also be other prime numbers from the first and subsequent blocks for classes with a maximum 

(largest) number of generators equal to 16. For example, for classes (1, 5, 2) and (4, 5, 1), the numbers on the 

left of the center in the first block are 11, 17, 29, 41, 47, 59 (see above), but the generators that participate in the 

formation of composite numbers on the right of the center can also be 7, 13, 19, 23, 31, 37, 43, 53, 61,  which, 

of course, depends on the order of magnitude of an even number. However, this does not lead to an increase of 

the number of composite numbers in the representation of even numbers from classes with the number of 

representation generators in the first block less than 16. From the above analysis, it follows that if the number of 

representation generators in the first block is less than 16, then the representation of even numbers of this class 

will not have prime and composite numbers to the left of the center, corresponding to the generators of the first 

block with missing endings. Moreover, the representation of numbers of this class will not have prime and 

composite numbers to the right of the center of the representation from arithmetic progressions corresponding to 

the missing generators. Therefore, in classes with the number of representation generators in the first block less 

than 16, the number of composite numbers to the left and to right of the center of representation in all blocks is 

no more than in classes with 16 generators. We give in an explicit form the basic arithmetic progressions for all 

classes of numbers. We write them in the form (gi1, gk1). The first number in brackets gi1 corresponds to the first 

member of the progression that includes the representation generators (numbers to the left of the center) in the 

representation of the even number. The number gi1 is equal to one of the generators of the first block. The 

second number in brackets gk1 corresponds to the first member of the progression that includes numbers to the 

right of the center in the representation of the even number. The number gk1 is also equal to one of the 

generators of the first block and depends on gi1. In the basic progressions, gi1 ≤ gk1. The pair (gi1, gk1) is a pair of 

conjugate numbers in the representation of the number n0 or n0 + 60. The sum of the first members of the 

progressions (gi1 + gk1) is equal to the smallest even number from the considered class. If moreover generators 3 

and/or 5 are taken into account, the progression relates only to the member on the right of the center, since 
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multiples of 3 or 5 are excluded. If n0 > gi1 and gi1 ≤ n0/2, then gk1 = n0 – gi1; if n0 < gi1 and gi1 ≤ n0/2 + 30, then 

gk1 = n0 + 60 – gi1. If n0 > gi1 and gi1 > n0/2, then the pair (gi1, gk1) has the form (gi1, n0 + 60 – gi1). If n0 < gi1 and 

gi1 > n0/2 + 30, then the pair (gi1, gk1) has the form (gi1, n0 + 120 – gi1). In the last two cases, the pairs are 

included in the representation of the even numbers n0 + 60 and n0 + 120, respectively, but the numbers gi1 and 

gk1 from these pairs may not be the first members of the basic progressions. For classes (1, 1, 2) and (4, 1, 1), the 

number of basic progressions is 8. For the class (1, 1, 2), they have the form (11, 59), (17, 53), (23, 47), (29, 41). 

Additional generator 3 corresponds to the progression (3, 7). For the class (4, 1, 1), basic progressions have the 

form (11, 29), (17, 23), (41, 59), (47, 53). Additional generator 3 corresponds to the progression (3, 37). For 

classes (3, 1, 2) and (6, 1, 1), the number of basic progressions is 8. For the class (3, 1, 2), basic progressions 

have the form (7, 43), (13, 37), (19, 31), (49, 61). Additional generator 3 corresponds to the progression (3, 47). 

For the class (6, 1, 1), the basic progressions have the form (7, 13), (19, 61), (31, 49), (37, 43). Additional 

generator 3 corresponds to the progression (3, 17). For classes (2, 1, 1) and (5, 1, 2), the number of basic 

progressions is 16. For the class (2, 1, 1), they have the form (7, 53), (11, 49), (13, 47), (17, 43), (19, 41), (23, 

37), (29, 31), (59, 61). For the class (5, 1, 2), the basic progressions have the form (7, 23), (11, 19), (13, 17), (29, 

61), (31, 59), (37, 53), (41, 49), (43, 47). For classes (2, 2, 1) and (5, 2, 2), the number of basic progressions is 

12. For the class (2, 2, 1), they have the form (11, 61), (13, 59), (19, 53), (23, 49), (29, 43), (31, 41). Additional 

generator 5 corresponds to the progression (5, 7). For the class (5, 2, 2), basic progressions have the form (11, 

31), (13, 29), (19, 23), (41, 61), (43, 59), (49, 53). Additional generator 5 corresponds to the progression (5, 37). 

For classes (1, 2, 2) and (4, 2, 1), the number of basic progressions is equal to 6. For the class (1, 2, 2), basic 

progressions have the form (11, 11), (23, 59), (29, 53), (41, 41). Additional generators 3 and 5 correspond to the 

progression (3, 19) and (5, 17), respectively. For the class (4, 2, 1), the basic progressions have the form (11, 

41), (23, 29), (53, 59). Additional generators 3 and 5 correspond to the progression (3, 49) and (5, 47), 

respectively. For classes (3, 2, 2) and (6, 2, 1), the number of basic progressions is equal to 6. For the class (3, 2, 

2) they have the form (13, 49), (19, 43), (31, 31), (61, 61). Additional generator 3 corresponds to the progression 

(3, 59). For the class (6, 2, 1), the basic progressions have the form (13, 19), (31, 61), (43, 49). Additional 

generator 3 corresponds to the progression (3, 29). For classes (3, 3, 2) and (6, 3, 1), the number of basic 

progressions is equal to 6, For the class (3, 3, 2), they have the form (7, 7), (13, 61), (31, 43), (37, 37). 

Additional generator 3 corresponds to the progression (3, 11). For the class (6, 3, 1), basic progressions have the 

form (7, 37), (13, 31), (43, 61). Additional generator 3 corresponds to the progression (3, 41). For classes (2, 3, 

1) and (5, 3, 2), the number of basic progressions is 12. For the class (2, 3, 1), they have the form (7, 17), (11, 

13), (23, 61), (31, 53), (37, 47), (41, 43). Additional generator 5 corresponds to the progression (5, 19). For the 

class (5, 3, 2), basic progressions have the form (7, 47), (11, 43), (13, 41), (17, 37), (23, 31), (53, 61). Additional 

generator 5 corresponds to the progression (5, 49). For classes (1, 3, 2) and (4, 3, 1), the number of basic 

progressions is equal to 6. For the class (1, 3, 2), they have the form (11, 23), (17, 17), (41, 53), (47, 47). 

Additional generators 3 and 5 correspond to the progression (3, 31) and (5, 29), respectively. For the class (4, 3, 

1), basic progressions have the form (11, 53), (17, 47), (23, 41). Additional generators 3 and 5 correspond to the 

progression (3, 61) and (5, 59), respectively. For classes (1, 4, 2) and (4, 4, 1), the number of basic progressions 

is equal to 6. For the class (1, 4, 2), they have the form (17, 29), (23, 23), (47, 59), (53, 53). Additional 

generators 3 and 5 correspond to the progression (3, 43) and (5, 41), respectively. For the class (4, 4, 1), basic 

progressions have the form (17, 59), (23, 53), (29, 47). Additional generators 3 and 5 correspond to the 

progression (3, 13) and (5, 11), respectively. For classes (3, 4, 2) and (6, 4, 1), the number of basic progressions 

is equal to 6. For the class (3, 4, 2), they have the form (7, 19), (13, 13), (37, 49), (43, 43). Additional generator 

3 corresponds to the progression (3, 23). For the class (6, 4, 1), basic progressions have the form (7, 49), (13, 

43), (19, 37). Additional generator 3 corresponds to the progression (3, 53). For classes (2, 4, 1) and (5, 4, 2), the 

number of basic progressions is 12. For the class (2, 4, 1), they have the form (7, 29), (13, 23), (17, 19), (37, 59), 

(43, 53), (47, 49). Additional generator 5 corresponds to the progression (5, 31). For the class (5, 4, 2), basic 

progressions have the form (7, 59), (13, 53), (17, 49), (19, 47), (23, 43), (29, 37). Additional generator 5 

corresponds to the progression (5, 61). For classes (2, 5, 1) and (5, 5, 2), the number of basic progressions is 12. 

For the class (2, 5, 1), they have the form (7, 41), (11, 37), (17, 31), (19, 29), (47, 61), (49, 59). Additional 

generator 5 corresponds to the progression (5, 43). For the class (5, 5, 2), basic progressions have the form (7, 

11), (17, 61), (19, 59), (29, 49), (31, 47), (37, 41). Additional generator 5 corresponds to the progression (5, 13). 

For classes (1, 5, 2) and (4, 5, 1), the number of basic progressions is equal to 6. For the class (1, 5, 2) they have 

the form (11, 47), (17, 41), (29, 29), (59, 59). Additional generator 5 corresponds to the progression (5, 53). For 

the class (4, 5, 1), basic progressions have the form (11, 17), (29, 59), (41, 47). Additional generator 5 

corresponds to the progression (5, 23). For classes (3, 5, 2) and (6, 5, 1), the number of basic progressions is 

equal to 6. For the class (3, 5, 2) they have the form (7, 31), (19, 19), (37, 61), (49, 49). For the class (6, 5, 1), 

basic progressions have the form (7, 61), (19, 49), (31, 37). For classes of even numbers that differ only in the 

parity of the center, the first members of basic arithmetic progressions are either equal or differ by 30, according 

to Lemma 3. Thus, the representation of even numbers of an arbitrary class is completely determined by 
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specifying several arithmetic progressions, the number of which is equal to the number of representation 

generators in the first block. 

 

V. Proof of the Goldbach’s binary conjecture 
Consider the process of proof for numbers of an arbitrary class 2n = n0 + 60(t – 1). Designate gi1 are the 

representation generators (numbers to the left of the center) from the first block in the representation of even 

numbers of this class. The class of even numbers (see above) determines the number of generators and their 

composition. Each generator gi1 forms arithmetic progression of the form gi = gi1 + 60(tgi –1), where tgi = 1 for 

the first block, tgi = 2 for the second block, and so on. For the classes of even numbers, the representation of 

which contains in the first block additional generators gi1 = 3 and/or gi1 = 5, we assume tgi = 1 for these 

generators. According to Lemma 4, all numbers to the left of the center in the representation of 2n belong to one 

of these progressions. The last block may be incomplete, and only a part of the generators of the first block is 

involved in its formation. The numbers to the right of the center in the representation of even numbers of this 

class, that form pairs of conjugate numbers with the generators gi1 of the first block and with numbers to the left 

of the center of the other blocks obtained from gi1, according to Lemma 4, belong to arithmetic progressions of 

the form δi = Δi + 60(t – 1) – 60(tgi – 1) with the first term Δi = n0 – gi1, if n0 > gi1 or Δi = n0 + 60 – gi1, if n0 < gi1. 

For generator 3, the progression has the form n0 – 3 + 60(t – 1), and for generator 5, the progression has the 

form n0 – 5 + 60(t – 1). For even numbers in the representation of which numbers n0 – 3 + 60(t – 1) or n0 –

 5 + 60(t – 1) are primes, Goldbach's conjecture is obviously valid, and such numbers are excluded from 

consideration. For the rest of the even numbers, in the representation of which n0 – 3 + 60(t – 1) and n0 –

 5 + 60(t – 1) are composite, we will not take into account the pairs (3, n0 – 3 + 60(t – 1)) and (5, n0 – 5 + 60(t –

 1)), since this does not affect the generality of the proof. The representation of the number 2n of this class 

consists of the set of pairs {gi, δi}. We write the representation of the number 2n of this class in the form of the 

system of equations 

2i ig n              (3) 

where gi are representation generators (numbers to the left of center of representation) and δi are numbers to the 

right of the center, forming pairs of conjugate numbers with the corresponding gi. We write δi in the form 

i j ja g   , then (3) takes the form 

2i j jg a g n              (4) 

where 
ja   are unknown coefficients (natural numbers), 

jg   are the generators of the number 2n participating 

in the formation of composite numbers to the right of the center of the representation, and then the 

corresponding 1ja   , or 
jg   are primes that are not generators, and then the corresponding 1ja   . The 

system of equations (4) has a block structure corresponding to the representation of the number 2n. 

Transformations that do not change the number of coefficients 
ja   equal to 1, i.e. the number of pairs of prime 

conjugate numbers in the representation of the number 2n, we will call permissible for the given system of 

equations. Systems of equations with the same number of coefficients 
ja   equal to 1 are equivalent. We will 

say that these systems have solution of the same type. In particular, the systems (4) corresponding to the 

representation of even numbers of the same class without pairs of prime conjugate numbers in all blocks, i.e. not 

having coefficients 
ja   equal to 1 are equivalent. Equivalent systems can be obtained from each other using 

permissible transformations. In particular, permissible transformations include: 1) for a given number 2n, the 

exclusion of equations on the left side of which one or both terms are composite numbers; 2) the change of 

number 2n on the right side of all equations by 60 or a multiple of 60, if this does not change the number of 

coefficients 
ja   equal to 1 (in this case, of course, the left sides of the equations also change); 3) the 

combination of the first and second transformations. When comparing equivalent systems, the number of 

equations in (4) does not matter. Transformations 1) or 2) change the number of equations; transformation 3) 

allows us to keep the number of equations if needed. According to Lemma 6, the representation of the number 

2n has vertical-horizontal symmetry. Therefore, a system similar to (4) simultaneously corresponds to the first 

block in the representation of even numbers 2n, 2n – 60, 2n – 120, etc. up to 2nth. In this case, the second 

members i  in pairs of the representation of these even numbers are the same as in the corresponding blocks in 

representation of the number 2n, and the representation generators gi correspond to the first block and are the 

same for all even numbers from the considered class. We keep on the left-hand side of (4) only gi, that are prime 
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numbers, thus we exclude from the representation pairs in which the first number is composite (an exclusion is 

made only after obtaining  a system of equations for a given even number). This transformation is permissible 

and does not affect the generality of the proof. If Goldbach's conjecture is not valid for the number 2n, then all 

ja   are different from 1, and if this conjecture is valid for 2n, then some 
ja   should equal 1, and the 

corresponding 
jg   are prime numbers. When we successively increase even number by 60 from 2nth to 2n, 

some of the numbers to the right of the center are replaced by new ones, and some of the numbers move to the 

left of the center of representation, so the number of primes to the left of the center increases. In particular, in 

the representation of an even number n = 2n/2, the set of numbers to the left and to right of the center coincides 

with the set of numbers to the left of the center in the representation of 2n. The system of equations (4) is 

redundant, since the number of prime representation generators gi (prime numbers to the left of the center) 

exceeds the number of generators 
jg  . We will prove that for an arbitrary even number 2n, system (4) cannot 

have a solution in which all coefficients 
ja   differ from 1, i.e., all numbers to the right of the center are formed 

by generators 
jg  and are composite. The proof is by induction. It is directly verified that Goldbach's conjecture 

is valid for even numbers 4 ≤ 2n ≤ 168. Put 2n1 = n0 + 60t1 and 2n2 = 2n1 + 60. Suppose that Goldbach's 

conjecture is valid for even numbers 2n(n0, t) ≤ 2n(n0, t1), where the even numbers 2n and 2n1 belong to the 

same class. Then system (4) for any number 2n ≤ 2n1 has a solution, and some 
ja   are equal to 1. We prove that 

the conjecture is valid for the number 2n2(n0, t2), where t2 = t1 + 1. Compare the representations of the numbers 

2n1 and 2n2 using the results of the previous analysis. The number of representation generators (numbers to the 

left of the center) in the first block, depending on the class, is 16, 8, 12 or 6 (taking into account the number 49, 

which we then exclude from the system of equations (4)). In blocks of the representation of even numbers with 

the number of generators less than 16, there will be no primes and composite numbers to the left and to right of 

the center, which are included in the arithmetic progressions corresponding to the missing generators. Therefore, 

the number of composite numbers to the left and to right of the center of the representation in all blocks is no 

more than in the classes of even numbers with the maximum number of generators equal to 16. Depending on 

the class of even numbers, 16, 8, 12 or 6 new numbers appear to the right of the center in the representation 2n2 

(we do not take into account the numbers 3 and 5) and at the same time 8, 4, 6 or 3 numbers located to the right 

of the center in the representation of 2n1 move to the left from the center in the representation of 2n2. So the 

number of pairs in the representation of 2n2 is increased by 8, 4, 6, or 3, respectively, depending on the class of 

considered even numbers. Suppose that the hypothesis is not valid for 2n2, then in system (4) all 
ja   should 

differ from 1. This is possible if one of the assumptions is satisfied: 1) in all blocks of the representation of 2n2 

there are no primes to the right of the center, 2) there are such numbers, but prime representation generators 

(primes to the left of the center) form conjugate pairs only with composite numbers. We will show that both of 

these assumptions lead to a contradiction. We accept that the number of generators for 2n1 and 2n2 is the same. 

Otherwise, we can always exclude the pair formed by the new generator g from the representation of 2n2. The 

process of proof is the same for all classes. Consider the first assumption. We cannot use Bertrand's postulate, 

since pairs in which the first number is composite are excluded. If there are no prime numbers to the right of the 

center of the representation 2n2, then the representation of 2n2 contains no pairs of prime conjugate numbers 

and, consequently, the system of equations (4) corresponding to the representation of 2n2 has no coefficients 

ja   equal to 1. Hence, the system of equations (4) for the number 2n2 is equivalent to the system for the number 

2n, which is divisible by all its prime representation generators. Since the numbers 2n2 and 2n belong to the 

same class, they differ by 60 or a multiple of 60, and one can be obtained from another using permissible 

transformations. In this case, transformation 3) allows us to keep the number of equations of the system. But 

according to Corollary 1 of Lemma 5, there is no such number 2n. Therefore, the first assumption is incorrect. It 

also follows from the first assumption that in the first block of representation of any number 2n from the interval 

nth + 60 ≤ 2n ≤ 2n2, all numbers to the right of the center are composite, i.e. the corresponding basic arithmetic 

progressions do not contain primes in this interval. Since the first assumption is incorrect, then in the first block 

of the representation of some even numbers from the interval nth + 60 ≤ 2n ≤ 2n2 to the right of the center there 

are always primes, and hence pairs of conjugate prime numbers, since all numbers to the left of the center are 

prime. Hence, it follows that the number of primes participating in the representation should increase as the even 

number 2n increases. Note that even numbers with no prime numbers to the right of the center in the first block 

exist. For example, it is take place for the number 2n2 = 1923610, which belongs to the class (1, 1, 2). However, 

in this case, as follows from the table of prime numbers, in the first block of representation of numbers 1923610 



Study of the representation of even numbers and the proof of the Goldbach's binary conjecture  

DOI: 10.9790/5728-1701010113                              www.iosrjournals.org                                               12 | Page 

± 60 there are pairs of prime conjugate numbers. The largest numbers for given class that have this property are 

the numbers 2n2, which are divisible by all prime representation generators of the first block. In this case, 2n2 

has the form 2n2 = AG1 + 60AG1(t – 1), where G1 is the product of prime representation generators of the first 

block, A is a coefficient (even number), the value of which depends on the considered class of even numbers. 

The smallest possible value of the coefficient A is 2. The number AG1 belongs to the considered class, therefore 

it has the form AG1 = n0 + 60(tA – 1), which allows us to determine the value of the coefficient A. In particular, 

for the class (1, 1, 2), AG1 = 10 × 751 583 152 441, here A = 10. The systems of equations (4) for such even 

numbers have a solution of the same type if in the first block of systems (4) all 
ja   are different from 1, and the 

remaining blocks have the same number of coefficients 
ja   equal to 1. In a more general case, primes to the 

right of the center may be absent in the first l blocks of the number 2n2, where l can take values 1, 2, 3, etc. This 

is equivalent to the fact that primes to the right of the center are missing in the first blocks of l + 1 even numbers 

2n2, 2n2 – 60, 2n2 – 120, etc. up to 2n2 – 60(l – 1), where 2n2 – 60(l – 1) is less than 2nth. The value of l is limited 

by the condition that the number of prime representation generators located to the left of the center in l blocks 

should be less than the number of generators of 2n2. The value of l also depends on the class of even numbers; 

the number of prime representation generators located to the left of the center in l blocks should be undoubtedly 

less than the total number of prime representation generators (prime numbers to the left of the center) 

participating in the representation of 2n2. The systems of equations (4) for such even numbers have a solution of 

the same type if in the first l blocks of systems (4) all 
ja   are different from 1, and the remaining blocks have 

the same number of coefficients 
ja   equal to 1. The largest numbers for given class that have this property are 

the numbers 2n2, that are divisible by all prime representation generators of the first l blocks. In this case, 2n2 

has the form 2n2 = AGl + 60AGl(t – 1), where Gl is the product of prime representation generators of the first l 

blocks, A is a coefficient (even number), the value of which depends on the considered class of even numbers. 

The smallest possible value of the coefficient A is 2. The number AGl belongs to the considered class, therefore 

it has the form AGl = n0 + 60(tA – 1), which allows us to determine the value of the coefficient A. From Lemma 

6 it follows that in this case, the number 2n1 is not divisible by any representation generator from the first l 

blocks. In the system of equations (4), in the first blocks of representation of even numbers 2n2, 2n1, 2n1 – 60, 

etc. up to 2n2 – 60(l – 1) all 
ja   differ from 1. In other words, in the basic arithmetic progressions, to which all 

numbers to the right of the center belong in the first blocks of the representation of the corresponding even 

numbers, there are no prime numbers. But of course, there are primes in the first blocks of representation of 

some even numbers from 2n2 – 60l to 2nth, since the first assumption is wrong (see above). Now consider the 

second assumption. Suppose there are primes to the right of the center in the representation of 2n2, but the prime 

representation generators (prime numbers to the left of the center) form conjugate pairs only with composite 

numbers. The system of equations (4) for all such even numbers has a solution of the same type: in all blocks of 

equations (4), all 
ja   differ from 1. Consequently, the system of equations (4) for the number 2n2 is equivalent 

to the system for the number 2n, which is divisible by all its prime representation generators. Since the numbers 

2n2 and 2n belong to the same class, they differ by 60 or a multiple of 60, and one can be obtained from another 

using permissible transformations. In this case, transformation 3) allows us to keep the number of equations of 

the system. For such numbers 2n, the system of equations (4) has the obvious solution: j ig g  , 2n = aigi, 

1 j ia a   which corresponds to the case when 2n is divisible by all its prime representation generators. But 

according to Corollary 1 of Lemma 5, such a number does not exist. Therefore, our second assumption is 

incorrect and the hypothesis is valid for the number 2n2, and hence for all numbers of this class. Since the class 

of even numbers was chosen arbitrarily, the binary hypothesis is valid for all even numbers. For numbers of 

different classes, the number of representation generators in the first block can vary, and hence the number of 

basic arithmetic progressions, as well as the number of conjugate pairs in the representation. For classes with the 

same generators, but different parity of the center, in the representation of even numbers with an odd center, an 

additional pair of conjugate prime numbers may appear if the center is a prime number. These differences 

should be taken into account when analyzing the representations of even numbers, but they are not essential for 

our proof of the Goldbach's binary conjecture. 

 

VI. Connection of the binary hypothesis with the Landau problem 
The second Landau problem (conjecture) consists in proving the statement that there are an infinite 

number of primes the distance between which is 2 (the so-called twin prime numbers). Obviously, there are 
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always such pairs on the left of the center in the representation of an arbitrary even number. However, we 

cannot know with certainty whether new pairs of such numbers will appear on the right of the center when an 

even number increases. We are going to prove this statement, assuming that the binary hypothesis is valid. We 

accept that two odd (prime) numbers, the distance between which is 2, form a pair of conjugate numbers, so one 

number is located to the left of the center and the other to the right of the center in the representation of even 

number. This pair of numbers is adjacent to the center of the representation. They can also both be to the right of 

the center and be located in adjacent conjugate pairs. If we will increase an even number, then the second case is 

reduced to the first. Consider the first case, which simplifies the proof. In this case, a pair of prime conjugate 

numbers, the distance between which is 2, can have only the following endings (1, 3), (7, 9) or (9, 1). It follows 

from the previous analysis that three classes of even numbers satisfy these conditions. Class (2, 3, 1) includes 

even numbers of the form 2n13 = 24 + 60(t − 1), in the representation of which the pair of twin numbers has 

endings (1, 3). Class (2, 4, 1) includes even numbers of the form 2n79 = 36 + 60(t − 1), in the representation of 

which the pair of twin numbers has endings (7, 9). Class (2, 1, 1) includes even numbers of the form 2n91 = 60 + 

60(t − 1), in the representation of which the pair of twin numbers has endings (9, 1). The first ending 

corresponds to the number on the left of the center, and the second one corresponds to the number on the right 

of the center. In the class of numbers (2, 1, 1), pairs of numbers, the distance between which is 2, belong to the 

basic arithmetic progressions [29 + 30l1, 31 + 30l2]. In class (2, 3, 1), such pairs belong to the basic arithmetic 

progressions [11 + 30l3, 13 + 30l4]. In class (2, 4, 1), such pairs belong to the basic arithmetic progressions 

[17 + 30l5, 19 + 30l6]. The first progression in brackets corresponds to the numbers on the left of the center in 

the representation of even number, and the second progression corresponds to the numbers on the right of the 

center. Parameters l1, l2, …, l6 can take values 0, 1, 2, etc. depending on the order of magnitude of an even 

number, i.e. on the value of the parameter t. It follows from Lemmas 1 and 3 that all twin primes (except 3 and 

5) belong to these progressions. We will consider the arithmetic progressions of each class as independent. In 

each of them, one or both numbers can be prime numbers, or both numbers can be composite. To prove the 

validity of Landau's conjecture, it is sufficient that, with increasing t, pairs of twin prime numbers appear in 

progressions belonging to at least one class. Consider the course of the proof for the class of numbers (2, 1, 1). 

There are infinitely many prime numbers in the basic arithmetic progressions corresponding to this class. We 

will sequentially increase the parameters l1 and l2, which corresponds to an increase of the parameter t. Since 

Goldbach's conjecture is valid for all even numbers from this class, after a certain number of steps, a pair of 

prime conjugate numbers with endings (9, 1) will appear in the representation of the corresponding even 

number. Such pairs will appear further as l1 and l2 increase. Otherwise, in the representation of even numbers 

from the class (2, 1, 1), pairs of prime conjugate numbers could not take the endings (9, 1), which is absurd 

(illogical), since there is no reason to prefer one pair of endings to the other. This conclusion is valid, mutatis 

mutandis, for even numbers from other classes with other pairs of admissible endings. Thus, in each of the 

classes considered above, there are infinitely many pairs of twin prime numbers. This conclusion is undoubtedly 

valid if the three classes of even numbers (2, 1, 1), (2, 3, 1) and (2, 4, 1) are considered as complementary to 

each other. 

 

VII. Conclusion 
The considered proof of Goldbach's conjecture is based on the invariance of the system of equations 

(4), which describes the representation of even numbers of one class, to transformations that do not change the 

number of prime conjugate pairs. Representations of even numbers of one class depend on several basic 

arithmetic progressions and form a connected system. The system of equations (4), which describes the 

representation of even numbers of the same class, cannot have a solution in which there are no pairs of prime 

conjugate numbers. This conclusion is valid for numbers of an arbitrary class. From the validity of the 

Goldbach’s conjecture, it follows the validity of other assertions, in particular, the Legendre conjecture and the 

Landau conjecture.  
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