
IOSR Journal of Mathematics (IOSR-JM) 

e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 17, Issue 1 Ser. II (Jan. – Feb. 2021), PP 06-14 
www.iosrjournals.org 

DOI: 10.9790/5728-1701020614                              www.iosrjournals.org                                                6 | Page 

Computational Experiment of Iterated Local Search for Higher 

Dimensions for Optimizing Latin Hypercube Designs 
 

Parimal Mridha
1
, Binoy Kumar Datta

2
, Debasish Bokshi

3 

1(Lecturer in Mathematics, Military Collegiate School Khulna (MCSK), Bangladesh) 
2(Associate Professor in Mathematics, Military Collegiate School Khulna (MCSK), Bangladesh) 
3(Assistant Professor in Mathematics, Military Collegiate School Khulna (MCSK), Bangladesh) 

 

Abstract: Latin Hypercube Designs (LHDs) almost always show poor space-filling properties. On the other 

hand, maximin distance designs have very well space-filling properties but often show poor projection 
properties under the Euclidean or the Rectangular distance. It is shown that the Iterated Local search(ILS) 

approach not only able to obtain good LHDs in the sense of space-filling property but the correlations among 

the factors are acceptable i.e. multi-collinearity is not high. When number of factors or number of design points 

is large then it requires hundreds of hours by the brute-force approach to find out the optimal design. So when 

numbers of factors as well as number of experimental points are large, the heuristic approaches also require a 

couple of hours or even more to find out a simulated optimal design. So time complexity is an important issue 

for a good algorithm. In this research some experiments have been performed for higher dimension namely 

dimensions k >10. Some new maximin LHDs value are obtained from these experiments, as there are few  

maximin LHDs value available in the literatures for higher dimension, k >10. From these experiments, multi-

collinearity property, maximin LHDs in Rectangular distance, mimimal  Φ values,  maximum pair-wise distance 

value of LHDs etc. are represented in this thesis. 
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I. Introduction: 
Latin Hypercube Designs (LHDs) fulfill the non-collapsing property. Such design, firstly introduced 

in 1979 by McKay and his colleagues has proved to be a popular choice for experiments run on computer 

simulators [Levy et al. (2010)] and in global sensitivity analysis [Helton and Davis (2000), Steinberg and 

Dennis (2006)]; Assume that N design points have to be placed and that there are k distinct parameters. It would 
be done such that the points will uniformly spread when projected along each single parameter axis. It is also 

assumed that each parameter range is normalized to the interval [0, N-1]. Then, a LHD is made up by N points, 

[Audze P., and V. Eglais, 1997] each of which has k integer coordinates with values in 0, 1, . . . , N-1 and such 

that there do not exist two points with one common coordinate value. This allows a non-collapsing design 

because points are evenly spread when projected along a single parameter axis. Note that the number of possible 

LHDs is huge: there are (N!)k possible LHDs (where N is number  of design points and k is number of factors). 

Anyway the main attraction of these designs is the one-dimensional projective property. The one-dimensional 

projective property ensures that there is little redundancy of design points when some of the factors have a 

relatively negligible effect (sparsity principle).  

Unfortunately, randomly generated LHDs almost always show poor space-filling properties or / and the 

factors are highly correlated. On the other hand, maximin distance designs, proposed by [Jonson et al. (1990)] 
have very good space-filling properties but often no good projection properties under the Euclidean or the 

Rectangular distance. To overcome this shortcoming, Morris and Mitchell (1997) suggested to search for 

maximin LHDs when looking for “optimal” designs. In the literature the optimal criterion for maximin LHD 

are defined in several ways [Grosso et al. (2008)] but the main objective is identical i.e. searching   the LHD 

with the maximizing the  minimum pair-wise distance. 

Though finding the optimal LHD in brute-force approach is (N!)k, but we expected, in ILS approach, 

this will be polynomial time with low order. It will be worthwhile to mention here that the solution obtained by 

the ILS approach must not be guaranteed to be optimal one rather it may be approximately optimal.  It is also 

expected that function based approach also work well. Finally it is expected  that structural  analysis  as well as  

theoretical  analysis  may  build  the  method  as  well  as experimental design much more stronger. Besides 

some complexity analysis, several experiments will be performed for dimension k  10. Then the results will be 

compared available one in the literature. 
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II. Iterated Local Search: 
The importance of high performance algorithms for tackling difficult optimization problems cannot be 

understated, and in many cases the only available methods are metaheuristics. The word metaheuristics contains 

all heuristics methods that show evidence of achieving good quality solutions for the problem of interest within 
an acceptable time. Metaheuristic techniques have become more and more competitive. When designing a 

metaheuristic, it is preferable that it be simple, both conceptually and in practice. Naturally, it also must be 

effective, and if possible, general purpose. The main advantage of this approach is the ease of implementation 

and the quickness. 

 

The purpose of this review is to give a detailed description of iterated local search and to show where it 

stands in terms of performance. So far, in spite of its conceptual simplicity, it has lead to a number of state-of-

the art results without the use of too much problem-specific knowledge; perhaps this is because iterated local 

search is very malleable, many implementation choices being left to the developer. In what follows we will give 

a formal description of ILS and comment on its main components. 

        Procedure Iterated Local Search 

      s0  = Generate Initial Solution 
      s*  = Local Search(s0) 

  repeat 

      s′   = Perturbation(s* ) 

      s*′   = Local Search(s′) 

      s*   = Acceptance Criterion (s*, s*′) 

   until     termination condition met 

end 

 

ILS involves four main components: 

 Creating an initial solution; 

 A black-box heuristic that acts as a local search on the set S; 

 The perturbation operator, which modifies a local solution; 

 The acceptance criterion, which determines whether or not a perturbed solution will become the 

starting point of the next iteration. 

 

III. Maximin Latin Hypercube Designs: 

We will denote as follows the s-norm distance between two points xi and xj,  i, j = 1, 2, · · · , N: 

 

dij=║xi− xj║s                                                                                                 
 

Unless otherwise mentioned, we will only consider the Euclidean distance measure (s = 2). In fact, we will 

usually consider the squared value of dij (in brief d), i.e. d2 (saving the computation of the square root). This has 

a noticeable effect on the execution speed since the distances d will be evaluated many times. 

 

3.1  Definition of LHD: 

A Latin Hypercube Design (LHD) is a statistical design of experiments, which was first defined in 

1979 [McKay et al. (1979)]. An LHD of k-factors (dimensions) with N design points, xi = (xi1, xi2 · · · xik) : i = 0, 

1, . . . , N−1 , is given by a N×k- matrix (i.e. a matrix with N rows and k columns) X, where each column of X 

consists of a permutation of integers 0, 1, · · · , N−1 (note that each factor range is normalized to the interval [0, 

N −1] ) [Ye, K. Q., 1998] so that for each dimension j all xij , i = 0, 1, · · · , N −1 are distinct. We will refer to 
each row of X as a (discrete) design point and each column of X as a factor (parameter) of the design points. 

We can represent X as follows 
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such that for each j {1, 2 · · · , k} and for all p, q {0, 1, · · · ,N − 1} with p ≠ q; xpj ≠ xqj holds. 

Given a LHD X and a distance d, let 

                                                              

D = {d(xi, xj) : 1 ≤ i < j ≤ N}. 
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Note that |D| ≤














2

n
. We define Dr(X) as the r-th minimum distance in D, and Jr(X) as the number of pairs {xi, 

xj} having d (xi, xj) = Dr(X) in X. 

 

The maximin LHD problem aims at finding a LHD X* such that D1(X) is as large as possible. However, a search 

which only takes into account the D1 values is certainly not efficient. Indeed, the landscape defined by the D1 

values is “too flat”. For this reason the search should be driven by other optimality criteria, which take into 

account also other values besides D1.  

 

 
   

    

                                                                                                                

 

 

 

 

 

        

 

 

 
Figure 3.1: Some LHDs and their corresponding (D1, J1) values 

 

IV. Computational experiment of iterated local search for higher dimensions: 
We have performed several experiments to find out the time complexity in experimental domain. 

Grosso et al. (2008) have shown that, for finding maximin LHDs,  ILS approach outperforms when number of 

dimensions (k) are less than 11. The outperforms results are available in the well-known website 

http://www.spacefillingdesigns.nl/. But they could not performed experiments higher than 10 dimension. It is 

also noted that few results (in the cases of dimensions greater than 10) are available in the literatures which are 

reported in the website http://www.spacefillingdesigns.nl/ .  Here we will perform several experiments for 
higher dimensions typically k greater than 10 regarding ILS approaches. Also the results are compared with 

available one in the literature i.e. in the above mentioned website.     

 

 

 

               k              N             R 

11 – 15 3-25 2 

 

For ILS approach, we set RP local moves with BI acceptance rule in local search, SPC. perturbation 

and MaxNonImp=100. We also consider the Opt(Φ) optimality criterion i.e. we consider ILS(Φ) approach. the 

value of p is equal to 20 as well. In what follows the approach will be simply denoted as ILS(Φ). For what 
concerns the number of runs for each LHD, we considered is given in Table 4.1. In the table R denotes the 

number of runs (trials) for each experiment ;25,,4,3;15,,12,11:),(   NkNk . It is noted that for 

dimension k = 11, besides R = 2 we have also considered R = 5 and 10. The experimental results are reported in 

the Table 4.2(a), Table 4.2(b) and Table 4.2(c) where the distances are measured in Euclidian measure and the 

values are the best maximin squared distance rather than actual distances each for (k,N).  It is noted that the 2nd 

column of the tables 4.2(a), 4.2(b) and 4.2(c) denotes the maximin LHDs values available in the website  

 
Table 4.2 (a): Comparison of maximin LHD values for dimensions k = 11 

Points(N) Web Value ILS Value 

  Trial 2 Trial 5 Trial 10 

3  20 20 20 

4 35 34 34 35 

5 54 52 54 54 

Fig: (a) D1(Xr)=2, J1(Xr)=4 Fig: (b) D1(Xsm)=8, J1(Xsm)=4                        Fig: (c) D1(XM)=8, J1(XM)=2 

Table 4.1: The setting of number of runs for the ILS approach 

http://www.spacefillingdesigns.nl/
http://www.spacefillingdesigns.nl/
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6 74 73 74 74 

7  98 98 98 

8  125 125 126 

9  156 157 158 

10  190 190 191 

11  227 229 229 

12  270 270 272 

13  306 306 309 

14  350 350 350 

15  393 397 397 

16  445 445 448 

17  501 501 501 

18  560 560 561 

19  619 620 623 

20  685 691 692 

21  760 767 767 

22  844 851 857 

23  848 857 857 

24  907 925 925 

25  967 974 984 

 

http://www.spacefillingdesigns.nl/.   In the tables we have observed that few web values (maximin LHDs values 

available in the web) are available for higher dimensions. It is observed that the ILS values are identical with 

Web values. It worthwhile to mention here that these values are analytically global optimal rather than 

approximate  optimal. Moreover The ILS approaches able to obtain some new maximin LHDs value for 

6<N<26 which are reported in the tables 4.2(a), 4.2(b) and 6.2(c).  There is another observed in the table 4.2(a) 

that the increasing of number of trials do not significantly increasing the maximum LHDs values. From this 

observation it may conclude that for higher dimensions, few trials of ILS approach able to find approximate 

optimal LHDs.    

 

Table 4.2 (b): Comparison of maximin LHD values  for dimensions k = 12 and 13 
k = 12 k = 13 

Point(N) Web Value ILS Value Point(N) Web Value ILS Value 

3  24 3  25 

4 40 40 4 41 41 

5 60 60 5 64 64 

6 82 82 6 89 89 

7  107 7  117 

8  137 8  150 

9  172 9  187 

10  209 10  229 

11  251 11  274 

12  296 12  322 

http://www.spacefillingdesigns.nl/
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13  347 13  376 

14  351 14  434 

15  438 15  605 

16  495 16  669 

17  550 17  487 

18  611 18  540 

19  684 19  745 

20  758 20  823 

21  830 21  910 

22  908 22  997 

23  999 23  1083 

24  1105 24  1179 

25  1230 25  1290 

 

Table 4.2 (c): Comparison of maximin LHD values  for dimensions k = 14 and 15 
k =  14 k = 15 

Point(N) Web Value ILS Value Point(N) Web Value ILS Value 

3  26 3  30 

4 46 46 4 48 48 

5 70 70 5 74 74 

6  95 6  103 

7  127 7  136 

8  162 8  173 

9  202 9  217 

10  249 10  266 

11  293 11  319 

12  349 12  374 

13  404 13  436 

14  464 14  504 

15  537 15  574 

16  595 16  653 

17  660 17  721 

18  731 18  797 

19  815 19  883 

20  897 20  969 

21  987 21  1064 

22  1079 22  1063 

23  1183 23  1271 

24  1284 24  1376 

25  1397 25  1502 

 

It is also noted that the  ILS (Φ) approach proposed by Grosso et al. (2008) does not consider the LHD 

with corresponding optimal (minimum) Φ value  but tracking the optimal maximin LHD (whose  minimum pair-

wise distance is maximum) during minimizing Φ value.  Here several  experiment are  performed to analyze the 

above discussion. For these experiments we consider k = 11 , N = 3, 4, …, 25 and number of trials R = 2, 5, 10. 

Other parameter setting are  same. The experimental results displayed in table 4.3.  It is observed form the table  
that though increasing of number of trials causes monotonic increasing of maximin LHDs values but 

corresponding Φ values do not necessarily monotonic decreasing. In the table we also observed that some time 

lower trial may better results. This implies that initial solution may affect the final output.  
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Table 4.3: Comparison of maximin LHD values and Φ values  for dimensions k = 11 
N LHD values  Φ values 

 R =2 R =5 R =10  R =2 R =5 R =10 

3 
20 20 20 

 
0.456287 0.456287 0.456287 

4 
34 35 35 

 
0.546794 0.513469 0.513469 

5 
54 54 54 

 
0.565956 0.60572 0.60572 

6 
74 74 74 

 
0.653762 0.653762 0.653762 

7 
97 97 99 

 
0.690905 0.690839 0.690505 

8 
126 125 125 

 
0.721167 0.721102 0.721102 

9 
154 154 156 

 
0.747052 0.746939 0.746679 

10 
189 193 193 

 
0.768803 0.768375 0.768375 

11 
226 225 225 

 
0.787288 0.787281 0.787281 

12 
272 272 272 

 
0.803762 0.803513 0.803513 

13 
309 309 309 

 
0.824438 0.824438 0.824438 

14 
341 341 341 

 
0.842359 0.842359 0.842359 

15 
383 383 390 

 
0.857904 0.857904 0.857816 

16 
443 443 436 

 
0.871477 0.871477 0.871336 

17 
495 495 504 

 
0.882531 0.882531 0.882233 

18 
557 557 554 

 
0.893106 0.893106 0.892659 

19 
625 625 625 

 
0.901792 0.901792 0.901792 

20 
683 682 684 

 
0.910757 0.910681 0.910578 

21 
750 768 748 

 
0.918572 0.918509 0.918449 

22 
848 848 848 

 
0.924703 0.924703 0.924703 

23 
850 850 850 

 
0.942046 0.942046 0.942046 

24 
901 908 908 

 
0.952664 0.95243 0.95243 

25 
958      958 950 

 
0.965299 0.965299 0.965077 

 

It is worthwhile to mention here that for all experiments performed earlier all the distances measured in   

L2 measure. But when maximize the minimum pair-wise distance in L2 measure might causes L1 measure too. 

That is in any experimental design when the minimum pair-wise distance is increasing in L2 measure, then the 

minimum  pair-wise distance  in L1 measure should be increase but not necessarily monotonic.  The 
experimental results are reputed in the table 4.4.   It is noted that the L1 value reputed in the table 4.4 are 

measured from the LHDs which are maximin LHD in L2 measure by the ILS approach but not maximin LHDs 

in L1 measure. Since there are no any value available in the literatures, so we could not compare the results. 

 

Table 4.4: Experimental results of  maximin L1 values corresponding to optimized  LHD  values measured in L2 

measure for k = 11 - 15 
N k = 11 k = 12 k = 13 k = 14 k = 15 

3 
14 16 17 18 20 

4 
17 20 21 23 24 

5 
22 24 26 28 30 

6 
23 27 28 31 34 

7 
27 29 32 34 36 

8 
30 32 36 39 42 

9 
32 37 39 41 44 
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10 
36 41 41 47 51 

11 
40 42 46 50 55 

12 
43 45 49 56 59 

13 
44 50 55 59 61 

14 
45 54 57 59 66 

15 
47 55 60 64 70 

16 
51 56 64 68 74 

17 
56 58 68 72 76 

18 
60 62 71 78 80 

19 
59 67 74 82 85 

20 
61 70 76 84 88 

21 
68 73 80 87 96 

22 
66 77 85 89 96 

23 
71 80 87 96 103 

24 
76 86 86 95 106 

25 
76 83 96 97 105 

 

Table 4.5: Experimental results of maximum  average coefficient of correlation of the co-factors of the maximin 

LHDs  for k = 11 - 15 

N k = 11 k = 12 k = 13 k = 14 k = 15 

3 0.953463 0.953463 0.960769 0.963624 0.963624 

4 0.738549 0.738549 0.748331 0.751263 0.758445 

5 0.592376 0.603023 0.612896 0.620174 0.627163 

6 0.490927 0.505309 0.517086 0.526916 0.535017 

7 0.409534 0.427894 0.441798 0.453797 0.463749 

8 0.340129 0.362158 0.379442 0.393168 0.404955 

9 0.27707 0.30364 0.324707 0.341046 0.35451 

10 0.215443 0.249506 0.273677 0.294027 0.309932 

11 0.14771 0.193683 0.226577 0.250427 0.268747 

12 0.038924 0.134783 0.177042 0.207415 0.229611 

13 0.135165 0.036809 0.124208 0.163625 0.191376 

14 0.154653 0.121373 0.030303 0.113747 0.151578 

15 0.162267 0.148942 0.114768 0.029532 0.104976 

16 0.157082 0.154097 0.134213 0.105412 0.026695 

17 0.149606 0.148493 0.144009 0.127823 0.097976 

18 0.136881 0.139549 0.14477 0.135268 0.121348 

19 0.118659 0.134324 0.134428 0.137081 0.131929 

20 0.096469 0.125651 0.137371 0.142735 0.133814 

21 0.07354 0.10854 0.127346 0.1344 0.13852 

22 0.018811 0.090604 0.114545 0.12536 0.135415 
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23 0.046038 0.068007 0.10028 0.116373 0.129211 

24 0.075818 0.018534 0.082387 0.107147 0.117659 

25 0.089355 0.044584 0.060996 0.093726 0.109148 

 

It is also remarks that  multicollinearity is another important properties of  an experimental design. A good 

experimental design should minimum  multicollinearity among the factors along with other two properties. Then 

the measure the multicollinearity among the factors can be defined by the following measure of average pair-

wise correlations 
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  denotes the product-moment correlation between the i-th and j-th factors. Note that this definition is 

frequently used in literature [Fang et al. (2000b), Joseph and Hung (2008)]. Whereas the definition of maximum 

pair-wise correlation is given below: 
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Now another experiment is performed by considering  the same setting as considered above.  The 

experimental results are plotted in the table 4.5. It is observed that when the number of design points (i.e N) is 

small the maximum coefficient of correlation is high. Whereas the coefficient of correlation  is negligible as 

well as decreasing when increasing the N values.  

It is noted that in any experimental design when the minimum pair-wise distance is increasing, then the 

maximum   pair-wise distance should be decreasing but not necessarily monotonic. So minimizing the 
maximum pair-wise distance may be the another optimal criterion for optimal the experimental design. So 

another experiments is performed by considering the same setting as considered above.  The experimental 

results are plotted in the table 4.5.  In the table 4.6, LM
1 and LM

2
   denote the maximum pair-wise distance of the 

maximin LHDs  measured in L1 and L2 distance measure respectively. As there are no value available in the 

literature, so we could not compare the experimental results.   

 

Table 4.6: Experimental results of  maximum pair-wise distance  value (LM
1  and LM

2) of the maximin LHDs  

for k = 11 - 15 

N LM
1
 LM

2
 

 k  = 11 k  = 12 k  =  1 3 k  =  1 4 k  =  1 5 k  =  1 1 k  =  1 2 k  =  1 3 k  =  1 4 k  =  1 5 

3 15 16 18 19 20 23 24 28 29 30 

4 20 20 24 24 27 42 40 48 47 55 

5 22 24 26 28 30 56 60 66 70 76 

6 27 29 32 34 36 80 87 96 101 108 

7 32 35 37 39 43 108 118 125 137 148 

8 36 39 42 46 48 146 152 162 176 188 

9 40 44 47 50 55 174 192 208 222 234 

1 0 45 48 53 56 60 218 238 248 270 290 

1 1 48 53 57 60 67 256 279 307 327 347 

1 2 52 58 63 66 70 305 332 359 380 408 
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1 3 85 62 67 72 79 695 395 416 461 482 

1 4 87 94 74 78 82 787 866 482 526 553 

1 5 89 99 107 82 87 887 991 1075 604 628 

1 6 94 104 110 125 93 968 1103 1194 1297 721 

1 7 100 111 120 129 146 1088 1204 1348 1451 1572 

1 8 105 118 127 134 143 1221 1356 1481 1612 1747 

1 9 109 117 134 144 153 1339 1463 1615 1783 1940 

2 0 117 129 137 149 160 1481 1619 1781 1920 2109 

2 1 122 135 140 155 168 1650 1781 1937 2081 2241 

2 2 127 145 151 167 177 1795 1962 2131 2291 2466 

2 3 134 146 158 169 187 1948 2126 2328 2511 2700 

2 4 143 154 169 181 195 2011 2348 2512 2717 2914 

2 5 144 160 169 190 203 2139 2497 2743 2969 3152 
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