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Abstract

The study is aimed at introducing a new double sequence space, sl,(p) and transform its sequences into other
sequence spaces. The methods of introducing this new sequence space is mainly by Moricz extension techniques
which involves constructions of some theorems which helped us establish some topological properties of si, (p).
After introducing the double sequence space, sl,(p), the study has proved that it is a paranormed double
sequence space. The study is also able to determine its a—, 8 — and y — duals, and characterized several four
dimensional matrix classes involving the new double sequence space.
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I.  Introduction
Let any sequence (x,,) in a sequence space, X be converted to a sequence (y,,) belonging to another sequence
space, Y by means of the transformation
Yn = D=1 An i Xk (11)
where A = (a, ;) is an infinite matrix and y,, exists asn — co. Then we can write A € (X,Y), where (X,Y) is
called matrix class, see (Cooke, 1950, p. 58 and Maddox, 1970, p. 161 - 162 ). The ordinary sequences (x,,) and
(v,,) were extended to double sequences (xy ;) and (yy;), the matrix A = (a,, ;) was also extended to four the
dimensional matrix A = (a,, ;) as in (Robison, 1926 and Hamilton, 1936) and the transformation (1.1)
becomes

Ymn = Z;:iozol Ak, 1 Xk L (12)

These extensions resulted in generating double sequence spaces and characterizations of four
dimensional matrices on double sequence spaces. The theory of double sequences was motivated by the fact that
convergent double sequences need not be bounded in the sense of Pringsheim; see (Pringsheim, 1900, Hardy
1903 and Hardy 1916). This study is motivated by the work of Moricz (Moricz, 1991) and because of the strong
statement: “The crucial difference between the convergence of ordinary sequences and the convergence in
Pringsheim’s sense is that the later does not imply boundedness of double sequences in question”, (Pringsheim,
1900). So, extensions and generalizations of single to double sequences initiated by Pringsheim and later by
Hardy and other researchers are well defined works. Thus, this paper wishes to extend the ordinary sequence
spaces Sl(p) defined by Mishra (Mishra, et al, 2015) to double sequence spaces, SI,(p). Furthermore, we
extend the ordinary sequence space I' to the double sequence space TI,, TI'*to the double sequence
I; and o, to the double sequence 62, respectively. Some properties and duals of these double sequences
would be developed. Four dimensional matrix classes involving these double sequence spaces will also be
characterized.

Some Notations in literatures:

Let w? denote the set of all complex double sequences. The Maddox-Simmons ordinary sequence
spaces [(p) were extended to the double sequence spaces I, (p) in the paper (Gokhan and Colak, 2006). In fact,
let p = (p,,,) be a double sequence of strictly positive real numbers p,,,, then I,(p) = {x = (x,,,) E W? :
Y [ [Pmn < oo} and is proved to be a linear space if sup,, ns1Pma < 0. Further, let H = sup,, ns1Pmn <

S
o and M = max{1,H}. Then double sequence spaces l,(p) was paranormed by g(x) = (Zpne |Xmn [P })™
1

and proved to complete linear metric space. T is the space of sequences x = {xp } such that |x|» - 0, asp — oo.
The space I' can be regarded as the space of all integral functions f(z) = X5, x,, zP, T* is the space of
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1

sequences s = {sp} such that the sequence {|s, |»} is bounded, and o, is any perfect sequence space of
matrices defined as g, = {A = (a,;): |a,, | < M}. The spaces I(p), I(p), sl(p),and L,(p) are of great interest
in this study and are clearly defined as follows: let an infinite matrix A = (a,;) be given by a,; =
27", n=k
{0, otherwise O
o}. So, sl(p) = {x = (x): Ax € l(p)} . Thus, sl(p) is now the set of all sequences {v, } whose A- transforms
are in the sequence space l(p) with sl(p)=[I(p)],. Here the sequence {v,} is given by {v,} = ’;=1217 [t (x)|P"

sl(p). It was proved to be isomorphic to I(p) and also seen to be a complete paranormed space, paranormed by
1

. Then the sequence space Si(p) was defined to be: sl(p) = {x = (x;): Z,;"’:lzl—kltk(x)lpk <

(Z,‘f:lzik [ty (x)lpk)M, where M = max {%, Supy, Z—ﬁ}.
The a—, § — and y — duals of double sequence spaces and the concept of summability domains can

be found in (Basar and Colak, 2012, p. 295 - 296). They are defined as follows:
X ={(a;) € w?: ¥;j|a;x;;| < oo forall (x;;) €X},

XP = 2P® = {(a;;) € w?: X a;;x; jexists forall (x;;) € X },

A ={(a;;) € w? supk_l|2f_'j’ a;;x;;| < oo for all (x;;) € A}
For any two sequence spaces A and u of double sequences, Y c X" whenever X c Y, wheren € {a, 8}. And
v-summability domain Xﬁ”) of four dimensional infinite matrix in a space X is defined by

X = {x = (oa) €

w?: Ax(v — X ) A Xrr) for m,n,k, L €N and isin X }

Il.  Results:
We define the double sequence sl,(p) as follows:
sl(p) = {x = () € @+ L7 27ty (x)|Pre < 00} 41
o2 can be defined as a double sequence space of four dimensional matrices defined by:
of ={A= (amn,kl): | @i < M}

Following (Hardy, 1916), a double sequence x = (x,,,,) iS said to converge regularly if it converges in
Pringsheim’s sense and, in addition the following finite limits exist:

lim,,, e Xpn = Ky (m=1,2,...) 4.2)

lim,, o Xpn = L, (n=1,2,...) (4.3)
I, is the space of double sequence x = (x,,,,) such that |x,,,|"/* > 0asm,n - . The space I, can be
regarded as the space of all integral functions,

f@) = iy %o 2" (4.4)
I is the space of double sequence s = (s, ,,) such that the double sequence {|s,,|*/"} is bounded. I; may
also be considered as the space conjugate to Iwhich is regarded as the space of integral functions. Each
continuous linear functional U € T is of the form
u() = Z‘;‘:l‘;‘f:l SmnZn (4.5)
Next, the two theorems that follow immediately describe the linear and topological properties of the double
sequence space in (4.1).
Theorem 1: The space sl,(p) is linearly isomorphic to the double sequence space
L(p) =x= () € 0 X" [t (0[P < oo}
Proof: Now, for each € sl,(p) , Sx € I,(p) , where S = (s,,,nx;) IS @ four dimensional matrix. Moreover, S is
linear and bijective. Also the matrix T = (t,,) = S~1. Which proves that sl,(p) is linearly isomorphic to
L, (p).
Theorem 2: The space sl,(p) is complete paranormed space paranormed by
g(®) = [Zg;7 27 ty, (x)[PK1]*™, where M = max (1, H) With H = supy;s1pp < 0.
Proof: First we prove that sl,(p) is complete. For this let (t¥/(x)) be a Cauchy sequence in sl,(p),
wheret¥ (x) = (t,;(0)).en- Then for every € > 0, there exists a positive integer N = N(€) such that

gt -t = [Ser 2 h ) - e el ™) < € (4.6)
foralli,j,u,v > N. From this we can infer that
27l () — e ™ < g (00 -y w) < € |
for every fixed k,1 € N and for every positive integers k,lu,v > N. Therefore, t,/(x),i,j € N is a Cauchy
sequence in C is convergent to t,;(x), say. So that
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limy e £ () = £ (X) (4.7)
Getting t;; (x), we define t(x) = t;,;(x), and we may write
Tl 27t (PR < €M, (P,Q = 1,2,3, ...)
for k, I, u,v > N by (4.6). Letting u, v — oo, and then P, Q — oo we obtain
,fin"‘l|t,?l(x) - t(x)|pkl < EMfori,j > N by (4.7) Hence g (tif(x) - t(x)) <€
for all i, j > N. Which proves completeness.
Next, we prove that sl, (p) is a paranormed space paranormed by
9() = [ 27t o Pra]t/M (4.8)
where M = max (1, H) with H = supy ;1P < 0. Now, it is trivial that g(6) =0, g(—t) = g(t), where
t = t;;(x). And for any ¢, t’ € sl,(p), we write
’ 00,00 1/M 00,00 | 7 1/M_ ’
g+t < [Xp [t GPR] T[N [t (PR] = g(8) + g(t)  (4.9)
Next, clearly for any complex number A, we have g(At) — t is continuous at 1 = 0, t = 6 and that if 4 is fixed
the function t — At is continuous. This proves the theorem.

Theorem 3. The a-dual of the spaces I';and I; is the space sl, (p).
Proof: Let A € {I3,I;}.sinced c g2 and (63)* =sl,(p) , the validity of the inclusion

sl,(p) € A% (4.11)
is clear. Conversely , suppose that a = (a;;) & sl,(p). Then one can easily see in the special case x = (x; ;) =
{(—D™} e T, that yjla;;x;| = ijlay| = o.
This means that a & I, which contradicts the hypothesis. Hence, a = (a;;) must be in sI(p)? that is to say
that the inclusion

I csl,(p) (4.12)

must be hold. By combining the inclusions (4.11) and (4.12) the desired result immediately follows .
In similar way, the inclusion [,% c sl,(p) and I, c sl,(p) easily hold .This completes the proof .

Now we may give the § —duals of the spaces of double series with respect to the v — convergence for
v € {p, bp,r} using the technique of (Basar, 2003), and (Basar and Altay, 2002), for the single sequence.
Lemma 7. The matrix A = (a,nx1) is ¢, — conservative for v = r iff

SUPm,neNn Zk,llamnkll <, (4.13)
19 - limm,n—mo amnkl =°<k,l (k:l € N) (414)
9 — lim Amnkt, = Ul (o € N) and

m,n—oo -
9 — limm’n_,oo Zl amnkol = Uko (ko € N) (415)
U —limy, ;0 Zk,l Amnkt =V (4.16)

Theorem 4.The B(r) — dual of the space sl,(p) is the set 62 .
Proof: Suppose that x = (x,,,) € sl,(p) . Then the double sequence S = (s,,,,), defined by

Smn = XifjeoXij (m,n € N), is in the space [(p) .
Let us determine the necessary and sufficient condition in order for the series

Ly @i % 4.17)

to be r — convergent for a sequence a = (a;;) € w*. We obtain by applying the Abel generalized
transformation for double sequences to the m,nth partial sums of the series in (4.17) that
Zmn = ZZ}'” a; X j

= Z;:r;—:t,n—l Si,jAllai,j + Zﬁal Si,nAloai,n + Zjn;o1 Sm,jA01am,j + Sm,nam,n (4-18)
for allm,neN (4.18) may be rewritten by the matrix representation
Zmn = ZZ}'n bimniiSij = (BS)mn) (4.19)

for all m, n € N, where the four — dimensional matrix B = (bmm-]-) is defined by
(Allai,j, 0<i<m-land0<j<n-1,
Ajpaiy, 0<i<m-—1land j=mn,

bnij = D1, i=mand 0<j, (4.20)
Amn , i=m andj=n >
0, otherwise
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We therefore read from the equality (4.20) that ax = (@pnXmn) € sl (p), whenever x = (x,) €
sl(p), iff z= (zn) € (D), whenever s = (sp,) € [,(p), which leads us to the fact that B = (b;;)
defined by (4.20) is in the class (I,(p), : I,(p), ) .Thus we see from lemma (4.9) for the matrix B, defined
above, that the conditions
Supm,nEN Zzyiolbmnkll :Supm,nEN{ZZ‘_Ll_:lo'n_l|A11ak,l| + Z;cnz_ollAloaknl + Z?=_01|A01aml| + |amn|} < )

r— lim by =410,k 1 €N),

m,n—co
r— lim binnki, = Bo1@1,(lp € N),
m,n—oo
K
r— lim brnigr =D10ax,1 (ko € N), and
m,n— oo
1
r— lim bkt = Qoo hold.
m,n—oo

k1l
Therefore, we derive from the conditions (4.13) — (4.16) that

SkalAr1ay| < oo, 4.21)
SUPneny 2xl D10 Qen | < 0 and (4.22)
SUPmen LilBo1@nyl < (4.23)
Further, since the equality
Yol bmnkol = Zico 18100 | + |l (4.24)

hold, the supremum overm € N of this expression gives that (a;,) k € N € b, and similarly for m = 0
equality

Ziolbmnorl = 2501801 ag | + lagy | (4.25)

holds which also gives by taking supremum over n € N that (a,) L € N € b,
whereb,, denotes the spaceof single sequences of bounded variation.
Beside by using the equality
AoQrn = DioQro — 2150 A1y we see that

Tilbionl = Zildroaro = Zi5g Avyia| < Tilbdioarol + XA, (4.26)
Since it is seen by (4.24) that Y, |A;ga,e| < oo and (4.24) implies (4.22) when (4.21) considered in the equality
(4.26).
Similarly by employing the equality Agyanm; = Ag1ae; — Ziso A11ay,, ONE can see from the equality

TilAgraml = 2801000 = TR Ar1ayey] < TulBorag | + | Zis Ay
through (4.21) and (4.25) that (4.23) holds.
There it is deduced that the conditions on the sequence a = (al-j) € Q in order for the series in (4.17) to be
r — convergent are ¥ |Ar1ay,| <, (ax) k ENEb,,.

This shows that sl(p)f ™ = o2, which completes the proof.

Theorem 5: The B(9) — dual of the space I, is the set {a = (a;;) € @?; B = (byn;) € (I,:TF)}, where
B = (byni;) is defined by (4.12).

As the consequences of theorem (4.12), [,#® =T,f") = py,

Fzgébp) = {(ar,) € 0?: Tpa|Dr1ar| <, (Apain)n €N, (Ag1a,, ;) mE N E (i, j € N)},

and, sz,(,bp) = {(a) € w?: Tualdrrar] <
co,, A10ak,! [ENECOLEN,

where ¢, denotes the space of ordinary null sequences.

Theorem 5: In order that {y,,,} should belong to I'; whenever {x).} belong to T, it is necessary and
sufficient the double sequence {x,, ,} is bounded where x,,,, (m,n = 1,2,...). Where A € (I3, [3).
Proof: If

| @i |Y™ — 0 asm,n — oo uniformly in k, [ (4.31)
For sufficiency: Since {x,;} € T, there exist a finite k > 1 such that
Tty Xl <k (4.32)
By (4.31) given € > 0, we can find N = N (&) independent of k, [ such that
| @it |/ < ;—kform,n > Nandall k, [ (4.33)
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By (4.32) and (4.33) we have

1 1 1 1
L — — A P
|V [ = |21?10:°1 amnklxkllmn < (Z;fiioﬂamnkz”xlemn < (ﬂ) Kmn (since k = 1and,l =1)

& &
S(ﬁ>k=E<E ,forn >N
(Necessity) .Suppose that (4.31) is not satisfied.

1
Then for some € > 0 there exist no N such that|a, ;™ = € forn>Nandk,l =1,2,...
1
That is for this € and any N there isann > N and k, [ such that |a,,;;|m = E.

Theorem 6: Let 0 < p; < § for every k,l € M,N.Then A € (sl,(p), 02) if and only if .
1

—1 (N %\ev
a1 221 At (= 11;:% (2_1\1) "+

i. Supn
N=22N1pk<oco; N>1.

1

-2
H ) ) -1 (m Pu
. SUPm Zk:l Zl:l Amnki (_ u=1 ( om ) +

m—=22mlpl<oco; M>1.

iii.

amnk+1,l '
iv.

amnk,l+1 .

Proof: Let the condition hold. Now
1 1
o Vo _1(N"H\py N~2\py
Zie1 L1221 At (— 22t (Z_N)p + (Z_N)p

1 1
sy g k-1 (N"2\po n N™3\pg
k=14&l=1“mnkl v=1\ ,N 2N

< sup, < o0,

i.e.
1 1
o _1(N"H\py N~2\pg
Yhe1 Ak (— k21 (Z—N)p + (Z—N)pk> converges.
Itimplies that A, € sl(p)? and hence |Apy, ()| = |E7121 G X1a| < 0 . Conversely,let A €
(slz(p), aozo). Since,
1
=2\ p.. -2 -
8= {— k=1 (Z—N)pv + (Z_N)} € sl,(p),wehave A, 0 < ®,
eachn € N, m € M and that A,,, 0 < ¢ .
So,
Supnlzlcil amnklal < . AndsumeZf‘;l amnklal < .
Let us define the matrix B = (bynk1) DY bnks = A G ; Mk EN,m,l € M.
Then B & (sl,(p),0%) by the fact that when 0 <p,, <1 foreveryk € N,l € M ,then

Supn.klAamnkllpk < o where Admpi; = Amnky —

Supm.klAamnkllpl < cowhere Aapmni; = Amniy —

for

A E

(sl,(), 02) if and only if supy, |@umme Pkt < oo . Hence there is a sequence y = (yy,) € sl,(p) such that

Y21 b Yia # 0. However if we define the sequence U = (Uy;) by
( Y fork =1,
| 5

yk% for L =1,

Ua =
Ykl Yk-1,1
Tk~ kil fork >1,
ykl_yk,l—l fOTl > 1

zkl zk,l—l

Then U € sl,(p) and X5 ;-1 Gmnit Ukt = Liei=1 Pmnit Vi /2% # 0, which is now a contradiction to the fact

that A € (sl,(p), a2 ). Hence we must have, sup,, ;|Aa Pt < 0, sup, ;|Ady Pk < .
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Theorem 7: Let 0 < py; < % foreveryk € Nl € M.Then A € (slz(p),Fz)
if and only if

A (— ko (NZ—NZ)’“L + (NZ—NZ)&> € LN >1;

1 1
A (— 1 (L) + (“;—MZ)”’) €T, M>1;
B € (sl(p)?,T,) whereB = (b)) =
(Aapni); mm €M, k,l €N.
lim,,_, o Ay = Ay, (kis fixed).
lim,,,_, oo Ay = Aty (Lis fixed).
Proof:
Let us assume that the above conditions hold.Then for any x = (x;) € sl,(p) .
Then for any Y5 ,—; @it Xk 1S absolutely convergent, and that ,
Yot Gt = Dieeier i Xig . Hence A € (sL (), T,).
Conversely, let A € (sl,(p) ,FZ). Then X2,—1 GmniXr cOnverges for each x = (x,;) € sl,(p) and for
n,m € N. If we define the double sequence. V = (V) by

zZ1 ork =1,
[ 7 4
| =z for =1,
ki

Vi = { Z Zg-1,1

| W_ k=11 fOT‘k > 1,

Zrl Zgi-1

kW_—Zk.l—l fOT‘l >1.

Then it can easily be verified that V € slz(?) and Aalmnkl - Axy; (asn — ©)U € sl,(p) and  Ad,pp —
. _ k-1 (N"%\pv N 2\rr\ - 5= . .

Ax,; (asm — o) sincex = | — X 2] (z_N) + (z_N) € sl,(p). Then the necessity follows; we need to

show that B € (s, (p) ,I'2) . On the contrary we assume that B ¢ (sl,(p) ,['2). It can easily be verified that;

Czi=1 Gmniatie) = (Cizi=1 bnniaYia) & T?where y = (yy,) € sl (p)and u = (wy) € sk, (p).
This is a contradiction to the fact that B € (sl2 ), FZ). This proves the necessity.

s 1 \9mn
Theorem 8: A € (sl,(p), I;) if and only if sup,, , (Zkl a’:"’“ KPki(MN) sz) <o
kl
forsomeM > 1,N > 1.
Proof :
Sufficiency.
Let x = (xy;) € sl,(p).Then there exist k,and I; such that |vy;x,;| < KPki((MN)~/Pkl for some M >

1,N>1landk >k, ,l>1.
Hence for every m, n we have;

Kyl a
A x|t < USA 2 G|+ U kskep ity GmniaXial T = 1(S; +S,), where

I =max(1,2"7"), H = suppnGmnS: = (lzz,llill amnklxleqmn = (|lezii11(amnkl/vkl)vklxklD

dmn

dmn

dmn

a S _1 s
< mnkl KPi(MN) Pkl max  |v; x| (MNPt KPki <o
Vki k>kq,l>1;
k>kq, 1>l
q
Amnkl S _1 -5 mn
< ——| LPi(MN) Pri max |vgx, |(MN)Pk LPr < o0,
Vki k>kq,l>1
k>k,l>l
For the sum S, , we have ;
1
SZ /qmn — |Zk>k1,l>l1 amnklxkll = |Zk>k1,l>ll(amnkl/vkl)vklxkl|
s 1
a e —_
< Yksky ol 1:;“ (KL)PIN Pit .

Hence S, < T, thus A,,x €} and A €(sl,(p), [3).
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Theorem 9:A € (T,,02), and 02 = o2 is the set of matrices A = (k) such that
Z;‘,‘;j’,‘;=1|2k,l€5 amnkl|r < MT"., where E is an arbitrary subset of the positive integers and M is independent of E.
Proof: To prove necessity, let E be an arbitrary subset of the positive integers. Let T, be the set of all x = {x;;}
such that |xy,|l<1 (k,l=12..). Then T,isP —boundedinag? Hence ifA = (a 1) € (I,03),
then AX is P —bounded in 62, i.e, if y = Ax for x € ['2,then )., ,,| Vi, |” < M7, where M is a constant for
everyr.
Thus, X 5=1lX k=121 Amnii X |” < M"™ for every x €T, . Take
X =1, k, 1l € E and x;; = 0 otherwise then x € T, and hence,
?r'iffi=1|2k,ze5 Anki Xkl |r < M7, and the condition has been proved necessary.

Theorem 10: A€ ( Iy,08 ) if and only if
s 1 \9mn

(Zk,l kalekl) — 0asm,n — oo for every integer M > 1,N > 1.

Proof : Let x € I;. So that supy k5 |V x,, PR < 00 and supy L5 vy xp, [PH < oo.

Choose M > max(1, supj, k= [V, x, [Pk1), N > max(1, supy, L= vy, %, |Pk). Then

a Amn
| Amn (D]In < (Zk,l T;;kl |vklxkl|)

Amnkl

1

s dmn
< (Zk,l ars—:l“ kal(MN)”kl) - 0asmn— o
Hence, A, (x) € c2and A € (T, 02).
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