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Abstract 

In this paper,exponentiatedGumbeldistribution is considered for Bayesian analysis. The expressions for Bayes 

estimators of the parameter have been derived under squared error, precautionary, entropy, K-loss, and Al-

Bayyati’s loss functions by using quasi andgamma priors. 
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I. Introduction 
The exponentiatedGumbel distributionis a generalized version of the standard Gumbel type-2 distribution 

introduced by Okorie et al.[1]. The probability density function of exponentiatedGumbeldistribution is given by 
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The joint density function or likelihood function of (1) is given by 
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    (2) 

The log likelihood function is given by 
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    (3) 

Differentiating (3) with respect to θ and equating to zero, we get the maximum likelihood estimator of θ which 

is given as 
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II. Bayesian Method Of Estimation 
The Bayesian inference procedures have been developed generally under squared error loss function 
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.        (5)The Bayes 

estimator under the above loss function, say, s


 is the posterior mean, i.e, 
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Zellner [2], Basu and Ebrahimi [3] have recognized that the inappropriateness of using symmetric loss function. 

Norstrom [4] introduced precautionary loss function is given as 
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The Bayes estimator under this loss function is denoted by P


 and is obtained as  
1
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        (8) 

Calabria and Pulcini [5] points out that a useful asymmetric loss function is the entropy loss 
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where  ,







  and whose minimum occurs at . 


 Also, the loss function  L   has been used in Dey et 

al. [6] and Dey and Liu [7], in the original form having 1p .  Thus  L   can written be as 

    1eL b log ; b>0.               (9) 

The Bayes estimator under entropy loss function is denoted by E


 and is obtained by solving the following 

equation 
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Wasan[8] proposed the K-loss function which is given as 
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.        (11) Under 

K-loss function the Bayes estimatorof θ is denoted by K


 and is obtained as 
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.        (12) 

Al-Bayyati[9] introduced a new loss function which is given as 
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Al-Bayyati’s loss function the Bayes estimatorof θ is denoted by Al


 and is obtained as 
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Let us consider two prior distributions of θ to obtain the Bayes estimators. 

(i) Quasi-prior: For the situation where we have no prior information about the parameter θ, we may use the 

quasi density as given by 
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          (15) whered 

= 0 leads to a diffuse prior and d = 1, a non-informative prior. 

(ii) Gamma prior: Generally, the gamma densityis used as prior distribution of the parameter θ given by 
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III. Posterior Density under  1g   

The posterior density of θ under  1g  , on using (2), is given by 
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Theorem 1.On using (17), we have 
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Proof.By definition, 
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From equation (18),for 1c  , we have 
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From equation (18),for 2c  , we have 

     

2
1

2

1

2 1 1 i

n
ax

i

E n d n d log e












 
              

 .    (20) 



Parameter Estimation Of ExponentiatedGumbeldistributionvia Bayesian Approach 

DOI: 10.9790/5728-1701025561                              www.iosrjournals.org              58 | Page 

From equation (18),for 1c   , we have 
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From equation (18),for 1c c  , we have 
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IV. Bayes Estimators underunder  1g   

From equation (6), on using (19), the Bayes estimator of θ under squared error loss function is given by 
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From equation (8), on using (20), the Bayes estimator of θ under precautionary loss function is obtained as 
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From equation (10), on using (21), the Bayes estimator of θ under entropy loss function is given by 
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From equation (12), on using (19) and (21), the Bayes estimator of θ under K-loss function is given by 
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From equation (14), on using (18) and (22), the Bayes estimator of θ under Al-Bayyati’s loss function comes out 

to be 
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V. Posterior Density under  2g   

Under  2g  , the posterior density of θ, using equation (2), is obtained as 
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Theorem 2.On using (28), we have 
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Proof.By definition, 
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From equation (29),for 1c  , we have 

    

1
1

1

1 i

n
ax

i

E n log e


  









 
     

  
 

 .      (30) 

From equation (29),for 2c  , we have 
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From equation (29),for 1c   , we have 
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From equation (29),for 1c c  , we have 
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VI. Bayes Estimators under  2g   

From equation (6), on using (30), the Bayes estimator of θ under squared error loss function is given by 
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From equation (8), on using (31), the Bayes estimator of θ under precautionary loss function is obtained as 
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From equation (10), on using (32), the Bayes estimator of θ under entropy loss function is given by 
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From equation (12), on using (30) and (32), the Bayes estimator of θ under K-loss function is given by 
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From equation (14), on using (29) and (33), the Bayes estimator of θ under Al-Bayyati’s loss function comes out 

to be 
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VII. Conclusion 
In this paper, we have obtained a number ofestimators of parameter 

ofexponentiatedGumbeldistribution. In equation (4) we have obtained the maximum likelihood estimator of the 

parameter. In equation (23), (24), (25), (26) and (27) we have obtained the Bayes estimators under different loss 

functions using quasi prior. In equation (34), (35), (36), (37) and (38) we have obtained the Bayes estimators 

under different loss functions using gamma prior. In the above equation, it is clear that the Bayes estimators 

depend upon the parameters of the prior distribution. We therefore recommend that the estimator’s choice lies 

according to the value of the prior distribution which in turn depends on the situation at hand. 
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