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Abstract :This paper aims to show the influence of infectious disease inpredator-preysystem. In the present 
work, a four Compartment mathematical eco-epidemiology modelis formulated which contain susceptible 

predator-prey, infected predator-prey populations are Considered and analyzed with the assumption that 

infected predators are not involved in predation.The positivity, boundedness,and existence ofthe solutionof the 

system are Studied.Equilibrium points of the model equations are identified. Local and Global Stability analysis 

has beenperformed. The basic reproduction number for infected prey and infected predator at disease free 

equilibrium point                          and                          
    respectively. 

Finaly,Numerical simulations are presentedto clarify results. 
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I. Introduction 
Mathematical modeling is a sub specialty in Applied Mathematics which is very important tool to 

understand real life problems in diverse disciplines such as  biology, epidemiology, ecology etc[1-3].In 1798, 
the British Economist Malthus construct a single species model[4]and Italian Mathematician  Vito Volterra  first 

proposed  a simple differential equations of prey-predator model to describe the population dynamics of two 

interaction species and a chemist Alfred Lotka also derived  the same differential equations. Lotka-Volterra 

prey-predator  model(1925) form the basis of many models used in population dynamics. Afterwards, prey-

predator model  became an interesting area of research  in applied mathematics[1,2,11,12,24,25]. Mathematical 

ecology and mathematical epidemiology are distinct major fields of study in biology. But Recently, these two 

major fields of study are merged and renamed as a new field of study called eco-epidemiology[1-4]. 

On the other hand ,many  Disease transmission dynamic models originated from the pioneer classic 

workofKermack - Mckendrick (1927)  SIR-type epidemiological model of infectious disease[1-3,7-

11,14,24,25,26,27].Most recent works are done by Anderson R. and May R. (1979)  which involves infectious 

disease and  predator-prey interaction of species open a new door for ecoepidemiology research[1-5,7-11,25,26]. 

Eco-epidemiology is the branch of biomathematics that understands and analyze the dynamics of 
infectious disease spread on the predator- prey interaction of species[2] .There are Many types interaction of 

species can be  observed in ecological system throughout the world such as  (i) predation, (ii) competition, (iii) 

mutualism, (iv) commensalism, (v) ammensalism[5,14]. 

In  a certain ecological system, predator - prey species exhibit regular cycles of  population increase 

and decrease .This change  occurs  due to diseases, over predation, climate change [4,5,22]. Interaction of 

species between predators and prey is non linear and complex phenomenon in mathematical ecology[2,4,5,10]. 

Due to this Many researchers, have proposed and studied number of ecoepidemiological models involving two 

or more interacting species [2,4,5,10] . 

Ecological prey-predator systems are suffering  from various infectious diseases. These diseases 

sometimes play a vitalrole in regulating size of predator-prey population,within a predator-prey population, it is 

often to see that a infectious disease spreadbetween predator  and prey population[4,10,11] .The predator-prey 
populations could be affected due to the presence of  infectious disease in the population[10]. 

Anderson  R. and May R. (1986) , were the first who merged ecology and epidemiology and 

formulated a prey-predator model where  infection in the prey diseases. The influence of predation on epidemics 

has not yet been studied considerably, except the works .For instance, the disease in prey 

[3,7,8,11,17,18,21,23,24,26], predators consume only infected preys , predators avoid infected prey [15], the 

disease in predators only [1,25], predators consume both Susceptible and infected preys[4,5,10,22].  

In the present paper  a mathematical ecoepidemiologymodel with disease infection in both Prey and 

Predator population withthe assumption that  infected predators are not going to catch any of the prey due to 

disease infection. here the only active predators are susceptible predators. 
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II. Mathematical Model Formulation And Assumptions 
The Predator-prey system containsfourclasses of populations. Let     denotes susceptible prey,     denotes 

infected prey,     denotes susceptible predator,      denotes infected predator. Then total number of prey and 

predator populations is given by                          . In formulating the present model, the 

following assumptionshave been  used. 

(i) When there is no diseases, prey population grows logistically withintrinsic growth rate     and   

environmental carrying capacity  of the prey population  

(ii) Only susceptible prey    can reproduce reaching toits carrying capacity. 
(iii) Infected prey and infected predator does not grow, recover, reproduce or compete andthey are suffering 

with death rates   and      respectively due to infection of disease. 

(iv) Susceptible prey becomesinfected prey, when it comes in contact with the infected prey and this 

contact process is assumed to follow simple mass action kinetics with convolution rate  . 

(v) Susceptible predators become infected predator, when it comes in contact with the infected predator 

and this contact process is assumed to follow simple mass action kinetics with convolution rate . 

(vi) The Susceptiblepredator population       suffering withnatural mortality rate   

(vii) The predation functional response of the susceptible predator towards susceptible prey as well as 

infected prey are assumed to follow Simple bilinear functional form with        be predation coefficients  and 

Consumed prey is converted into susceptible predator with efficiency   

(viii) Infected predators are assumed to be weak and  unfit to catch  any of the prey and if susceptible 

predator is once infected then  it remains infected or dies out. 

(ix) All  Model variables and parameters are assumed to be  non negative. 

 

Table 1Notation and Description of model Variables 
Variables Descriptions 

     Population size of susceptible preys at time   

     Population size of infected  preys at time   

     Population size of susceptible predators  at time  

     Population size of infected  predators at time   

 

Table 2Notations and Description of model parameters 

Parameter Description of parameter 

   Intrinsic growth rate of  susceptible prey 

  Carrying capacity of  susceptible prey 

   Convolution rate of susceptible  predator to be infected predator 

    Convolution rate of susceptible prey  to be infected prey 

   Predation coefficient of susceptible  prey due to susceptible  predator 

    Predation coefficients of infected prey due to susceptible predator  

  Efficiency of  predation 

          Death rate due to disease for infected prey and predator respectively. 

   Natural Death rate of susceptible  predator 

 

According to the above assumptions, the description of variables, and parametersthe present paper will have the 

followingmode diagram given in Fig. 1 
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From the model diagram the phenomenon is governed by the following  systems of ordinary differential 

equations. 

                                   (1) 

                                                 (2) 

                             (3) 

                (4) 

The initial conditions are                                                           
            . 

 

III. Mathematical Analysis Of The Model 
Model (1) – (4) will be analyzed  to get insight into its dynamical features which will give better 

understanding on the effect of  infectious disease  in prey- predator System. In this section, we are going 

toanalysis the following features of the model:  Positivity,Boundednessand Existence of solutions, 

TrivialEquilibrium point, Axial Equilibrium point,Disease-free equilibrium point, Endemic equilibrium point, 

Local stability of disease -free equilibrium point,andGlobal stability of endemic equilibrium point. All these 

concepts are presented and discussed in the following sub-sections. 

 

3.1 Positivity of solutions of the model 

For model (1) - (4) to be epidemiologicallymeaningful and well posed, it is necessary to prove thatall solutions 

of system with positive initial data will remainpositive for all times     . This will be established bythe 
following theorems. 

Theorem1[Positivity]Let                                                             ,then the solutionsof 

system equations (1) – (4)                                 are positive     . 

Proof: Positivity of the model variables is shown separately for each of the model variables                  
    . 

Positivity of    : The model equation (1)given by                              can be 

expressed without loss of generality, after eliminating the positive terms        which are appearing on the right 

hand side, as an inequality as                             . 
This inequality can also be written                                            . Then we 

have                 using separation of variable method and on applying integration, the solution of 

the foregoing differentially inequality can be obtained as                      . Recall that an exponential 

function is always non–negative irrespective of the sign of the exponent, Hence, it can be concluded that     
 .                               

Positivity of    : The equation (2) given by                      can be expressed without loss of 

generality, after eliminating the positive term     which are appearing on the right hand side, as an inequality 

as                .This inequality can be written as                       hence   using 

variables separable method and on applying integration, the solution of the foregoing differential inequality can 

be obtained as                . Recall that an exponential function is always non–negative irrespective of 

the sign of the exponent, i.e., the exponential function            is a non-negative quantity. Hence, it can be 

concluded that      .  
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Figure 1 Model Diagram 
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Positivity of    : The model equation (3) given by                          can be 

expressed without loss of generality, after eliminating the positive term              which are appearing 

on the right hand side, as an inequality as                This inequality can be written as        
          hence                . Using variables separable method and on applying integration, the 

solution of the foregoing differentially inequality can be obtained as              . Recall that an exponential 

function is always non–negative irrespective of the sign of the exponent, Hence, it can be concluded that     
 .  

Positivity of    :The model equation (4) given by              can be expressed without loss of 

generality, eliminating the positive term    which are appearing on the right hand side, as an inequality 

as            Using variables separable method and on applying integration, the solution of the foregoing 

differentially inequality can be obtained as                Recall that an exponential function is always non–

negative irrespective of the sign of the exponent.Hence, it can be concluded that      . Thus, the model 

variables                    representing population sizes of various types of prey and predator are positive 

quantities and will remain in   
 for all . 

3.2 Boundedness of the  solutions of the Model 
In the theoretical eco-epidemiology, the boundedness of the system implies that the system is 

biologically valid and well behaved. Then, we first show the biological validity of the model by providing the 

Boundedness of the solution of the model equation (1) – (4) by the following theorems. 

Theorem 2[Boundedness]All solutions of the model (1) – (4) are uniformly bounded. 

Proof: To show that each population size is bounded if and only if the total population size is bounded. 

Hence, it is sufficient to prove that the total population size                        is bounded for all . 

Now, take derivatives of summation of all the five model (1) – (4) results,                         
       , then                                        . It can be shown that all feasible 

solutions are uniformly bounded in a proper subset    
   where the feasible region   is given by  

              
            . Without loss of generality, after eliminating the negative terms which 

are appearing on the right hand side, the foregoing equation can be expressed as an inequality as         
         . Equivalently this inequality can be expressed as a linear ordinary differential inequality as general 

solution upon solving as                                              .  But, the term      

denotes the initial values of the respective variable i.e.,          at    .  The particular solution can be 

expressed as                                     . Further, it can be observed that      
     as   . That is, the total population size      takes off from the value      at the initial time     and 

ends up with the bounded value       as the time  grows to infinity. Thus it can be concluded that     is 

bounded as              .Therefore,       is an upper bound of       Hence, feasible solution of the 

system of model equations (1) – (4) remains in the positively invariant region .Thus, the system is biologically 

meaningful and mathematically well posed in the domain . Further, it is sufficient to consider the dynamics of 

the populations represented by the model system (1) – (4) in that domain. This proves the theorem. Therefore, it 

can be summarized the result of Theorem2 as “the model variables                            are bounded for all . 

Theorem 3 [Existence]Solutions of the model equations (1) – (4) together with the initial conditions     
                         exist in  

 i.e., the model variables                           and   exist for all 

  and will remain in  
 . 

Proof:Let the system of equation (1) – (4) be denoted as follows: 

                             
                      

                             

                  
According to Derrick and Groosman theorem, let    denote the region                

      
  . Then equations (1) – (4) have a unique solution if ∂fi∂xj,     i,  j=1, 2, 3, 4 are continuous and bounded in . 

Here                         .  The continuity and the boundedness can be verified in Table 3 below: 

 

 

 

 

 

 

 

 



Mathematical Modeling the Impact ofInfectious Diseasesin Prey-predatorInteractions 

DOI: 10.9790/5728-1702014556                              www.iosrjournals.org                                               49 | Page 

Table 3 Partial derivatives of  models with respect to the model variables 

 

Thus, all the partial derivatives                          exist, continuous and bounded in .. Hence, by 

Derrick and Grossman theorem, a solution for the model (1) – (4) exists and is unique. 

3.3 Equilibrium Points of the model 
Disease free equilibrium point of model (1) – (4) is obtained by solving                        
 .Model Equation (1) – (4) possesses the following equilibrium points:(i) Trivial equilibrium point 

           (ii) Axial equilibrium point            (iii) disease free equilibrium 

points              (iv)predator-free equilibrium point             , and (v) co-existence 

equilibrium point/endemic equilibrium point or positive equilibrium point                equilibrium 

points are Computed.Suppose                           , That is 

 

                          
                                            
                                   
                                                        

  

i. It is clear that  the system has trivial equilibrium point(TEP)            

ii.   Axial equilibrium point(AEP)                can be computed  as follows: 

             which implies that x=0 or x=k.   Since    ,hence axial equilibrium point 

is            

iii. Disease free equilibrium points( DFEP)             . since        , then 

 
                  
                             

  

 This non- linear system of equations  Solved as follows: 

 
                    

                                
  

Since           ,                and                      ,  which implies 

                   
    , Therefore  DFEP   will be  

                                         
       

 

iv. Predator-free equilibrium point( PFEP)            .Since         ,then  

 
                     
                                   

  

This non-linear system of equations solved as follows: 

 
                      
                                    

  

 since         ,    then it is clear that          ,                       ,Therefore  the PFEP will 

be                                    

v. Infected predator-free equilibrium point (IPFEP)           

 
                          
                                             
                                 

  

 

                          
                                              
                                     

  

  since                                   ,  similar procedures it is  obtained as 

                             

                                          

                         
                      

For  : 

                  . 

                      
                      
                             

                     

For  : 

                    
                             

                       

                  

For  : 

                   
                   
                    

                       

For  :  
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vi. Endemic equilibrium points(EEP )    
            

 

                          
                                           
                                    
                                                        

  

 Solving  this non-linear systems  will result  

                  

                                     

        

                                                     ,the equilibrium point is non-

negative for                         

1.3.1 Local Stability Analysis of Equilibrium Points 

The local stability can be established by linearization of the model equations using Jacobian matrix.  Let  the  

formulated model  (1) -(4)  can be written as  function  Variables             as  follows. 

                                          

                              

                                     

                          
The Next generation matrix of the foregoing functions is given by 

           

 

 
 

        

        

        

         

 
 

 

Here the components of the matrix           are partial derivativesrepresented by the parametric 

expression  placed in respective positions  of the following matrix.Then  

 

          

  

                                        
                

                      
         

  

 

Theorem 4[ Stability of Trivial Equilibrium Point(STEP)] The trivial equilibrium point            is a 

saddle point which is unstable. 

Proof:Consider the Next generation matrix at   and it takes the form as 

          

    
      
     
      

  

Now, the eigenvalues of       are found by solving the corresponding characteristic equation            
λI4=0 as follows.The characteristic equation for the given model at trivial equilibrium point takes the form as 
   λ      λ     λ      λ   . 

The eigenvalues are then obtained to beλ        λ            λ     λ        

Here threeeigenvalues arenegative and one eigenvalue is positive so thetrivial equilibrium point is a saddle point 

which is unstable manifold in the direction of X and  stable manifold in the direction of  W,Y ,and  Z.  

 

 

Theorem 5 [ Stability of Axial Equilibrium Point(SAEP)] Axial equilibrium point           is stable if 

the following  two conditions  hold(i)        (ii)         .Otherwise unstable 

Proof: Consider the Next generationmatrix at axial equilibrium point      
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To find eigenvalues of      take          λ       and solve as follows: 

 

   λ        
       λ   
         λ  
       λ

    

Thus,     λ        λ         λ      λ   is characteristic equation of the model at axial 

equilibrium point and theeigenvalues are obtained as 

λ     ,                             λ        ,                   λ         λ      

Therefore the axial equilibrium point    will be stable,if(i)         (ii)        , otherwise it is 
unstable. 

Theorem 6 [Stability of Disease- Free Equilibrium Point(SDFEP)]The Disease – free equilibrium 

point            is stable if the following four conditions are satisfied. (i)             (ii)        

         ,  (iii)                                  ,and   (iv)                    
               

     . otherwise unstable. 

Proof: Consider the next generation matrix 

            

                                     
            

                 
        

  

Here Evaluate  the Nextgeneration matrix  at disease free equilibrium point             as follows:

           

 
 
 
 
                               

              

                   

           
 
 
 

To find Eigen values of such matrix, compute            λ        using fourth row 

  

                  λ               

             λ   

                 λ    

           λ

     

Now again use   second row to compute determinant  

         λ   

                  λ              

             λ  

                 λ

    

Then use second row to find determinant 

         λ               λ   
                  λ     

                λ
    

Finally, the characteristic equation is given by 

         λ               λ    λ                     λ               
       

Then the Eigen values are                            andRemaining two roots are the solutions ofthe 

quadratic equation 

 λ                   
               

 

  λ                       
 

     
        
 

   .  

Using Routh Hurwitz criterion stability[2], the disease free equilibrium point            will be 

asymptotically stable if                      , and Hence DFEP is stable if (i)         , (ii)    

        ,  (iii)                                  ,and   (iv)                    
               

      
Theorem 6 [Stability of Predator-Free Equilibrium Point(SOPFEP)]The predator–free equilibrium point  

             is stable   if  the following four conditions are satisfied. (i)              (ii)       

         ,  (iii)                                  ,and   (iv)                    
               

     . otherwise unstable. 
Proof: Consider the Next generation matrix 

            

                                     
            

                 
        

  

Here Evaluate  the Next generation matrix  at disease free equilibrium point               as follows:
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To find Eigen values of such matrix, compute            λ      

 

              λ             
        λ        
              λ  
       λ

    

Now  using fourth row to find determinant 

     λ   

              λ              
        λ     
              λ

    

Then  use   third row to compute determinant  

     λ               λ   
              λ          

        λ
    

Finally, the characteristic equation is given by 

     λ               λ                  λ        λ                

Then the  Eigen values are                              andRemaining two roots are the solutions 

of the quadratic equation 

 λ                             
 

  λ               
 

                 
 

   .  

Using Routh Hurwitz criterion stability[2], the disease free equilibrium point            will be 

asymptotically stable if  (                     
 hence DFEP is stable if(i)             ,  (ii)                           ,and   

(iii)                                   

1.3.2 Global Stability Analysis 

Here,the global stability analysis of the system of model equations (1) – (4) around the positive equilibrium 

point                             or the coexistence equilibrium is performed by stating the following theorem. 
Theorem 7 [Global Stability of Endemic Equilibrium Point (GSOEEP)]The coexistence equilibrium 

point/endemic equilibrium point/positive equilibrium point                           of system (1) - (4) is globally 

asymptotically stable.

Proof: Consider the following  on Liapunove function L            [1, 19] 

                                                  

                                                                  (10)       

Now substitute the model equation (1) - (4) into equation (10) 

                                         

                         
                              

                    
Take out                       and put as change      

                                            
                               
                                

                       
By rearranging, it could be obtained 

                                         
                           

                            
                   

Thus it is possible to set            such that          and endemic equilibrium point is globally stable.  

Alternative proof: Take a proper Liapunove function[20],          
        such that  

                                                                 

                     

For        derivation along the system gives 
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Take out                      z  and put as change   ,the  take out negative from all brackets   

d  t dt    m          2  r                  
 
   

  m2          2      
2
          

  m          2    
 
    

2
   z     

  m     z  z  2      2  
Thus it is possible to set           and     such that         and endemic equilibrium point is 
globally stable.  

1.3.3 Reproduction number or Thresholdnumber   

  If      then each infected individual produces on average less than one new infected individual so it is 

expected that the disease would die out. On the other hand if     then each individual produces more than 

one new infected individual so it is expected that the disease would continue spreading in the population. 

Theorem 8[Infected Prey Threshold]The Reproduction number for infected prey at Disease free equilibrium 

point is given by                        

Proof:Consider infected prey equation (2)                                         
 1)w 

Now Let       and         , Evaluate   and   at Disease equilibrium point                

 Then      and          

It is known that                         and hence                          proved. 

Theorem 9[Infected Predator Threshold]The Reproduction number for infected predators at disease free 

equilibrium point takes the form as                         
    

Proof: Consider the infected predator model equation (4)                          

Now Let     and    Evaluate Fand Vat disease free equilibrium point               ,   

Then     and     

It is known that                and hence                              
   hence proved. 

 

IV. Result And Discussion 
In this section, Numerical simulation of model equations (1) - (4) is carried out using the software DEDiscover 

version: 2.6.4.Model equationsand parameterswere arranged for DEDiscover software in this way for simulation 

purpose . 

dx/dt=r*x*(1-(x+w)/k)-Beta*x*w-p_1*x*y //  Susceptible prey 
dw/dt=Beta*x*w-p_2*w*y-Delta_1*w  // Infected prey 

dy/dt=q*p_1*x*y+q*p_2*w*y-Alpha*y*z-Mu*y  // Susceptible predator 

dz/dt=Alpha*y*z-Delta_2*z // Infected predator  

 

Table 4 Parameter values used for Simulations 

Parameter Values Source 

r 11.2000 [1] 

k 30.0000 [1] 

Beta 1.2000 [1] 

p_1 0.4000 [1] 

p_2 0.6000 [1] 

Delta_1 0.0100 Assumed 

q 0.2500 [1] 

Alpha 1.3000 [19] 

Mu 0.0010 Assumed 

Delta_2 0.4000 Assumed 
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Figure 1  Time series plot for  model with initial conditions 

 

In  fig.1 it can be observed that  Susceptible and infected prey populations are continuouslydecreasing  

which implies that  preys are under the influence of  Susceptible predators. Then after some time there is relative  

decrease on the  susceptible predators due to scarcity of  prey.Infected predators are constant  which confirms 

thatthey have no influence on prey. Infected preys are more exposed to predators than susceptible preys. 

 

 
Figure 2a  Time Series plot Figure 2bTime Series plot 

 
From Fig 2a and Fig.2b, shows that  continuous change of population occurs in prey-predator system which are 

described by oscillation of the graph with different amplitude, except infected predators with constant 

Amplitude. In the long run we have the following prey- predator graphs. 



Mathematical Modeling the Impact ofInfectious Diseasesin Prey-predatorInteractions 

DOI: 10.9790/5728-1702014556                              www.iosrjournals.org                                               55 | Page 

 
Figure 3cTime Series plotFigure 3d Time Series plot 

 

From Fig.3c,and Fig.3d, shows that the influence of susceptible predator on preys. This can be 

explained as follows.If the population of susceptible predator increase, then infected prey population decrease 

which mean all the  Susceptible predator populations size increase as a result of prey population and on the long 

run both prey and predator graph shows fast oscillation ,decrease in amplitude and  total population decrease 

due to due to predation or infectious disease. 

 

V. Conclusion 
The positivity, boundedness,and existence of solutions of the system are shown toholdimplying that the 

system is meaningful and biologically well behaved. Disease free equilibrium points and endemic equilibrium 

points are Computed. Localstability analysis has been done using the Concept of  next Generation matrix and 

Routh Hurwitz criterion. Global Stability analysis of endemic equilibrium point is  proved by taking appropriate 

Liapunove function. 

A continuous change of population occurs in prey-predator system which are described by oscillation 

of the graph with different amplitude, except infected predators with constant Amplitude due to our assumption 

infected predators are not involved in predation. Susceptible predator populations size increase as a result of 
prey population and on the long run both prey and predator graph shows fast oscillation , decrease in amplitude 

and  total population decrease due to predation and infectious disease. 

one can extend this work by including  other assumptions like the predator grows logisticaly,or infected 

predator-prey recover from disease, or adding otherparameters like vaccination,immigration, migration on prey-

predator interaction. 
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