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Abstract: Let . . .( , ) 1g c d n p  ,where, n be a positive integer and p be a prime.  Whenever a finite field of 

order p
m
 is required then certainly we are in need of some prime polynomial of degree m over GF(p). Here we 

study the problem of factorization of x
n
-1 as a product of irreducible polynomials. Factorization of x

5
-1 over 

(2)GF  and factorization of x
7
-1, x

40 
-

 
1 & x

80
-1  over (3)GF are obtained through cyclotomic cosets.  
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I. Introduction  
Let n≥1 be a positive integer and p is a prime number s.t.   (p,n)= 1. If F is a finite field then o(F)=p

n
 

[2] . Consider GF(q), where q is some prime power of p. Then (q,n)=1. To obtain factorization of x
n
-1 over 

GF(q) , we define cyclotomic classes and partition the set S={0,1,2,…,n-1} of integers  into cyclotomic classes 

modulo n over GF(q). Since g.c.d.(n,q)=1, there exist a smallest positive integer ‘m’ s.t.   q
m
 ≡ 1 (mod m) {by 

Euler Fermat Theorem and also m= ( )n } [1]. This m is called multiplicative order of q modulo n. In S define 

a relation ‘~’ as follows. For a, b ∈ S, say that a ~ b if a ≡ bq
i
(mod n)  for some positive integer ‘i’. This relation 

is an equivalence relation. This relation partition S into equivalence classes. Each equivalence class is called q-

cyclotomic class or coset mod n. The q-cyclotomic coset which contain s ∈ S will be Cs={s,qs,…,(q
m

s -1}s}, 

where ms be the least positive integer such that s ≡ q
m

s .s (mod n) [ by 4]. Also by by [5],  

                 We observe that x
n
-1= 

1
/

( )

d n

d

d n

x

 

 , where ( )d x  is the nth cyclotomic polynomials. If Cs is the 

cyclotomic coset, (mod n) over GF(p), containing the integer s, then, ( )
s

i

i C

x 


  is the minimal polynomial 

of 
s  over GF(p) [21]. Observe that irreducible polynomials of degree n  over ( )GF p , help us in the 

construction of  finite field ( )nGF p . Construction of some finite field GF(3
3
) & GF(3

4
) over GF(3) are studied 

by Singh K.[3]. If x
q 
- x =f(x).g(x), then every element in the field must be a root of f(x) or g(x). The case f(x) = 

x, g(x) = x
q-1 

- x separate the zero elements from the non zero elements. To separate the non zero elements 

according to their order , a factorization of the polynomial  x
q-1

- x is needed. Further, whenever a finite field of 

order p
m
 is required then certainly we are in need of some prime polynomial of degree m over GF(p). The above 

facts basically highlight the utility of factor of polynomial x
n
-1. Then how to find out these factors , is the basic 

aim of this paper.  
 

Notations 1.1: (i) Mi(x) represents minimal polynomials 

(ii) Cs denote q-cyclotomic class containing s∈ S. 

(iii) ( )n x represents the nth cyclotomic polynomial. 

(iv) ( )x denote the Euler’s  totient function. 

 

Definition 1.2:  

(i)   Euler totient function:  The Euler totient function ( )n is defined for all integer ‘n’  s.t.  ( ) 1n   for n=1,  

and ( )n  represent  the number of positive integer less than ‘n’ and co- prime to ‘n’. 

(ii)   Cyclotomic polynomial: Let S be the set of all primitive nth root of unity , then  

( ) ( )n

s

x x


 


   is called nth cyclotomic polynomial. 
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II. Algorithm For Factorizing The Polynomials Of The Type X
n
 -1 Over Some Finite Field 

Step. 1. Find multiplicative order of q mod n. 

2. Choose an irreducible polynomial of degree m over GF(q) and denote it by p(x). 

3. Find F= GF(q)/< p(x)>, which is a field of order q
m
. 

4. Find a primitive element of field F. 

5. Find out primitive  nth  root of unity. 

6. Find cyclotomic classes mod n over GF(q). 

7. Find minimal polynomials Ms(x) of α
S
 which will be ( );

s

i

i C

x s S


  . 

8. Calculate  x
n
-1 = ( )s

s

M x ; where s runs over a set of representative of cyclotomic cosets. 

III. Factorization Of Polynomial X
n
-1 Over GF(Q) 

(Particular case for n=5 & q=3 ; n=7 & q=3 ; n=40 & q=3 ; n=80 & q=3 )  

 

3.1. Consider X
5 
– 1 over GF(3) 

The smallest natural number m s.t. 5/(3
m

-1) is 4 and choose an irreducible polynomial polynomial of degree 4 

over GF(3). Here p(x)= X
4
+x

2
+x+1. Is an irreducible polynomial of degree 4. 

Hence, GF(3)[x]/< x
4
+x

2
+x+1> is a field of order 3

4
=81. 

Take I= < x
4
+x

2
+x+1> . Consider α=x

2 
+1+< x

4
+x

2
+x+1>  i.e. α = x

2 
+1+I ∈ F. 

This α is a primitive element of F. Taking β= α
16

, β will be a primitive 5
th

 root of unity. Now 3-cyclotomic 

cosets mod(5) are  

C0={0},                      C1={1,3,4,2}                

Corresponding minimal polynomials are 

M0(X)= (X- β
 0
)= X-1 

M1(X)=(X - β) (X - β
 2

)(X - β
 3

)(X - β
 4

) = X
4 

- X
3 

(β
 4

+ β
 3

 + β
 2

+ β
 
 )+X

2
(β

 7
+ β

 6
+2β

 5
+ β

3 
) +x(β

 9
+ β

 8
 + β

 7
+ 

β
6
)+ β

 11 
 
 
  

Now to find β
 2
, β

 3
 , β

 4
 and so on we start as follows 

Since α
4
+ α

3
=1 i.e. α

4 
= -α

3
+1 i.e. α

5 
= -α

4
+ α= α

3
+α+1 

α
6
= -α

6
+ α

2
- α+1  i.e.    α

8
 = α

2
- α-1 

β= α
16 

= -α
2
- α-1   i.e. β

2 
= α

3
- α-1    

β
3 
= -α

2
+ α+1   β

4 
= -α

3
- α

2
 + α    

β
5=

 β
3
 β

2 
= α

5
- α

4
+ α

3
 - α =1 

β
6=

 β,    β
7=

 β
2
 , β

8=
 β

3
 , β

9=
 β

4
 

β=x
2 
-2x+1,   β

2 
= -x

3 
-x

2
+x    

β
3
= x+2=x-1,   β

4
 = x

3
-1,   β

5
 = 1    

Now, M1(X)=x
4
+ x

3
-2 x

2
+x+1 

X
5 
– 1= M0(X)M1(X)= (x-1)( x

4
+ x

3
-2 x

2
+x+1) 

  

3.2. Consider x
7 
– 1 over GF(2) 

Here multiplicative order of 3 mod(40)  is 4. 

p(x)=x
4
+x+2 is an irreducible polynomial of degree 4. 

Hence, GF(2)[x]/<x
3
+x+2> is a field of order 2

3
=8. 

Take I= <x
3
+x+1>. Consider α=x+I ∈ F. 

This α is a primitive element of F. Also α will be a primitive 7
th

 root of unity. Now 2-cyclotomic cosets mod(7) 

are  

C0={0},                      C1={1,2,4},           C3={3,6,5},                

Corresponding minimal polynomials are 

M0(X)= (x- α
 0
)= x-1 

M1(X)= (x - α) (x - α
 2
) (x - α

 4
)  = x

4 
- x

3 
+ x

2
 +1 

M2(X)= (x – β
 2
) (x – β

 6
) (x – β

 18
) (x – β

 14
) =  x

3 
– x

2
 - 1 

Hence,  

x
7 
- 1= (x-1)( x

3 
+ x -1) ( x

3 
– x

2
- 1). 

 

3.3. Consider x
40 
– 1 over GF(3) 

Here multiplicative order of 3 mod(40)  is 4. 

p(x)=x
4
+x+2 is an irreducible polynomial of degree 4. 

Hence, GF(3)[x]/<x
4
+x+2> is a field of order 3

4
=81. 
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Take I= <x
4
+x+2>. Consider α=x

3
+1+I= x

3
+1 ∈ F. 

This α is a primitive element of F. Then β= α
2
  and α will be a primitive 40

th
 root of unity. Now 3-cyclotomic 

cosets mod(40) are  

C0={0},                       C1={1,3,9,27},           C2={2,6,18,14},                C4={4,12,36,28}, C5={5,15},                  

C7={7,21,23,29},       C8={8,24,32,16},             C10={10,30},  C11={11,33,19,17},   C13={13,39,37,31},   

C20={20},                            C25={25,35}, C26={26,38,34,22}. 

Corresponding minimal polynomials are 

M0(x)= (x- β
0
)= x-1 

M1(x)= (x - β) (x - β
 3
) (x - β

 9
) (x - β

 27
) = x

4 
- x

3 
+ x

2
 +1 

M2(x)= (x – β
 2
) (x – β

 6
) (x – β

 18
) (x – β

 14
) = x

4 
+ x

3 
- x+1 

M4(x)=  x
4 
- x

3 
+ x

2
 - x+1                 M5(x)= x

2 
– x

 
– 1 

M7(x)=  x
4 
+ x

3 
+ x

2 
+ 1                    M8(x)= x

4 
+ x

3 
+ x

2 
+ x+1                                               M10(x)= x

2 
– x+1                             

M11(x)= x
4  

+ x
2 
+ x+1  

M13(x)=  x
4 
+x

2
- x+ 1                      M20(x)= x+1                                                               M25(x)= x

2 
+ x-1                             

M26(x)= x
4 
- x

3 
+ x+1                       

 Hence,  

x
40 

- 1= (x-1)( x
4 
- x

3 
+ x

2
 +1) (x

4 
+ x

3 
- x+1)( x

4 
- x

3 
+ x

2
 - x+1) (x

2 
– x

 
– 1) 

  (x
4 
+ x

3 
+ x

2 
+ 1) (x

4 
+ x

3 
+ x

2 
+ x+1) (x

2 
– x+1) (x

4  
+ x

2 
+ x+1) (x

4 
+x

2
- x+ 1) (x+1) (x

2 
+ x-1)( x

4 
- x

3 
+ x+1). 

 

3.4. Consider X
80 
– 1 over GF(3) 

Here multiplicative order of 3 mod(80)  is 4. 

p(x)=x
4
+x+2 is an irreducible polynomial of degree 4. 

Hence, GF(3)[x]/<x
4
+x+2> is a field of order 3

4
=81. 

Take I= <x
4
+x+2>. Consider α=x

3
+1+I= x

3
+1 ∈ F. 

This α is a primitive element of F and αwill be a primitive 80
th

 root of unity. Now 3-cyclotomic cosets mod(80) 

are  

C0={0},                      C1={1,3,9,27},           C2={2,6,18,54},               C4={4,12,36,28}, C5={5,15,45,55},      

C7={7,21,63,29},      C8={8,24,72,56},            C10={10,30},  C11={11,33,19,57},  

C13={13,39,37,31},C14={14,42,46,58},           C16={16,48,64,32}, C17={17,51,73,59}, C20={20,60},              

C22={22,66,38,34},         C23={23,69,47,61}, C25={25,75,65,35}, C26={26,78,74,62},   C40={30},                           

C41={41,43,49,67}, C44={52,76,68,44}, C50={50,70},              C53={53,79,77,71}. 

Now minimal polynomials are 

M0(x)= (x - α
0
)= x-1 

M1(x)= (x - α) (x - α
3
) (x - α

9
) (x - α

27
) = x

4 
- x

3 
– 1 

M2(x)= (x – α
2
) (x – α

6
) (x – α

18
) (x – α

54
) = x

4 
- x

3 
+ x

2
+1 

M4(x)= (x – α
4
) (x – α

12
) (x – α

36
) (x – α

28
) = x

4 
+ x

3 
– x +1 

M5(x)= (x – α
5
) (x – α

15
) (x – α

45
) (x – α

55
) = x

4 
– x

2 
– 1 

M7(x)= (x – α
7
) (x – α

21
) (x – α

63
) (x – α

29
) = x

4 
+ x

3 
– x

2 
+ x-1 

M8(x)= x
4 
- x

3 
+ x

2 
– x+1                      M10(x)= x

2 
– x+1 

M11(x)= x
4 
- x

3 
+ x

2 
+ x-1                      M13(x)= x

4 
- x

 
-1 

M14(x)= x
4 
+ x

3 
+ x

2 
+1                          M16(x)= x

4 
- x

3 
+ x

2 
+ x+1 

M17(x)= x
4 
+ x

3 
- x

2 
– x-1                      M20(x)= x

2 
–1 

M22(x)= x
4 
+ x

2 
+ x+1                            M23(x)= x

4 
- x

3 
- x

2 
–x - 1 

M25(x)= x
4 
+ x

2 
– x +1                           M26(x)= x

4 
+ x

2 
– x+1 

M40(x)= x+1                                           M41(x)= x
4 
+ x

3 
-1 

M44(x)= x
4 
- x

3 
+ x+1                             M50(x)= x

2 
+ x-1 

M53(x)= x
4 
+ x-1. Hence,  

x
80 

- 1= (x-1)( x
4 
-x

3 
–1)(x

4 
- x

3 
+ x

2
+1)( x

4 
+ x

3 
- x+1) (x

4 
– x

2 
– 1) (x

4 
+x

3 
–x

2 
+ x-1) 

(x
4 
- x

3 
+ x

2 
– x+1)( x

2 
– x+1)( x

4 
- x

3 
+ x

2 
+ x-1) (x

4 
- x-1) ( x

4 
+ x

3 
+ x

2 
+1) (x

4 
- x

3 
+ x

2 
+ x+1)  (x

4 
+ x

3 
- x

2 
– x-

1)( x
2 
–1)( x

4 
+ x

2 
+ x+1)( x

4 
- x

3 
- x

2 
–x - 1)( x

4 
+ x

2 
– x+1) (x

4 
+ x

2 
– x+1) (x+1)( x

4 
+ x

3 
-1)( x

4 
- x

3 
+ x+1)( x

2 
+ 

x-1)( x
4 
+ x-1). 
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