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Abstract: There are many problems of modeling process. Multicollinearity phenomenon one is happened when 

there are high collinearity between the independent variables. It makes hard to interpret the coefficients, and 

reduces the power of the model. In this paper, we tried to solve this problem using two methods. The first one 

used the ridge Regression model (RRM). It is compared with a traditional linear regression model (LRM). The 

second one modified the original dataset by differencing (using the function "diffM" in "MTS" package), and 

scaling (using the function "scale" in "base" package) processes. We supposed three cases of the independent 

variables for this justify this purpose. Independent, Dependent, and Combination linear cases. The simulation 

study is used to generate the dataset, with 500 observation for each variable, using R program. The "MASS" and 

the "ridg" packages, and their functions "lm.ridge", "check_collinearity()", and "Linear.Ridge" all are used to 

determine the variance inflation factor (VIF) for each independent variable to know whether the 

Multicollinearity is absent or not. The ridge parameter (RP) is chosen automatically from the "Linear.Ridge" 

function. From studying this simulation, we insured from that knowledge: If the RP is small or moderate value, 

then there is no need to use the RRM to modify the obtained results. Also, the presence of strong collinearity 

between the independent variables, increases the VIF as well as RP. The strong collinearity between the 

independent variables does not reflect the Multicollinearity.Finally, the second method for overcoming the 

Multicollinearity is effective way to eliminate the Multicollinearity phenomenon and make the regression model 

results well. 

Keywords: Linear Regression Model; Ridge Regression Model; Ridge parameter; Multicollinearity; MASS 

package; Generate dataset. 
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I. Introduction 
Multicollinearity criteria occur when the independent variables in a regression model are correlated. 

This collinearity is a problem, because the independent variables should be independent. If the degree of 

collinearity between variables is high enough, it can cause problems when fitting the model. 

The potential solutions of multicollinearity include the following: Remove some of highly correlated 

independent variables. Add some independent variables together with linear combine. Perform an analysis 

designed for highly correlated variables, such as principal components analysis (PCA) or partial least squares 

(PLS) regression [1]. Fortunately, there is a very simple test to assess multicollinearity by identifying the 

collinearity between independent variables. The variance inflation factors (VIFs) can be used for this purpose. 

The VIFs start from "1" and have no upper limit. A value of "1" indicates that there is no collinearity between 

these independent variables. The range between "1" and 5 suggests that there is a moderate collinearity. The 

VIFs greater than 5 represent critical levels of multicollinearity, where the coefficients are poorly estimated, and 

the p-values are questionable. There are also situations where high VFIs can be safely ignored without suffering 

from multicollinearity: When high VIFs only exist in control variables, the regression coefficients are not 

impacted. When high VIFs are caused as a result of the inclusion of the products or powers of other variables, 

multicollinearity does not cause negative impacts. When a dummy variable that represents more than two 

categories has a high VIF, multicollinearity does not necessarily exist [2:5]. Multicollinearity is generally more 

severe in small samples, Goldberger[6] called it "micronumerosity". The are some tests to detect the 

multicollinearity phenomenon such as Farrar–Glauber test [7]. If the variables orthogonal, then there is no 

multicollinearity. Wichers[8] has argued that Farrar–Glauber test is ineffective in a given partial correlation with 

different multicollinearity patterns. This test has been criticized by other researchers[9:10]. The condition 

number (also considered as a test) is computed by finding square root of the maximum eigenvalue divided by 

the minimum eigenvalue of the design matrix.  

If the condition number is above 30, then the regression may have high Multicollinearity. One 

advantage of this method, it shows which variables are causing this problem [11]. Multicollinearity can be 

detected also by adding random noise to the data and re-running the regression many times and seeing how 

https://statisticsbyjim.com/glossary/predictor-variables/
https://statisticsbyjim.com/glossary/regression-analysis/
https://statisticsbyjim.com/glossary/factors/
https://en.wikipedia.org/wiki/Arthur_Goldberger
https://en.wikipedia.org/wiki/Eigenvalue
https://en.wikipedia.org/wiki/Design_matrix
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much the coefficients change [12]. Multicollinearity may affect the results of fitting regression application data 

[13], econometrics data [14], business data and industry data [15], and financial data [16]. Lateral collinearity 

and misleading results are devoted by Kock and Lynn [17]. Reviews and provides examples of the different 

ways in which multicollinearity can affect a research project will be found in [18]. 

This paper is organized as: Section II presents the materials and methods that are used in this paper. 

Section III presents the numerical study. Section VI presents the discussion of the obtained results from Section 

III. Finally, Section V presents the conclusions. 

 

II. Material and Methods 

In this section, we present some methods, criteria and algorithms that are used in this article. Namely, 

the linear regression model (LRM), Multicollinearity phenomenon, the VIF, the ridge regression model (RRM), 

some methods for normalizing (scaling) and differencing the simulation dataset, and the used packages from R 

program. 

 

II.1 Linear Regression Model (LRM) 

As we know, the LRM is a powerful tool for predicting numerical values. The "lm()" function in R 

program creates a regression model. Use the "summary()" function to review the weights and performance 

measures. The residuals can be examined by pulling on the "$resid" variable from the model. Residuals present 

the errors between the predicted and the actual values. Smaller residuals are better. Residual Conditions of 

LRM: (1) Mean of the errors is zero. (2) Distributions of the errors are normal. (3) Errors are independent. (4) 

Variance of errors is constant. Standard Error: is the standard deviation of the residuals. Smaller is better. R-

squared : shows the amount of variance explained by the model. Adjusted R-Square : most useful for multiple-

regression. The adjusted R-squared shows whether adding additional predictors improve a regression model or 

not. Negative Adjusted R-square appears when Residual sum of squares approaches to total sum of squares, that 

means the explanation towards response is very low or negligible. This means that insignificance of explanatory 

variables. F-test checks if at least one variable’s weight is significantly different from zero. Histogram and QQ-

plot is used to explain if the residual fit is a normal distribution or not. Null hypothesis of the Jarque-Bera test is 

that the errors are normally distributed. Null hypothesis of the Durbin-Watson test is that the errors are serially 

uncorrelated. Constant variance can be checked by looking at the “Studentized” residuals – normalized based on 

the standard deviation. The presence of multicollinearity has a negative impact on the analysis as a whole, and 

can severely limit the conclusions of the research study.  

 

II.2 Multicollinearity Criterion 

When the independent variables are correlated, this leading to the notation of Multicollinearity. It 

indicates that changes in one variable are associated with shifts in another variable. The stronger  collinearity, 

the more difficult it is to change one variable without changing another. Multicollinearity makes it hard to 

interpret coefficients, and it reduces the power of the model to identify a significant independent variables. 

There are two kinds of multicollinearity. Structural multicollinearity: this type occurs when we create a model 

term using other terms. Data multicollinearity: this type is presented in the data itself rather than being an 

artifact of the model.  

Multicollinearity causes:  

(1)Estimates can swing wildly based on which other independent variables are in the model. 

(2)Coefficients become very sensitive to small changes in the model. The severity of the problems increases 

with the degree of the multicollinearity. Therefore, if we have low or moderate multicollinearity, we may not 

need to resolve it. Multicollinearity affects the coefficients and P-values, but it does not influence the 

predictions, precision of the predictions, and the goodness-of-fit statistics. Multicollinearity inflates the variance 

of coefficients and causes type II errors, it is essential to detect and correct it. There are simple and commonly 

ways to correct multicollinearity: (1)Remove one or more of the highly correlated variables. (2)Use principal 

components analysis (PCA) or partial least square (PLS) regression instead of ordinary least squares (OLS) 

regression. PLS regression can reduce the variables to a smaller set with no collinearity among them. (3)We can 

use Robust regression analysis instead of OLS, such as  Ridge regression and Lasso regression. (4)Statistical 

learning regression is also a good method, like regression Tree, Bagging regression, Random-Forest regression, 

Neural network and Support-Vector Regression (SVR).  

 

II.3 Variance Inflation Factor (VIF) 

If there is perfect multicollinearity among the independent variables, .X So the strong collinearity will cause 

computational instability and the OLS estimator is no longer the BLUE (best linear unbiased estimator). VIF can 

be calculated by equation (1): 

https://statisticsbyjim.com/glossary/regression-coefficient/
https://statisticsbyjim.com/regression/interpret-coefficients-p-values-regression/
https://statisticsbyjim.com/glossary/statistics/
https://statisticsbyjim.com/glossary/factors/
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Where 
2

jR represents a coefficient of determination for regressing the j-th independent variable on the 

remaining ones. VIF or Tolerance can be used to detect multicollinearity. If 
2

jR  is equal to 0, the variance of 

the remaining independent variables cannot be predicted from the j-th  independent variable. Therefore, when 

VIF or tolerance is equal to 1, the j-th independent variable is not correlated . In this case, the variance of the j-

th regression coefficient is not inflated. Generally, VIF above 4 or Tolerance below 0.25 indicates that 

multicollinearity might exist. When VIF is higher than 10 or Tolerance is lower than 0.1, there is significant 

multicollinearity that needs to be corrected [5]. 

 

II.4 Ridge Regression Model (RRM) 
The RRM is used to analyze any data that suffers from multicollinearity. When the issue of 

multicollinearity occurs, least-squares are unbiased, and variances are large, these results in predicted values to 

be far away from the actual values. The cost function for RRM can be denoted by equation (2):  

2 2Min || ( ) || || || (2)( )Y X      

Lambda   is the penalty term is denoted by   parameter in the ridge function. So, by changing the values of 

 , we are controlling the penalty term . Higher values of  , bigger the penalty  , and therefore the 

magnitude of coefficients is reduced. Therefore, it is used to prevent multicollinearity. If we add the   

parameter to the regression Y X e   equation, then the variance not evaluated by the general model is 

considered. The RRM addresses the problem by estimating regression coefficients by equation (3): 

1ˆ ( ) (3)T TX X I X Y     

The   is the ridge parameter (RP) , and I  is the identity matrix. Small positive values of   reduce the 

variance of the estimates. Bias increases as   increases. The variance decreases as   increases. While the 

biased causes smaller mean square error compared to least-squares estimates. The assumptions of RRM are the 

same as that of LRM: linearity, constant variance, and independence. However, as ridge regression does not 

provide confidence limits, the distribution of errors to be normal need not be assumed[19:24]. 

 

II.5 Normalizing and Scaling Dataset  

Objective is to improve predictive accuracy and not allow a particular feature of dataset impact the 

prediction due to large numeric value range. We may need to normalize or scale values under different features 

such that they fall under common range. Data frame could be normalized using Min-Max normalization 

technique that specifies the following formula to be applied to each value of features to be normalize. This 

technique can be formulated as equation (4): 

Scaled data = 
( )

(4)
( ) ( )

X Min X

Max X Min X




, 

Disadvantage with min-max normalization technique is that it tends to bring data towards the mean. In order to 

achieve z-score standardization, we use R’s built-in "scale()" function [25].  

 

II.6 R packages 

In R language, we used the "lm" function in "stats" package for linear regression model (LRM), the function 

"lm.ridge()" in package MASS [26] for implement ridge regression model (RRM). Furthermore, package 

"ridge" provides a function called "linearRidge()" [27], which also can fits a RRM, and optionally, the ridge 

parameter   is chosen automatically using the method proposed by Cule et al. [28]. In this case, the function 

choose 0.01 as  , so the result is little different from the output of "lm.ridge()" function. For differencing data 

we will use the function "diffM()" in "MTS" package. Also, for scaling the dataset we will use the function 

"scale" in the package "base".  
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III. NUMERICAL STUDY 

In this section, we will generate the dataset using some methods of univariate and multivariate samples with 500 

observations in whole dataset frame. Then we classify the dataset into separate variables independent 

(correlated) and dependent variables. In the next subsections, we study the multicollinearity in different cases:  

 

III.1 Multicollinearity in Independence Case 

 In this subsection, we generate all variables data as standard normal variables with 500 observations. This is to 

get variables with absent the multicollinearity. The correlation matrix explains that the pairwise correlations are 

low: 

Variable 
1X  2X  3X  4X  

1X  1 -0.008 -0.035 -0.054 

2X  -0.008 1 0.004 0.019 

3X  -0.035 0.004 1 0.034 

4X  -0.054 0.019 0.034 1 

The LRM is: 

1 2 3 40.005876 0.022609 0.009309 0.001819 0.153541y x x x x      

Residuals Min 1Q Median 3Q Max 

-2.88881 -0.74867 0.06363 0.67903 2.93159 

We can test LRM as: 

Coefficients Estimate Std. Error t-statistic P-value 

Intercept 0.005876 0.045365 0.130 0.896998 

1X  -0.022609 0.045840 -0.493 0.622080 

2X  -0.009309 0.045300 -0.205 0.837272 

3X  0.001819 0.044994 0.040 0.967768 

4X  0.153541 0.043532 3.527 0.000459 *** 

 

Residual standard error Multiple R-squared Adjusted R-squared F-statistic P-value 

1.006 0.02549 0.01762 3.238 0.01225* 

The LRM has a much lower standard error, meaning the residuals have a small variance. The R-squared is too 

low. F-test is statistically significant (at 5%). This means that the LRM model has at least one variable, 4X , 

that is significantly different from zero. 

 

Test for independence of residuals: Durbin-Watson test 

H0: Errors are serially uncorrelated. 

H1: Errors are serially correlated. 

DW = 1.9594, P-value = 0.3274. 

We accept H0. Errors are serially uncorrelated. 

 

Test residuals for normality (Jarque - Beranormalality test)  

H0: Errors are normally distributed. 

H1: Errors are not normally distributed. 

JB= 1.4382, P-value = 0.4872.  

We accept H0: Errors are normally distributed. 
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Figure 1 displays the plots of residuals in independence case: 

 
Figure 1:Plots of residuals in independence case 

 
Multi Fit Studentized Residuals plot shows that there is not any obvious outliers. 

Histogram of residuals look normally distributed. The QQ-Plot shows all points around the normal line.We can 

check for Multicollinearity using the function "check_collinearity()" of fitted model. We get a low collinearity, 

VIF = 1, SE = 1, for all independent variables as shown in Figure 2:  

 

 
Figure 2: Check for Multicollinearity in independent case 
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Using the RRM to fit the data. Here, we omit the intercept from the model. 

The RRM using the "lm.ridge()" function with RP = 0.1 is: 

1 2 3 40.022606313 0.009258321 0.001163623 0.158883915y x x x x     

 

Also, we can use the function "linearRidge()" in the "ridge" package, without specified  , the RRM is: 

Coefficients Estimate Scaled estimate Std. Error (scaled) t statistic P-value 

1X  -0.018397 -0.404525 0.746532 0.542 0.587907 

2X  -0.006307 -0.140074 0.746298 0.188 0.851119 

3X  0.002477 0.055430 0.746421 0.074 0.940803 

4X  0.114060 2.641221 0.746545 3.538 0.000403 *** 

RP = 0.3473546, chosen automatically, computed using 2PCs, Variance = 2.201, residual = 3.733. This means 

that the RRM also has at least one variable, 4X , is significantly different from zero. 

 

III.2 Multicollinearity in Dependence Case 

With "MASS" package using the function "mvrnorm()" with mu = 0, and Sigma matrix all off-diagonal = 0.7, 

with n=500 observations, to  generate the correlated (independent variables X's) , and standard normal 

distribution to generate the (dependent variable Y). The correlation matrix for correlated variables is: 

 

Variables 
1X  2X  3X  4X  

1X  1 0.699 0.694 0.681 

2X  0.699 1 0.696 0.673 

3X  0.694 0.696 1 0.669 

4X  0.681 0.673 0.669 1 

The LRM is: 

1 2 3 40.031641 0.031379 0.015836 0.007256 0.080905y x x x x    

Residuals Min 1Q Median 3Q Max 

-3.1011 -0.6576 -0.0214   0.6530   3.3271  

We can test LRM as: 

Coefficients Estimate Std. Error t-statistic P-value 

Intercept 0.031641 0.045756 0.692 0.490 

1X  -0.031379 0.073357 -0.428 0.669 

2X  -0.015836 0.076246 -0.208 0.836 

3X  0.007256 0.073935 0.098 0.922 

4X  0.080905 0.071961 1.124 0.261 

. 

Residual standard error Multiple R-squared Adjusted R-squared F-statistic P-value 

1.021 0.00329 -0.004764 0.4085 0.8026 

F-test is not statistically significant (at 5%). This means that the LRM has no one variable is significantly 

different from zero. 

DW = 2.0151, P-value = 0.5663. 

We accept H0. Errors are serially uncorrelated. 

JB= 0.2863, P-value = 0.8666. 

We accept H0: Errors are normally distributed. 
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Figure 3 displays the residual plots in dependence case: 

 
Figure 3:Plots of residuals in dependence case 

 

We can check the multicollinearity in dependence case, we have low multicollinearity, as we see in Figure 4, 

and from VIF values. 

Parameter VIF Increased SE 

1X  2.55 1.6 

2X  2.53 1.59 

3X  2.48 1.58 

4X  2.32 1.52 
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Figure 4 displays the plots of ckeck of multicollinearity in dependence case: 

 
Figure 4: Check of Multicollinearity in correlated case 

 

The RRM using the "lm.ridge()" function with RP = 0.1 is: 

1 2 3 40.03262302 0.01576830   0.01005597 0.07757007y x x x x      

 

Also, we can use the function "linearRidge()" in ridge package, without specified  , the RRM is: 

Coefficients Estimate Scaled estimate Std. Error (scaled) t statistic P-value 

1X  0.001221 0.027172 0.128467 0.212 0.832 

2X  0.002010 0.042796 0.128631 0.333 0.739 

3X  0.003080 0.067046 0.128871 0.520 0.603 

4X  0.007214 0.156076 0.129809 1.202 0.229 

RP = 5.803454, chosen automatically, computed using 1 PCs, Variance = 0.1269 , residual = 0.8715. 

This means that the RRM also has no one variable significantly different from zero. 

From independence and dependence case we desire to insure that: if   is small value , then there is no need to 

use RRM, because the results do not change much. The presence of a strong collinearity between the 

independent variables increases somewhat the VIF as well as  . 
 

III.3 Multicollinearity in Linearity Combinations Case 

In this subsection, we will suppose some linear combinations between the independent variables, and then we 

can check the multicollinearity. These combinations and generation data process can be presented using R 

program as : 
 

X1 = rnorm(500),  

X2 = rnorm(500)+X1,  

X3 = rpois(500,3)+X1+X2,  

X4 = rexp(500)+X3+X2+X1,Y = rnorm(500).  
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Of course, Multicollinearity will be there. We can use two methods to adjust the dataset. The first one is 

differencing these data. The second is normalizing (scaling) the data, and then we test whether if the 

multicollinearity disappeared or not? 

 

III.3.1 Analyzing the Original Data 

 Before differencing process, we will analyze the original data, to find the impact of relations between the 

independent variables. The LRM is: 

1 2 3 40.09361 0.05423 0.046570.01885 0.03899y x x x x    

The residuals are: 

residuals Min 1Q Median 3Q Max 

-2.71896 -0.63534 -0.04729 0.69282 2.86544 

We can test the LRM as: 

Variables Estimate Std. Error t statistic P-value 

Intercept 0.01885 0.10232    0.184 0.854 

1X  0.09361 0.08624 1.086 0.278 

2X  0.05423 0.07113 0.762 0.446 

3X  0.04657 0.05470 0.851 0.395 

4X  -0.03899 0.04873 -0.800 0.424 

Residual standard error = 0.965 , Multiple R-squared = 0.009666, Adjusted R-squared = 0.001663. F-statistic = 

1.208 , P-value = 0.3065. 

DW = 2.0273, P-value = 0.6221. 

We accept H0. Errors are serially uncorrelated. 

JB = 0.6724, P-value: 0.7145. 

We accept H0: Errors are normally distributed. 

 

These results are indicated by Figure 5: 

 
Figure 5: The plots of residuals in linearity case - original data 

Check for Multicollinearity 
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Parameter VIF Increased SE Multicollinearity 

1X  3.71 1.93 Low 

2X  5.36 2.32 Moderate 

3X  12.89          3.59 High 

4X  30.08 5.48 High 

 

These results are indicated by Figure 6: 

 
Figure 6: Check multicollinearity in linearity case - original data 

 
3.3.2 Differencing the Original Data 

After differencing process, the dataset will be 499 observations. So, we get the LRM as: 

1 2 3 40.0300114 1.0728980 0.98493070.00 0.9863133 06085y x x x x     

The residuals are: 

Residuals Min 1Q Median 3Q Max 

-5.3058 -0.6016   0.0368   0.6449   5.3332  

We can test the LRM as: 

Variables Estimate Std. Error t statistic P-value 

intercept -0.0006085 0.0581376   -0.010 0.992 

1X  -0.0303114 0.0427593 -0.709 0.479     

2X  1.0728980   0.0661380   16.222    2e-16 *** 

3X  0.9849307   0.0485142   20.302    2e-16 *** 

4X  0.9863133   0.0244765   40.296    2e-16 *** 

 

Residual standard error: 1.299, Multiple R-squared = 0.9644, Adjusted R-squared = 0.9641, F-statistic =  3341, 

P-value = 2.2e-16. 

DW = 3.131, P-value = 1.  
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We accept H0. Errors are serially uncorrelated. 

JB = 67.9122, P-value: 1.776e-15.  

We reject H0. Errors are not normally distributed. 

 

These results are indicated by Figure 7: 

 
 Figure 7: The plots ofresiduals in linearity case - differenced data   

 

Check for Multicollinearity 

Parameter VIF Increased SE Multicollinearity 

1X  1.03 1.01 Low 

2X  2.40 1.55 Low 

3X  2.76 1.66 Low 

4X  2.79 1.67 Low 
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These results are indicated by Figure 8: 

 
Figure 8: Check of Multicollinearity in linearity case - differenced data 

 

The RRM using the "lm.ridge()" function with RP = 0.1 is: 

1 2 3 40.92217 32.69305 43.81672 78.33978y x x x x     

The RRM using the "linearRidge" function is:  

Variables Estimate Scaled estimate Std. Error (scaled) t statistic P-value 

1X  -0.02994 -0.92217 1.31481 0.701 0.483 

2X  1.07402 32.69305 2.00684 16.291 2e-16 *** 

3X  0.98543 43.81672 2.14946 20.385 2e-16 *** 

4X  0.98516 87.33978 2.16216 40.395    2e-16 *** 

RP = 0.0007, chosen automatically, computed using 3 PCs, Variance = 3.988 , residual = 4. 

 

III.3.3 Normalizing (Scaling) the Original Data 

 In this subsection, we will use the normalizing scale process: 

-Min( )
Scaled data

Max( )-Min( )

x x

x x
  

After normalizing scale process, we get the LRM as: 

1 2 3 40.19790. 84  0.570787006898 0.004992 0.260839y x x x x      

The residuals are: 

 

Residuals Min 1Q Median 3Q Max 

-0.03707 -0.02267 -0.01002   0.01361   0.20308 
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We can test the LRM as below: 

Variables Estimate Std. Error t statistic P-value 

intercept -0.006898 0.007102 -0.971     0.332     

1X  -0.004992    0.007627   -0.654     0.513     

2X  0.197984    0.015481   12.789    2e-16 *** 

3X  0.260839    0.014933   17.468    2e-16 *** 

4X  0.570787    0.014503   39.357    2e-16 *** 

 

Residual standard error = 0.03312 , Multiple R-squared = 0.9578, Adjusted R-squared = 0.9575, F-statistic = 

2810 , P-value = 2.2e-16. 

DW = 1.8601, P-value = 0.05843.  

We accept H0. Errors are serially uncorrelated. 

JB = 1376.2855, P-value = 2.2e-16.  

We reject H0. Errors are not normally distributed. 

 

These results are indicated by Figure 9: 

 
Figure 9: the plots of linearity case for normalizing scale data 

Check for Multicollinearity 

 

Parameter VIF Increased SE Multicollinearity 

1X  1.01 1.00 Low 

2X  2.49 1.58 Low 

3X  3.08 1.76 Low 

4X  2.66 1.63 Low 
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These results are indicated by Figure 10: 

 
Figure 10:Check of multicollinearity of linearity case for normalizing scale data 

 

The RRM using the "lm.ridge()" function with RP = 0.1 is: 

1 2 3 40.005257178 0.109601471 0.146630109 0.262817013y x x x x     

The RRM model using the "linearRidge" function is:  

Variables Estimate Scaled estimate Std. Error (scaled) t statistic P-value 

1X  -0.00501 -0.02183 0.03318 0.658 0.511 

2X  0.19821 0.66949 0.05213 12.843 2e-16 *** 

3X  0.26097 1.01587 0.05791 17.541 2e-16 *** 

4X  0.57018 2.12527 0.05388 39.445 2e-16 *** 

RP = 0.0006, chosen automatically, computed using 3 PCs, Variance = 3.989 , residual = 4. 

 

IV. DISCUSSION 

In this section, we summarized the obtained results in section 3.  

 

For the independence case:  

F-test = 3.238, P-value=0.01225 is statistically significant (at 5%). This means that the LRM model has 

at least one variable ( 4X ) is significantly different from zero. Errors are serially uncorrelated. Errors are 

normally distributed. We checked Multicollinearity, we got Low collinearity, since, VIF = 1 and SE = 1 for all 

independent variables. With the function "Linear.Ridge()" RP = 0.3473546, chosen automatically, computed 

using 2PCs, Variance = 2.201 , residual = 3.733. This means that the RRM also has at least one variable( 4X ) is 

significantly different from zero. 

 

For the dependence case:  

F-test = 0.4085, P-value=0.8026 is statistically not significant (at 5%). This means that the LRM has no 

one variable is significantly different from zero. Errors are serially uncorrelated. Errors are normally distributed. 

We checked Multicollinearity, we have Low collinearity Variance = 0.1269, residual = 0.8715.This means that 
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the RRM also has no one variable significantly different from zero. From independence and dependence cases, 

we insure that: if RP is small value, then there is no need to use RRM, because the results do not change much. 

The presence of strong collinearity between the independent variables increases somewhat the VIF as well as 

RP. Also, the strong collinearity between the independent variable does not reflect Multicollinearity 

phenomenon. 

 

For linear combinations case, we have three topics: 

 

Before differencing process:  

F-statistic = 1.208, P-value = 0.3065. This means that the LRM has no one variable significantly different from 

zero. Errors are serially uncorrelated. Errors are normally distributed. We checked Multicollinearity, we found 

that ( 1X ) has Low collinearity, ( 2X ) has Moderate collinearity, ( 3X , 4X ) have High collinearity. 

After differencing process:  

F-statistic = 3341, P-value = 2.2e-16. This means that the LRM has three variables 2 3 4( , , )X X X  are 

significantly different from zero. Errors are serially uncorrelated. Errors are not normally distributed. Check for 

Multicollinearity, we got Low collinearity, for all independent variables, after differencing. RP = 0.0007, chosen 

automatically, computed using 3 PCs, Variance = 3.988, Residual = 4. 

 

After normalizing scale process:  

F-statistic = 2810, P-value = 2.2e-16. This means also that the LRM has three variables 2 3 4( , , )X X X are 

significantly different from zero. Errors are serially uncorrelated. Errors are not normally distributed.Check for 

Multicollinearity become Low collinearity for all independent variables. RP=0.0006, chosen automatically, 

computed using 3 PCs, Variance = 3.989, Residual = 4. 

 

V. Conclusions 

Multicollinearity criteria occur when the independent variables in a regression model are correlated. 

This collinearity effects on the fitted results. In this paper, we tried to solve this problem using two methods. 

The first method used the ridge regression model (RRM), with eliminate the intercept of regression model. This 

model is compared with the traditional linear regression model (LRM). The second method modified the 

original dataset using differencing (the function "diffM" in "MTS" package), and scaling (the function "scale" in 

"base" package) processes. To make it, we supposed different cases to analysis the dataset. These cases are: 

independent case, dependent case, and combination linear case. In each case, we generated the dataset using R 

program from different distributions (univariate and multivariate). Sample size data consists of 500 observations 

that are classified to five variables (each one has 500 observations), four of them represented as independent 

variables (correlated or uncorrelated), the last one represented as dependent variable. For all cases, we fitted the 

data using LRM, and then check Multicollinearity with the function "check_collinearity()", with determining the 

variance inflation factor (VIF) for each independent variable. If Multicollinearity phenomenon is not absent, we 

try to remove it using the "lm.ridge" function in "MASS" package, or "Linear.Ridge" function in "ridge" 

package. Two functions give close results. The ridge parameter (RP) in the last one is chosen automatically. 

Then, we can re-check Multicollinearity again. From studying the independence and dependence cases, we 

insured from that: if the RP is small or moderate value, then there is no need to use the RRM, because of the 

results do not change much. The presence of strong collinearity between the independent variables increases 

somewhat the VIF as well as RP. Also, the strong collinearity between the independent variables does not reflect 

Multicollinearity phenomenon.Finally, when using the differencing or normalizing (scaling) dataset, for 

overcoming Multicollinearity, we found that these processes are effective ways to eliminate Multicollinearity 

and make the regression model results well, for estimates, variances, F-statistic or P-values. 
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