The Comparison of The Symmedian Triangle Area and The Original Triangle

Hutri Defniati ${ }^{1}$, Mashadi ${ }^{2}$, Sri Gemawati ${ }^{3}$
1,2,3 (Department of Mathematics, University of Riau, Indonesia) Corresponding Author: Mashadi and Hutri Defniati

Abstract

: Background: This article discusses on determining the area of a bisector triangle, determining the area of the symmedian triangle, and the comparison of both. The proof is done by using trigonometry rule to find the area of the triangle and Steiner's Theorem to determine the sides that formed the triangle.

Keywords: area of bisector triangle, area of symmedian triangle, bisector line, symmedian line

I. Introduction

Several discussions about symmedian have been made. In the early history of the symmedian point, [10] discussed this topic and continued discuss the symmedian of the triangle and its accompanying circle [11]. The development of the symmedian and the circle formed was developed [6] which discusses tucker circles. Symmedian points are also called lemoine points. It gives an idea for further discussion about third lemoine circles [4]. For instance, a study of the First Lemoine Circle [6, 8, 16]. This theorem proves that if P is the symmedian point of triangle and three parallel lines are drawn to the sides of the triangle where all three lines through point symmedian P then the six points all lie on one circle. Similarly, for Second Lemoine Circle that constructed by drawing three anti parallel lines to the sides of the triangle are through the symmedian point so it will intersect in six points with a side of the triangle. Then, the sixth points will be on one circle $[6,8,16]$. Furthermore, there is Third Lemoine Circle. Let O be a symmedian point on triangle $A B C$. Then the triangle is partitioned into three triangles, namely $\triangle B C O, \triangle A C O$ and $\triangle A B O$. From each triangle, a circle can be made with the center points P, Q, and R. If the points P, Q and R are connected by a line segment, it will form $\triangle P Q R$. Additionally, from constructing the three circles of the $\triangle B C O, \triangle A C O$ and $\triangle A B O$, will form the intersection of the circle with side and side triangle extension $A B C$ at six points [4, 6, 16]. Futhermore, if M is the centroid point of triangles $A B C$, and L are the center points of the third Lemoine's circle while K is the simedian point of triangle $A B C$, then the three points are collinear [16].

In this paper, the researcher is interested in determining an area of the symmedian triangle $A_{s} B_{s} C_{s}$ with the original triangle $A B C$. Triangle $A_{s} B_{s} C_{S}$ is a triangle formed from the intersection of the symmedian lines and the connected sides of the triangle. In other words, let $A A_{s}, B B_{s}$ and $C C_{s}$ is a symmedian line, then the points A_{s}, B_{s} and C_{s} are connected will form the $A_{s} B_{s} C_{s}$ symmedian triangle. Area of the original triangle and triangle symmedian will be calculated using trigonometric formulas. Furthermore, the study will discuss about the area of the triangle formed by the bisector and the median line.

II. Material And Methods

Several papers have discussed the previous definition of symmedian [3, 5, 7 10, 11].
Definition. 1 (Symmedian Line). Given triangle $A B C$ where a, b and c respectively are the side lengths of $B C$, $A C$, and $A B$. If A_{m} and A_{b} are respectively the median line and the bisector line drawn from the angle A, then the reflection of the line A_{m} against A_{b} produces the line A_{s}, which is called a symmedian line.

Figure 1: Symmedian lines on Triangle ABC
To determine the area of a symmedian triangle, the lengths of $B A_{s}$ and $C A_{s}$ from side $B C, C B_{s}$ and $A B_{s}$ from side $A C, B C_{s}$ and $A C_{s}$ from side $A B$, are needed. The Steiners theorem is used to calculate it. [17].

Theorem1 (Steiners Theorem): At any triangle $A B C$, let D and E be the points on the line $B C$ with $A E$ being the bisector line. If $A D$ is reflected on $A E$ and produces $A F$, it applies

$$
\frac{B D}{C D} \cdot \frac{B F}{C F}=\frac{(A B)^{2}}{(A C)^{2}}
$$

Figure 2: Steiner's theorem
Proof. The proof is discussed in [8].
To calculate the area of a triangle, a trigonometric formula will be used.

III. Result

Theorem 3: Given any $A B C$, if $B C=a, A C=b$, and $A B=c$ then A_{b}, B_{b}, and C_{b} are the points of intersection of the bisector lines on sides a, b and c, respectively. Thus, the area of $A_{b} B_{b} C_{b}$ is

$$
L \Delta A_{b} B_{b} C_{b}=\frac{2(a b c)}{(a+b)(a+c)(b+c)} \cdot L \Delta A B C
$$

Proof: Before showing the area of $\Delta A_{s} B_{s} C_{s}$, we will determine the area of $\Delta A C_{s} B_{s}, \Delta C_{s} B A_{s}$, and $\Delta B_{s} A_{s} C$. Therefore, it is necessary to determine the length of the side $B A_{s}, C A_{s}, C B_{s}, B C_{s}, A B_{s}$ and $A C_{s}$. using the concept of congruent triangles

Figure 3: The Illustration Determines the Length
In figure 3, extend the line $C A$, through point B make a parallel line $A A_{b}$ which intersects the extension of $C A$ at point D. Next draw a line through point A parallel to $C B$ which intersects $B D$ at point F. Then, suppose that E is the midpoint of $B D$ then by considering $\triangle C A A_{b}$ and $\triangle C D B, \angle A C A_{b}=\angle B C D$ and $\angle C A A_{b}=\angle C D B$ we get $\Delta C A A_{b} \sim \Delta C D B$ so that it applies

$$
\frac{C A}{C D}=\frac{C A_{b}}{C B}
$$

Because $C D=C A+A D$ and $C A_{b}=C B-B A_{b}$, so that

$$
\begin{gather*}
\frac{C A}{C A+A D}=\frac{B C-B A_{b}}{B C} \\
B C \cdot C A=\left(B C-B A_{b}\right)(C A+A D) \\
B C-B A_{b}=\frac{B C \cdot C A}{C A+A D} \\
B C-B A_{b}=\frac{B C \cdot C A}{C A+A B} \\
B A_{b}=B C-\frac{B C \cdot C A}{C A+A B} \\
B A_{b}=\frac{B C \cdot A B}{A C+A B} \\
B A_{b}=\frac{a \cdot c}{b+c} \tag{1}
\end{gather*}
$$

then, we will determine the length of the $C A_{b}$. because $C A_{b}=B C-B A_{b}$, then

$$
\begin{align*}
C A_{b} & =B C-B A_{b} \\
& =a-\frac{a c}{b+c} \\
& =\frac{a(b+c)-a c}{b+c} \\
& =\frac{a b+a c-a c}{b+c} \\
C A_{b} & =\frac{a b}{b+c} \tag{2}
\end{align*}
$$

In the same way it is obtained

$$
\begin{align*}
& B_{b} C=\frac{a b}{a+c} \tag{3}\\
& A B_{b}=\frac{b c}{a+c} \tag{4}\\
& A C_{b}=\frac{b c}{a+b} \tag{5}\\
& B C_{b}=\frac{a c}{a+b} \tag{6}
\end{align*}
$$

After obtaining the Length of $B A_{b}, C A_{b}, C B_{b}, B C_{b}, A B_{b}$ and $A C_{b}$, then determine the area of $\triangle A C_{b} B_{b}, \Delta C_{b} B A_{b}$, and $\Delta B_{b} A_{b} C$ using trigonometry

Figure 4: Bisector Triangle
To show the area of $\Delta A_{b} B C_{b}$ can be done using the trigonometric formula from the angle B obtained

$$
\begin{equation*}
L \Delta A_{b} B C_{b}=\frac{1}{2} \cdot B C_{b} \cdot B A_{b} \cdot \sin \angle \mathrm{~B} \tag{7}
\end{equation*}
$$

Substitute equation (1) and (6) into equation (7)

$$
\begin{align*}
L \Delta A_{b} B C_{b} & =\frac{1}{2} \cdot \frac{a c}{b+c} \cdot \frac{a c}{a+b} \cdot \sin \angle \mathrm{~B} \\
L \Delta A_{b} B C_{b} & =\frac{1}{2} \cdot \frac{a^{2} c^{2}}{(b+c)(a+b)} \cdot \sin \angle \mathrm{B} \\
\sin \angle \mathrm{~B} & =\frac{2(b+c)(a+b)}{a^{2} c^{2}} \cdot L \Delta A_{b} B C_{b} \tag{8}
\end{align*}
$$

Because the area of $\mathrm{L} \triangle \mathrm{ABC}$ from angle B is

$$
\begin{align*}
& L \triangle A B C=\frac{1}{2} \cdot A B \cdot B C \cdot \sin \angle B \\
& L \triangle A B C=\frac{1}{2} \cdot c \cdot a \cdot \sin \angle B \tag{9}
\end{align*}
$$

Substitute equation (8) into equation (9) to get

$$
\begin{gathered}
L \Delta A B C=\frac{1}{2} c a \frac{2(b+c)(a+b)}{a^{2} c^{2}} \cdot L \Delta A_{b} B C_{b} \\
L \Delta A B C=\frac{(b+c)(a+b)}{a c} \cdot L \Delta A_{b} B C_{b} \\
L \Delta A_{b} B C_{b}=\frac{a c}{(b+c)(a+b)} L \Delta A B C
\end{gathered}
$$

$$
\begin{equation*}
L \Delta A_{b} B C_{b}=\frac{a c}{(b+c)(a+b)} L \Delta A B C \tag{10}
\end{equation*}
$$

In the same way it is obtained

$$
\begin{align*}
& L \Delta A_{b} B_{b} C=\frac{a b}{(b+c)(a+c)} L \Delta A B C \tag{11}\\
& L \Delta A B_{b} C_{b}=\frac{b c}{(a+b)(a+c)} L \Delta A B C \tag{12}
\end{align*}
$$

After obtaining $L \Delta A_{b} B C_{b}, L \Delta A_{b} B_{b} C$, and $L \Delta A B_{b} C_{b}$, then determining the area of $\Delta A_{b} B_{b} C_{b}$

$$
\begin{equation*}
L \Delta A_{b} B_{b} C_{b}=L \Delta A B C-L \Delta A_{b} B C_{b}-L \Delta A_{b} B_{b} C-L \Delta A B_{b} C_{b} \tag{13}
\end{equation*}
$$

Substitute equations (10), (11) and (12) into equation (13) so that

$$
\begin{aligned}
L \Delta A_{b} B_{b} C_{b} & =L \Delta A B C-\frac{a c}{(b+c)(a+b)} L \Delta A B C-\frac{a b}{(b+c)(a+c)} L \Delta A B C-\frac{b c}{(a+b)(a+c)} L \Delta A B C \\
& =\left[1-\frac{a c}{(b+c)(a+b)}-\frac{a b}{(b+c)(a+c)}-\frac{b c}{(a+b)(a+c)}\right] L \Delta A B C \\
& =\frac{2(a b c)}{(a+b)(a+c)(b+c)} L \Delta A B C
\end{aligned}
$$

Theorem 4: Given any $A B C$, if $B C=a, A C=b$, and $A B=c$ then A_{s}, B_{s}, and C_{s} are the points of intersection of the simedian lines on sides a, b and c, respectively. Thus, the area of $A_{s} B_{s} C_{s}$ is

$$
L \Delta A_{s} B_{s} C_{s}=\frac{2(a b c)^{2}}{\left(a^{2}+b^{2}\right)\left(a^{2}+c^{2}\right)\left(b^{2}+c^{2}\right)} \cdot L \Delta A B C
$$

Proof: Before showing the area of $\Delta A_{s} B_{s} C_{s}$, we will determine the area of $\Delta A C_{s} B_{s}, \Delta C_{s} B A_{s}$, and $\Delta B_{s} A_{s} C$. Therefore, it is necessary to determine the length of the side $B A_{s}, C A_{s}, C B_{s}, B C_{s}, A B_{s}$ and $A C_{s}$. Using the steiners theorem is obtained

$$
\begin{equation*}
\frac{B A_{s}}{C A_{s}} \cdot \frac{B A_{m}}{C A_{m}}=\frac{(A B)^{2}}{(C A)^{2}}=\frac{c^{2}}{b^{2}} \tag{14}
\end{equation*}
$$

Since A_{m} is the midpoint, then $B A_{m} / C A_{m}=1$. So that equation (14) becomes

$$
\begin{align*}
\frac{B A_{s}}{C A_{s}} & =\frac{c^{2}}{b^{2}} \\
\frac{B A_{s}}{c^{2}} & =\frac{C A_{s}}{b^{2}} \tag{15}
\end{align*}
$$

The line length $B A_{s}=a-C A_{s}$, substitute it for equation (15) is obtained

$$
\begin{gather*}
\frac{a-C A_{s}}{c^{2}}=\frac{C A_{s}}{b^{2}} \\
b^{2}\left(a-C A_{s}\right)=c^{2} C A_{s} \\
a b^{2}-b^{2} C A_{s}=c^{2} C A_{s} \\
a b^{2}=c^{2} C A_{s}+b^{2} C A_{s} \\
a b^{2}=C A_{s}\left(c^{2}+b^{2}\right) \\
C A_{s}=\frac{a b^{2}}{b^{2}+c^{2}} \tag{16}
\end{gather*}
$$

Furthermore, the $B A_{s}$ length is determined by substituting equation (16) into equation (15), so that it is obtained

$$
\begin{gather*}
\frac{B A_{s}}{c^{2}}=\frac{C A_{s}}{b^{2}} \\
\frac{B A_{s}}{c^{2}}=\frac{\frac{a b^{2}}{b^{2}+c^{2}}}{b^{2}} \\
\frac{B A_{s}}{c^{2}}=\frac{a}{b^{2}+c^{2}} \\
B A_{s}=\frac{a c^{2}}{b^{2}+c^{2}} \tag{17}
\end{gather*}
$$

In the same way it is obtained

$$
\begin{align*}
& B C_{s}=\frac{c a^{2}}{a^{2}+b^{2}} \tag{18}\\
& C B_{s}=\frac{b a^{2}}{a^{2}+c^{2}} \tag{19}\\
& A B_{S}=\frac{b c^{2}}{a^{2}+c^{2}} \tag{20}\\
& A C_{s}=\frac{c b^{2}}{a^{2}+b^{2}} \tag{21}
\end{align*}
$$

After obtaining the Length of $B A_{s}, C A_{s}, C B_{s}, B C_{s}, A B_{s}$ and $A C_{s}$, then determine the area of $\Delta A C_{s} B_{s}, \Delta C_{s} B A_{s}$, and $\Delta B_{s} A_{s} C$ using trigonometry

Figure 5: Symmedian Triangle
To show the area of $\Delta A_{s} B C_{s}$ can be done using the trigonometric formula from the angle B obtained

$$
\begin{equation*}
L \Delta A_{s} B C_{s}=\frac{1}{2} \cdot B C_{s} \cdot B A_{s} \cdot \sin \angle \mathrm{~B} \tag{22}
\end{equation*}
$$

Substitute equation (17) and (18) into equation (22)

$$
\begin{align*}
& L \Delta A_{s} B C_{s}=\frac{1}{2} \cdot \frac{c a^{2}}{a^{2}+b^{2}} \cdot \frac{a c^{2}}{b^{2}+c^{2}} \cdot \sin \angle \mathrm{~B} \\
& L \Delta A_{s} B C_{s}=\frac{1}{2} \cdot \frac{a^{3} c^{3}}{\left(a^{2}+b^{2}\right)\left(b^{2}+c^{2}\right)} \cdot \sin \angle \mathrm{B} \\
& \sin \angle \mathrm{~B}=\frac{2\left(a^{2}+b^{2}\right)\left(b^{2}+c^{2}\right)}{a^{3} c^{3}} \cdot L \Delta A_{s} B C_{s} \tag{23}
\end{align*}
$$

Because the area of $L \triangle A B C$ from angle B is

$$
L \triangle A B C=\frac{1}{2} \cdot A B \cdot B C \cdot \sin \angle \mathrm{~B}
$$

$$
\begin{equation*}
L \triangle A B C=\frac{1}{2} \cdot c \cdot a \cdot \sin \angle B \tag{24}
\end{equation*}
$$

Substitute equation (23) into equation (24) to get

$$
\begin{gather*}
L \Delta A B C=\frac{1}{2} c a \frac{2\left(a^{2}+b^{2}\right)\left(b^{2}+c^{2}\right)}{a^{3} c^{3}} \cdot L \Delta A_{s} B C_{s} \\
L \Delta A B C=\frac{\left(a^{2}+b^{2}\right)\left(b^{2}+c^{2}\right)}{a^{2} c^{2}} \cdot L \Delta A_{s} B C_{s} \\
L \Delta A_{s} B C_{s}=\frac{a^{2} c^{2}}{\left(a^{2}+b^{2}\right)\left(b^{2}+c^{2}\right)} L \Delta A B C \\
L \Delta A_{s} B C_{s}=\frac{(a c)^{2}}{\left(a^{2}+b^{2}\right)\left(b^{2}+c^{2}\right)} L \Delta A B C \tag{25}
\end{gather*}
$$

In the same way it is obtained

$$
\begin{align*}
& L \Delta A_{s} B_{S} C=\frac{(a b)^{2}}{\left(b^{2}+c^{2}\right)\left(a^{2}+c^{2}\right)} L \Delta A B C \tag{26}\\
& L \Delta A B_{S} C_{S}=\frac{(b c)^{2}}{\left(a^{2}+b^{2}\right)\left(a^{2}+c^{2}\right)} L \Delta A B C \tag{27}
\end{align*}
$$

After obtaining $L \Delta A_{s} B C_{s}, L \Delta A_{s} B_{s} C$, and $L \Delta A B_{s} C_{s}$, then determining the area of $\Delta A_{s} B_{s} C_{s}$

$$
\begin{equation*}
L \Delta A_{s} B_{s} C_{s}=L \Delta A B C-L \Delta A_{s} B C_{s}-L \Delta A_{s} B_{s} C-L \Delta A B_{s} C_{s} \tag{28}
\end{equation*}
$$

Substitute equations (24), (25) and (26) into equation (27) so that

$$
\begin{aligned}
L \Delta A_{s} B_{S} C_{s} & =L \Delta A B C-\frac{(a c)^{2}}{\left(a^{2}+b^{2}\right)\left(b^{2}+c^{2}\right)} L \Delta A B C-\frac{(a b)^{2}}{\left(b^{2}+c^{2}\right)\left(a^{2}+c^{2}\right)} L \Delta A B C-\frac{(b c)^{2}}{\left(a^{2}+b^{2}\right)\left(a^{2}+c^{2}\right)} L \Delta A B C \\
& =\left[1-\frac{(a c)^{2}}{\left(a^{2}+b^{2}\right)\left(b^{2}+c^{2}\right)}-\frac{(a b)^{2}}{\left(b^{2}+c^{2}\right)\left(a^{2}+c^{2}\right)}-\frac{(b c)^{2}}{\left(a^{2}+b^{2}\right)\left(a^{2}+c^{2}\right)}\right] L \Delta A B C \\
& =\frac{2(a b c)^{2}}{\left(a^{2}+b^{2}\right)\left(a^{2}+c^{2}\right)\left(b^{2}+c^{2}\right)} L \Delta A B C
\end{aligned}
$$

Thus the ratio of the area of the symmedian triangle to the original triangle is

$$
\frac{L \Delta A_{s} B_{s} C_{s}}{L \Delta A B C}=\frac{2(a b c)^{2}}{\left(a^{2}+b^{2}\right)\left(a^{2}+c^{2}\right)\left(b^{2}+c^{2}\right)}
$$

From theorem 3 and theorem 4, the comparison of the bisector triangle with the symmedian triangle is obtained,

$$
\begin{aligned}
\frac{L \Delta A_{b} B_{b} C_{b}}{L \Delta A_{s} B_{s} C_{s}} & =\frac{2(a b c) \cdot L \Delta A B C}{(a+b)(a+c)(b+c)}: \frac{2(a b c)^{2} \cdot L \Delta A B C}{\left(a^{2}+b^{2}\right)\left(a^{2}+c^{2}\right)\left(b^{2}+c^{2}\right)} \\
\frac{L \Delta A_{b} B_{b} C_{b}}{L \Delta A_{s} B_{s} C_{s}}= & \frac{2(a b c) \cdot L \Delta A B C}{(a+b)(a+c)(b+c)} \cdot \frac{\left(a^{2}+b^{2}\right)\left(a^{2}+c^{2}\right)\left(b^{2}+c^{2}\right)}{2(a b c)^{2} \cdot L \Delta A B C} \\
& \frac{L \Delta A_{b} B_{b} C_{b}}{L \Delta A_{s} B_{s} C_{s}}=\frac{\left(a^{2}+b^{2}\right)\left(a^{2}+c^{2}\right)\left(b^{2}+c^{2}\right)}{(a b c)(a+b)(a+c)(b+c)}
\end{aligned}
$$

IV. Conclusion

Symmedian lines are formed from the reflection of the median line against the bisector. To determine the area of a symmedian triangle, the Steiner's theorem and the trigonometric area formula can be used To determine the ratio of the area of the bisector triangle and the area of a symmedian triangle, simply using the area formula.

References

[1]. Amelia, Mashadi and S. Gemawati, Alternative proofs for the lenght of angle bisectors theorem on triangle, International Journal of Mathematics Trens and Technology, 66(2020), 163-166.
[2]. O. Bottterna and Erne, Elementary geometry, Springer, 2008
[3]. D. Dekov, Computer-generated mathematics: The symmedian point, Mathematika Pannonica, 10 (2008), 1-36.
[4]. D. Grinberg, Ehrmanns Third Lemoine Circle, Journal of Classical Geometry, 1(2012). 40-52
[5]. C. Kimberling, Trilinear distances inequalities for the symmedian point, centroid, and other triangle center, Forum Geometricorum, 10 (2010), 135-139.
[6]. S. N Kiss and P. Yiu, On the tucker Circles, Forum Geometricorum, 17 (2017), 157-175
[7]. B. Kolar, Symmedian and symmedian center of the triangle in an isotropic plane, Mathematika Pannonica, 17/2 (2006), 287-301
[8]. S. Luo and C. Pohoata, Let's talk about symmedians!, NC School of Science and Mathematics, Princeton University, USA, 1993.
[9]. Mashadi, Advanced Geometry (in Indonesian: Geometri Lanjut), UR Press, Pekanbaru, 2015.
[10]. J. S. Mackay, Early history of the symmedian point, Proceedings of the Edinburgh Mathematical Society 11 (1892-93), 92-103.
[11]. J. S. Mackay, Symmedians of a triangle and their concomitant circles, Proceedings of the Edinburgh Mathematical Society 14 (1895), 37-103
[12]. J. Sadek, M.B Yaghoub and N.H Rhee, Isogonal conjugates in a tetrahedron, Forum Geometricorum, 16 (2016), 43-50.
[13]. N. Singhal, On the ortogonality a median and a symmedian, Mathematika Pannonica, 17 (2017), 203-206
[14]. R. K. Smither, The symmedian point: Constructed and applied. The College Mathematical Journal, 2 (2011), 115-117
[15]. D. Trisna, Mashadi and S.Gemawati, Angle trisector in the three angles, IOSR Journal of Mathematical 16 (2020), 11-18.
[16]. A. Wardiyah, Mashadi and S. Gemawati, Relationship of lemoine circle with a symmedian point, Journal of Mathematical Sciences, 17(2016), 23-33.
[17]. Y. Silfiani, Mashadi, S. Gemawati, Comparison of the area of the triangle formed from the symmedian line and the median line, international journal of mathematics trands and Technology, 62 (2021), 68-73.
[18]. Y. Zhao. Three lemmas in geometry, Canada IMO Training Handout, Winter Camp, 2010.

