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Abstract 
The article analyzes the properties of the sequences 3k – 1 and 3k + 1 at their separate and joint use in iterative 

processes. The Collatz problem is considered as a special case of the problem of determining the optimal 

iterative process using both sequences 3k – 1 and 3k +1, which achieves 1 in the minimum number of steps 
(iterations). It is proved that the process P2, using the sequence 3k + 1, cannot diverge or go in loops, so it 

always reaches 1, but in general this requires a large number of iterations. Process P1, using the sequence 3k –

1, cannot diverge, but can go in loops. An estimate is obtained for the number of iterations required to establish 

the absence of divergence of the processes P1 and P2. 
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I. Introduction 
The Collatz problem, or the 3k + 1 problem, is one of the unsolved problems in number theory. It is as 

follows. Take an arbitrary natural number. If it is even, then we divide it by 2, and if it is odd, then we multiply 

it by 3 and add 1. This process repeats with the resulting number. It is required to find out whether, in this case, 

1 is always achieved in a certain (finite) number of iterations. Numerous computer calculations have been 

performed to verify the correctness of this statement, but the question remains open. In this article, we prove that 

the iterative process described above always achieves 1, and give an explanation of this phenomenon. Consider 

the Collatz problem as a special case of the more general problem of determining an iterative process that makes 

it possible to reach 1 in the least number of steps (iterations), if we start with an arbitrary natural number. We 

compare three iterative processes: P1 = 3k – 1, P2 = 3k + 1 and the combined process P3 = [(3k – 1) - (3k + 1)]. 

The P1 process is based on the sequence F1 = (3k – 1), the P2 process is based on the sequence F2 = (3k + 1), the 

combined process P3 alternately uses the sequences (3k – 1) and (3k + 1). Consider the properties of these 

sequences for different values of k. It is easy to verify (see [1, 2]) that the triplet of numbers (x = 6k, y = 9k
2
 – 1, 

z = 9k
2
 + 1), where k is an even number, is a solution of Fermat's quadratic equation x

2
 + y

2
 = z

2
. Similarly, the 

triplet of numbers (x = 3k, y = (9k
2
 – 1)/2, z = (9k

2
 + 1)/2), where k is an odd number, is also a solution of 

Fermat's quadratic equation. The quantity y = 9k
2
 – 1 can be represented as the product y = (3k – 1)(3k + 1). For 

even k, the sequences (3k – 1) and (3k + 1) allow us to obtain all odd numbers, including primes, except for 3 

and multiples of 3. For even k, the sequence (3k – 1) is the arithmetic progression of the form (3k – 1) = 5 + 61, 

and the sequence (3k + 1) is the arithmetic progression of the form (3k + 1) = 7 + 6l, where l = 0, 1, 2, 3, etc. 

The quantity y = (9k
2
 – 1)/2 can be represented as the product y = 1/2(3k – 1)(3k + 1). In the expression y = 

1/2(3k – 1)(3k + 1), if we divide by 2 a factor that is divisible only by 2, then we obtain an odd number. The 

second factor will be an even number divisible by some power of 2. For odd k, the sequences (3k – 1) and (3k + 

1) allow us to obtain all even numbers, except for multiples of 3. For odd k, the sequence (3k – 1) is the 

arithmetic progression of the form (3k – 1) = 2 + 6l, and the sequence (3k + 1) is the arithmetic progression of 

the form (3k + 1) = 4 + 6l, where l = 0, 1, 2, 3, etc. In the sequence F1, even numbers with even l are divisible 

only by 2, and numbers with odd l are divisible by 4 or a higher power of 2. For l = 1, 5, 9, 13, etc., even 

numbers are divisible by 8. For l = 5, 13, 21, 29, etc., even numbers are divisible by 16, and so on. In the 

sequence F2, numbers with odd l are divisible only by 2, and numbers with even l are divisible by 4 or a higher 

power of 2. For l = 2, 6, 10, 14, etc., even numbers are divisible by 8; for l = 2, 10, 18, etc., even numbers are 

divisible by 16, and so on. Therefore, in sequences F1 and F2, even numbers divisible by some power of 2 occur 

as often as numbers divisible only by 2. The even numbers in these sequences are shifted relative to each other 

by 2. For every odd k, one of the numbers (3k – 1) or (3k + 1) is divisible only by 2, and the second of them is 

divisible by some power of 2, i.e. by 4, 8, etc. depending on the value of k. When the number k changes, the 

numbers in the sequences F1 and F2 are alternately divisible only by 2 or a power of the number 2. We use the 
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properties of the sequences (3k – 1) and (3k + 1) for a comparative analysis of the iterative processes P1, P2 and 

P3. This analysis allows us to understand and explain the Collatz problem.  

For convenience, we introduce some definitions. The smallest odd number, which is the beginning and 

the end of the loop, we call the center of attraction. The set of numbers obtained in an iterative process that ends 

with a center of attraction we call the area of attraction of this center. If in the iterative process that uses only 

one sequence (3k
 
– 1) or (3k + 1) and starts with an arbitrary odd number k0, there is at least one number from 

the area of attraction of the given center, then we will say that the number k0 is included in the area of attraction 

of this center. If an iterative process starts with an arbitrary odd number k0 and ends with 1, then we will say that 

k0 is included in the area of attraction of the number 1. The set of numbers in an iterative process, starting with 

k0 and ending with the center of attraction, we call the trajectory corresponding to the number k0. The reason that 

does not allow reaching 1 is the presence of a center of attraction other than 1. This center can be a finite odd 

number (one or more) or infinity. An odd number, not equal to 1 or infinity, that is the center of attraction, forms 

a loop. The number 1 and infinity do not form loops (loops are degenerate). If the center of attraction is 1, then 

we say that the iterative process converges. If the center of attraction is infinity, then we say that the iterative 

process diverges. If the center of attraction is a finite number forming a loop, then we say that the iterative 

process has looping. We are going to prove that the process P2 cannot diverge or go in loops. 

 

II. Study of iterative process P3 
We formulate the problem in the following form: “It is required to determine a combined iterative 

process P3 that uses alternately both sequences F1 and F2 and allows achieving 1 in the least number of steps 

(iterations) if we start with an arbitrary odd number k”. Considering only odd numbers does not reduce the 

generality, since by consecutive division of even number by 2, we can always get an odd number. If at some 

step we get an even number equal to a power of 2, i.e. 2
n
, then the problem will be solved. The sequence (3k – 1) 

contains odd powers of 2: 2
1
 = 2 (k = 1), 2

3
 =

 
8 (k = 3), 2

5
 =

 
32 (k = 11), 2

7
 =

 
128 (k = 43), 2

9
 =

 
512 (k = 171), 

2
11

 =
 
2048 (k = 683), 2

13
 =

 
8192 (k = 2731), etc. The sequence (3k + 1) contains even powers of 2: 2

2
 = 4 (k = 1), 

2
4
 =

 
16 (k = 5), 2

6
 =

 
64 (k = 21), 2

8
 =

 
256 (k = 85), 2

10
 =

 
1024 (k = 341), 2

12
 =

 
4096 (k = 1365), 2

14
 =

 
16384 (k = 

5461), etc. Let k is an odd number. Three cases are possible: 1). k = (2
n
 + 1)/3; 2). k = (2

n
 – 1)/3; 3). k is an 

arbitrary odd number not corresponding to the first or second case. In the first case, the values of k correspond to 

odd powers of 2, therefore, the process P1, based on the sequence (3k
 
–1), immediately leads to the desired 

result, since (3k
 
–1) = 2

n
 and consecutive division by 2 gives 1; the result is achieved in the least number of 

steps. In the second case, the values of k correspond to even powers of 2, therefore, the process P2, based on the 

sequence (3k
 
+1), immediately leads to the desired result, since (3k

 
+ 1) = 2

n
 and consecutive division by 2 gives 

1; the result is achieved in the least number of steps. Consider the third (general) case.  

Lemma 1 is valid: “Combined iterative process P3, using alternately both sequences (3k
 
– 1) and 

(3k
 
+ 1), always achieves 1 if at each step we choose such a sequence (3k

 
– 1) or (3k

 
+ 1), which gives a decrease 

of initial number k”. We prove that such a strategy exists. Indeed. Let k is an arbitrary odd number. Put k = 2t –

 1, where t = 1, 2, 3, etc., then (3k
 
– 1) = 2(3t – 2). Therefore, the number (3k

 
– 1) is divisible only by 2, if t is an 

odd number, and it is divisible by some power of the number 2, if t is an even number. For (3k + 1) we obtain 

(3k
 
+ 1) = 2(3t – 1). Therefore, the number (3k + 1) is divisible only by 2, if t is an even number, and is divisible 

by some power of the number 2, if t is an odd number. If (3k
 
– 1) or (3k + 1) is divisible only by 2, then after 

division by 2, we obtain an odd number k1, that is more than the initial number k. Indeed, for (3k
 
– 1) when t is 

odd, we have after division by 2: k1 = (3t –2) ≥ k = (2t – 1). Equality takes place only when k1 = k = 1 for t = 1, 

but then (3k
 
–1) = 2, k = (2

n
 + 1)/3 for n = 1, and we have the first case. Similarly, for (3k + 1) when t is even, 

we have after division by 2: k1 = (3t – 1) > k = (2t – 1). If (3k
 
– 1) or (3k + 1)  is divisible by some power of the 

number 2, that is, at least by 4, then after division by this power, we obtain an odd number k1 that is less than the 

initial number k. Indeed, for (3k
 
– 1), when t is even, we put t = 2l, where l = 1, 2, 3, etc. After division by the 

power of 2, i.e. by 4, we have k1 = (3l –1) < k = (4l –1). Similarly, for (3k + 1), when t is odd, we put t = 2l – 1, 

where l = 1, 2, 3, etc. After division by the power of 2, i.e. by 4, we obtain k1 = (3l – 2) ≤ k = (4l –3). Equality 

takes place only when k1 = k = 1 for t = l = 1, but then (3k
 
+ 1) = 4, k = (2

n
 – 1)/3 for n = 2, and we have the 

second case. Since the smallest odd number is 1, then after consecutive decreasing an arbitrary odd number k 

using the process described above, we always achieve 1. So we have proved Lemma 1.  

It follows from the course of the proof of Lemma 1 that using only one sequence (3k
 
–1) or (3k

 
+ 1) in 

the iterative process increases the number of steps required to achieve 1, i.e. this strategy is not optimal. We are 

not saying here that in this case it is always possible to achieve 1. Thus, in the general case, the optimal strategy 

is to use at each step such a sequence (3k
 
– 1) or (3k + 1) that gives a decrease of the initial odd number k.  

We consider three examples. Put k = 2731, then we have the first case, since (3k
 
–1) = 2

13
. By 

sequentially dividing this number by 2 we achieve 1. It takes 14 operations to achieve 1, where operation means 

calculating a number (3k
 
– 1) or dividing by 2. If the sequence (3k + 1) is used in this case, approximately 114 

operations is required to achieve 1. Put k = 5461, then we have the second case, since (3k
 
+ 1) = 2

14
. It takes 15 
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operations to achieve 1, where operation means calculating a number (3k
 
+ 1) or dividing by 2. Process P1, using 

the sequence (3k
 
– 1), also achieves 1, but the number of operations is approximately 78. Put k = 107, which 

corresponds to the third case. We write the iterative process P3 in detail. We calculate (3k
 
–1) = 320 and 

320/64 = 5; (3k
 
+ 1) = 322 and 322/2 = 161. Put k = 5, then (3k

 
–1) = 14 and 14/2 = 7; (3k

 
+ 1) = 16 and 

16/16 = 1 (end of procedure). If we use the sequence (3k
 
–1), then for k = 7 we have (3k

 
– 1) = 20 and 20/4 = 5, 

i.e. a loop is obtained and reaching 1 is impossible. When we use only the sequence (3k + 1), much more 

operations (about 100) are required to achieve 1. In this case, the combined iterative process P3 is optimal in the 

number of operations. Using the sequence (3k
 
– 1) leads to looping at some k, which does not allow reaching 1.  

Now we determine whether the process P3 can diverge or go in loops, and under what conditions. It 

follows from the course of the proof of Lemma 1 and the properties of the sequences F1 and F2 that the process 

P3 can diverge and does not reach 1 if at each step, we choose such a sequence F1 = (3k
 
– 1) or F2 = (3k + 1), 

which gives an increase of the initial number k. However, at arbitrary step of this divergent process, that is, for 

arbitrary k, we can make the process P3 reach 1 if we return to the conditions of Lemma 1. Since the iterative 

process P3 always achieves 1 under the conditions of Lemma 1, the numbers from the sequences F1 and F2 in 

this iterative process cannot simultaneously at the same number k belong to the area of attraction of infinity. 

Therefore, processes P1 and P2 cannot simultaneously diverge. 

It follows from the course of the proof of Lemma 1 and the properties of the sequences F1 and F2 that 

the processes P1 and P2 cannot have the same number k as their center of attraction. Therefore, the process P3 

cannot have looping.  

Let us find out whether one of the processes P1 or P2 can diverge, if the process P3 achieves 1. Since 

the process P1 can have looping for some values of k (see below), the process P2 cannot diverge simultaneously 

for the same k. Otherwise, the process P3 cannot reach 1 if the conditions of Lemma 1 are satisfied. From the 

properties of the sequences F1 and F2 considered above, it follows that the numbers in each of them are 

alternately divisible either by 2 or by a power of 2. Therefore, when these sequences are used in an iterative 

process, none of them has numbers that are divisible only by 2 in an infinite segment of the sequence. We can 

only talk about the divergence, on average, in the set of finite segments of each sequence. The length of the 

segment depends on the ending of the number k and its value. This kind of divergence means that on an infinite 

number of segments of the sequence F2(k), numbers divisible only  by 2 will, on average, prevail over numbers 

divisible by powers of 2. At the same time, the opposite picture is observed for the sequence F1(k), which 

follows from the properties of the sequences F1 and F2 discussed above. If in given segment, F2(k) is divisible 

only by 2 and initial k increases, then in the same segment, F1(k) with the same value of k is divisible by a power 

of 2, so that initial k decreases. We will show that the divergence of the processes Р1 and Р2 is impossible, since 

this contradicts the properties of the sequences F1 and F2.  

 

III. Proof of the Lemma on the divergence of the processes P1 and P2 
Lemma 2 is valid: “The iterative process P2 (respectively, P1) cannot diverge, i.e. cannot have infinity 

as the center of attraction”. We summarize the properties considered above of the sequences F1 and F2, which 

we use in the proof. For odd k, even numbers in these sequences that divisible only by 2 or a power of 2 are 

evenly distributed and occur equally often. Even numbers are shifted relative to each other by 2, so they are 

alternately divisible only by 2 or by a power of 2. When k is even, odd numbers are shifted relative to each other 

by 2. In the iterative process P2 (respectively, P1) after each division by 2 of an even number l belonging to one 

of the sequences F1 or F2, the quotient l/2 changes its belonging to the sequence from F1 to F2 or from F2 to F1, 

respectively. If an even number l belongs to the sequence F1 or, respectively, to the sequence F2 and is divisible 

only by 2, then the odd number l/2 obtained after dividing by 2 will belong to the sequence F2, or, respectively, 

to the sequence F1, but already for even k. If an even number l belongs to the sequence F1 or, respectively, to the 

sequence F2 and is divisible by the power of the number 2, then an even number l/2 will belong to the sequence 

F2, respectively, to the sequence F1; the number l/4 will belong to the sequence F1, respectively, to the sequence 

F2, etc.  

Now, we shall prove Lemma 2 by induction. In the interval from 2
1
 to 2

2
, there is one odd number 3. It 

is easy to verify that P2(3) and P1(3) do not diverge, so Lemma 2 is valid for this interval. Take the interval 2
n
 ... 

2
n+1

. Suppose that for an arbitrary initial odd number k0 from this interval the process P2(k0), as well as P1(k0), 

does not diverge, i.e. cannot have infinity as the center of attraction. In addition, for process P1, a looping can 

also occur at a finite value of k.  Suppose that the Lemma 2 is valid for all intervals 2
n
 ... 2

n+1
, if n ≤ m. We shall 

prove the validity of Lemma 2 for an arbitrary initial odd number from the interval 2
n+1 

... 2
n+2

, if n = m. With 

this approach, we do not need to prove the convergence of the process P2 (respectively, P1); it is enough to show 

that after a finite number of iterations we reach the odd number k, for which Lemma 2 is valid. In the considered 

interval, there are 2
n 

odd numbers from 2
n+1

 + 1 to 2
n+2 

– 1. An arbitrary odd number k0 from the interval 2
n+1

 ... 

2
n+2

 can be represented in two forms k0 = 2
n +1 

+ a = 2
n +2

 – b, where a and b are odd numbers Between a and b 

there is the relation a + b = 2
n +1

.
 
 We write a and b in the form a = 2t1 – 1, b = 2t2 – 1, where t1, t2 are natural 
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numbers. From this we obtain the relation t1 + t2 = 2
n
 + 1. Hence, t1 and t2 have different parity. We use both of 

these representations. 

We perform calculations for the smallest and the largest values of k from the interval 2
n+1

 ... 2
n+2

. Put k0 

= 2
n +1

 + 1, then P2(k0) = 3·2
n –1

 + 1 = k1 < k = 2
n+1

 + 1. The number k1 belongs to the interval 2
n
 ... 2

n+1
; 

therefore, by assumption, the process P2(k1) does not diverge. If we continue the process P2, then we obtain a 

series of decreasing values of k on the given segment of the process P2. Thus, the Lemma 2 is valid for process 

P2(k0), if k0 is the smallest odd number from the considered interval. For this value of k, verification of the 

validity of the Lemma 2 requires only one iteration. For the largest value k = 2
n+2

 – 1 from the considered 

interval, the calculations are more laborious. Put k0 = 2
n +2

 – 1, then P2(k0) = 3·2
n +1

 – 1 = k1 > 2
n+1

 – 1. If we 

continue the process P2, then we obtain a series of increasing values of k on the given segment of the process P2. 

On the segment of the process Р2, consisting of n + 1 iterations, the function F2 is divisible only by 2. It is the 

largest segment of the process P2 in considered interval with this property. After n + 2 steps (iterations), we 

reach the number k
n +2 

= 3
n+2 

– 1. We can write the last expression in the form k
n +2 

= F1(k) = 3k – 1, where 

k = 3
n+1

. F1(k) is divisible only by 2 if n is an odd number, and F1(k) is divisible at least by 8 or by a higher 

power of 2 (depending on the value of k) if n is an even number.  

We determine the position (order of magnitude) of the number k
n + 2

. Numerical estimates give 

k
n +2

 < 2
(n +2)ln3/ln2

 < 2
1,6(n +2) (upper estimate), then if n is an odd number, k

n +2
/2 < 2

1,6(n +2)
/2. We continue the 

process P2, taking k
n +2

/2 as the initial value. For brevity, we call an iteration consisting of calculating 3k + 1 

followed by dividing only by 2, a single iteration, and an iteration consisting of calculating 3k + 1, then dividing 

by a power of 2, a multiple iteration. When we perform a single iteration, the odd number increases 

approximately 3/2 times; when we perform multiple iteration with division by 4, the odd number decreases 3/4 

times; when we perform multiple iteration with division by 8, the odd number decreases 3/8 times, and so on. It 

follows from the properties of the sequences F1 and F2 that the value of k will alternately increase and then 

decrease, and on a sufficiently large but finite segment of the process P2 we reach a value kN, for which the 

process P2 cannot diverge. For kN, four cases (conditions) are possible. 1). kN is less than 2
n+1

 + 1, and for it the 

Lemma 2, by assumption, is valid. 2). kN belongs to the process P2(k0), which does not diverge (kN itself does not 

belong to the previous interval). 3). Process P1(kN) has looping, i.e. kN belongs to the trajectory of numbers 5 or 

17 (see below). 4). F2(kN) is equal to a power of 2; for the process Р1(k
n+1

/2), the function F2(kN) is replaced by 

F1(kN). These conditions are also valid for the process Р1(k
n+1

/2). In all these cases, the process P2 cannot 

diverge. The first case occurs frequently, and the last case is rare. We use the first case as the main one in the 

proof. 

We estimate the number of iterations required to reach kN from the previous interval. Consider the 

“worst” case when n is an odd number. For even n + 2, according to (1), the number of iterations required to 

reach kN is not more than for odd n + 1. Per one iteration, in which F2 and F1 are divisible only by 2, the odd 

number is increased 3/2 times. So, the odd number k
n +2

/2 = (3
n+2

 –1)/2 is more than the initial number 2
n+2 

– 1, 

approximately 1/2·(3/2)
n+2 

times, and it is more than the number kN = 2
n+1 

– 1 < 2
n +1

 + 1, approximately (3/2)
n+2 

times. We determine the number of iterations required to return to the number 2
n+1 

– 1 in the iterative process P2, 

starting at number k
n +2

/2. From the properties of even numbers and the sequences F1 and F2 considered above, it 

follows that each four of consecutive even numbers (tetrad) contain 2 numbers divisible only by 2, one number 

divisible by 4 and one number divisible by 8 or a higher power of 2. Each eight consecutive even numbers 

contain four numbers divisible by 2, two numbers divisible by 4, one number divisible by 8 and one number 

divisible by 16. If n is a sufficiently large number, then these properties (ratios) are, on average, valid for an 

arbitrary sample of four, respectively, 8 even numbers. A segment of the iterative process P2, consisting of four 

iterations, in which F2 and F1 take values from tetrad of even numbers with the indicated properties, gives a 

decrease of the initial odd number at least 3
4
/2

7
 times, i.e. about 3/5 times. Consequently, one iteration in this 

case gives, on average, the decrease (3/5)
1/4

 times. For a segment of the iterative process P2, consisting of eight 

iterations, the corresponding estimates are, respectively, 3
8
/2

15
 or 3

8
/2

14
 and for one iteration (1/5)

1/8
 or (2/5)

1/8
. 

We use segments with four iterations to obtain estimates that are more practical. The equation for determining 

the required number of iterations x has the form (3/2)
n+2

·(3/5)
x/4

 = 1. The solution of this equation is 

[4( 2)ln3/ 2] / (ln5 / 3)x n  . After substitution of numerical values, we obtain x = 3.2(n+2). So, the total 

number of iterations required to reach the number kN is equal to x0 = (n + 2) + x = 4.2(n + 2) = O(n). The number 

x0 consists of two summands. Firstly from odd number 2
n +2

 – 1 we reach odd number (3
n+2

 – 1)/2 (n + 2 

iterations), than from (3
n+2

 –1)/2 we reach number kN = 2
n+1 

– 1 (x iterations). Put n = 2
m
 + 1, then number of 

iterations to reach kN can be large, although finite. In the considered case, we cannot prove Lemma 2 directly by 

calculations, although it follows from the properties of the functions F1 and F2 that the value of kN is always 

achieved in a finite number of iterations. Below we obtain general relations that allow us to prove Lemma 2 in 

this case as well.  

Now consider the process P1 with the same values of k as for the process P2. We put k0 = 2
n + 2 – 1. The 

first iteration gives P1(k0) = 3·2
n
 – 1 = k1 > 2

n +1
 + 1. The second iteration gives P1(k1) = 3

2
·2

n –2
 –
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 1 = k2 > 2
n +1

 + 1. The third iteration gives P1(k2) = 3
3
·2

n –4
 – 1 = k3 < 2

n+1
 +1. The odd number k3 belongs to the 

interval 2
n
 ... 2

n+1
; therefore, by assumption, the process P1(k3) does not diverge. Thus, the Lemma 2 is valid for 

process P1(k0), if k0 is the largest odd number from the considered interval. The result for P1(2
n+2

 – 1) is similar 

to the result for P2(2
n+1

 +
 
1), but the proof requires slightly more iterations (three instead of one). Put k0 = 2

n+1
 

+ 1. The proof is similar to the proof for P2(2
n + 2 –1) and requires, as for P2, much more steps (iterations). The 

first iteration gives P1(2
n+1 

+ 1) = 3·2
n
 + 1 = k1 > 2

n + 1
 + 1. If we continue the process P1, then we obtain a series 

of increasing values of k on the given segment of the process P1. On the segment of the process Р1, consisting of 

n iterations, the function F1 is divisible only by 2. It is the largest segment of the process P1 in considered 

interval with this property. After n + 1 steps (iterations) we reach the number k
n+1 

= 3
n+1 

+ 1. We can write the 

last expression in the form k
n + 1

 = F2(k) = 3k + 1, where k = 3
n
.  F2(k) is divisible only by 2 if n is an odd 

number, and F2(k) is divisible by 4 if n is an even number. If we continue the process P1, taking k
n + 1

/2 as the 

initial value, then for odd n, we obtain the result similar to the result for process P2(k
n + 2

/2). The behavior of the 

process P1 is determined by the properties of the functions F1 and F2. Therefore, after some finite number of 

iterations, we reach the value kN for which Lemma 2 is valid, but we cannot prove this directly by calculations. 

For odd n + 2, according to (2), the number of iterations is not more than for even n + 1. According to (3), for 

the process Р1(2
n+1

 + 1) in the considered case, when n + 1 is an even number, the estimate of total number of 

iterations required to reach the number kN does not exceed the estimate obtained for the process P2(2
n+2

 –1), 

when n + 2 is an odd number. So, the result for P1(2
n+2

 – 1) is similar to the result for P2(2
n+1

 +
 
1), and the result 

for P1(2
n+1

 + 1) is similar to the result for P2(2
n+2

 – 1). This is explained by the fact that the initial value 2
n+1

  of 

the considered interval differs from the final (last) value 2
n+2

 of the interval by a factor 2. When we divide or 

multiply by 2, as follows from the properties of the functions F1 and F2, the form of the sequence changes, i.e. 

F1 goes to F2 and vice versa, depending on the parity of n.  

We write relations that establish the connection between the processes P1(k
n + 1

/2) and P2(k
n + 2

/2). If n is 

an even number, then the following relation is valid 
2 1(3 1) / 2 3[(3 1) / 2] 1n n     .        (1) 

If n is an odd number, then the following relation is valid 
2 1(3 1) / 2 3[(3 1) / 2] 1n n     .        (2) 

If n is an odd number, then we have the relation 
2 1{3[(3 1) / 2] 1}/ 2 3{[3((3 1) / 2) 1] / 2} 1n n       .     (3) 

Equality (1) reduces the process P2(k
n +2 

/2) to the process P2(k
n+1

/2) for even n. Equality (2) reduces the process 

P1(k
n+2

/2) to the process P1(k
n+1

/2) for odd n. Equality (3) reduces the process P2(k
n+2

/2) to the process P1(k
n +1

/2) 

for odd n.  

We also give results on the convergence of the process P1(k
n+1

)
  and the presence of loops for different 

n. For the interval 2
2
 ... 2

3
, the number 3

2
 + 1 = 10 belongs to the area of attraction of the number 5. For the 

interval 2
3
 ... 2

4
, according to (2), the number 3

3
 + 1 = 28 belongs to the area of attraction of the number 5. For 

the interval 2
4
 ... 2

5
, the number 3

4
 + 1 = 82 belongs to the area of attraction of the number 17.  For the interval 

2
5
 ... 2

6
, according to (2), the number 3

5
 + 1 = 244 belongs to the area of attraction of the number 17.  For the 

interval 2
6
 ... 2

7
, the number 3

6
 + 1 belongs to the area of attraction of the number 1.  For the interval 2

7
 ... 2

8
, 

according to (2), the number 3
7
 + 1 belongs to the area of attraction of the number 1.  For the interval 2

8
 ... 2

9
, 

the number 3
8
 + 1 belongs to the area of attraction of the number 17. For the interval 2

9
 ... 2

10
, according to (2), 

the number 3
9
 + 1 belongs to the area of attraction of the number 17.  For the interval 2

10
 ... 2

11
, the number 3

10
 + 

1 belongs to the area of attraction of the number 17 and so on.  For the interval 2
14

 ... 2
15

, the number 3
14

 + 1 

belongs to the area of attraction of the number 1. For the interval 2
15

 ... 2
16

, according to (2), the number 3
15

 + 1 

belongs to the area of attraction of the number 1. We can assume that this tendency remains. So the process 

P1(k
n+1

) converges to 1 for pairs of numbers (3
6
 + 1) and (3

7
 + 1), (3

14
 + 1) and (3

15
 + 1), etc., separated from 

each other by large intervals, and for the rest of the numbers of this type, the process P1(k
n+1

) has looping with 

the center of attraction equal to 17 (see Section IV below). In all above examples, the number of iterations 

required to prove Lemma 2 is less or much less than the estimate x0 obtained above.  

Using the above analysis, we prove Lemma 2 for an arbitrary odd k0 from the interval 2
n+1

 ... 2
n+2

. 

Consider the process P2(k0). Even numbers can be disregarded, since after reduction by 2 or a power of 2, we 

reach an odd number k, which belongs to the previous interval, and for this k, Lemma 2 is valid by assumption. 

Indeed, the largest even number in the considered interval is 2
n+2

 – 2. Put a = 2
n+1

 – 2, then k0 = 2
n +2

 – 2, and 

after dividing by 2, we reach k = 2
n+1

 – 1 < 2
n+1

, i.e. the number k belongs to the previous interval for which, by 

assumption, Lemma 2 is valid. We put k0 = 2
n+1

 + a, where a is an arbitrary odd number from the interval 2
n+1

 ... 

2
n+2

; 1 ≤ a ≤ 2
n+1

 – 1. We write the number a in the form a = 2t – 1, where t can take values 1, 2, 3, … , 2
n
. The 

number of iterations required to prove Lemma 2 mainly depends on the parity of the number n and t and on the 

position of the initial odd number in the considered interval. From the subsequent analysis, we will see that the 

number of iterations does not exceed the estimate x0 obtained above. Let t is an even number. We put t = 2l, 
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where l = 1, 2, etc., 2
n–1

. Then a = 4l – 1. The values of a form the arithmetic progression 3 + 4l1, where 

l1 = 0, 1, 2, etc., 2
n–1

 – 1. For small values of t << 2
n
, when a <<2

n+1 
– 1, the behavior of the process 

P2(2
n +1 

+ a) is determined by the properties of the process P2(a). It can be verified by direct calculations that the 

value kN from the previous interval is reached in a finite number of iterations. In particular, for t = 2, already the 

second iteration leads to the required result. For large values of a, put a = 2
n+1 

– b, where b corresponds already 

to odd values of t1. We put t1 = 2l – 1, where l = 1, 2, 3, etc. Then b = 4l – 3 and takes the values 1, 5, 9, 13, etc., 

forming an arithmetic progression 1 + 4l2, where l2 = 0, 1, 2, etc. In this case, for small values of l2, when 

b << 2
n+1 

– 1, the behavior of the process P2(2
n +1 

+ a) is determined by the properties of the process P2(–b) = –

P1( b). For the values of b, which are the centers of attraction for the process P1(b), i.e. for b = 1, 5, 17, as well 

as for odd numbers from the area of attraction of centers 5 or 17, obtained during subsequent iterations, the 

number of iterations required to reach kN from the previous interval can be large, but it certainly does not exceed 

the above estimate x0. For the largest even number t = 2
n
, which corresponds to b = 1, we have the case already 

considered above. The length of the chain of iterations, on which F2(a) is divisible only by 2, varies from 1 at t = 

2 to n + 1 at t = 2
n
. In the latter case, the above analysis for P2(2

n+2 
– 1) remains valid, and we cannot prove 

Lemma 2 directly by computations. 

We obtain the general relation allowing us to prove Lemma 2 for even values of t. To do this, we 

represent the first iteration P2(2
n +

 
1 
+ a) as a sum of terms that are divisible only by 2. We have 

P2(2
n +

 
1 
+ a) = (3∙2

n + 1
 +

 
3a + 1)/2 = [(3∙2

n + 1
 – 3 +

 
1) + (3a + 1) + 2]/2. For even values of t, the terms (3∙2

n + 1
 –

 3 +
 
1) and (3a + 1) are divisible only by 2. After cancellation by 2, we obtain the following relation 

1 1

2 2 2(2 ) (2 1) ( ) 1n nP a P P a                  (4)     

For P2(2
n+1 

– 1), Lemma 2 is valid, by assumption, since 2
n+1 

– 1 belongs to the previous interval. P2(a) does not 

diverge, since a belongs to one of previous intervals; 3 ≤ a ≤ 2
n+1 

– 1. P2(a) = 5 + 6l1; 5 ≤ P2(a) ≤ 3∙2
n 
–

 1. Therefore, the process P2(2
n+1 

+ a) cannot diverge. In particular, from (4) we obtain P2(2
n+2 

–

1) = P2(2
n+1 

+ (2
n+1 

– 1)) = P2(2
n+1 

– 1) + P2(2
n+1 

–1) + 1. So, we have proved Lemma 2 for process P2 in the 

interval 2
n+1 

… 2
n+2  

if t is an even number. Now consider the process P1(2
n +

 
1 
+ a) for even values of t. For small 

values of t << 2
n
, when a <<2

n+1 
– 1, the behavior of the process P1(2

n +1 
+ a) is determined by the properties of 

the process P1(a). In this case, 3a – 1 = 12l – 4 is divisible at least by 8 if l is an odd number, and is divisible by 

4 if l is an even number. Therefore, for odd l, the process quickly reaches the number kN from the previous 

interval. For even l, more iterations are required to reach kN than for odd l. For some values of a from the area of 

attraction of centers 5 or 17, the number of iterations required to reach kN can be large, but it certainly does not 

exceed the estimate x0 obtained above. For large values of a, put a = 2
n+1 

– b, where b corresponds already to 

odd values of t1. In this case, for small values of l2, when b << 2
n+1 

– 1, the behavior of the process 

P1(2
n +1 

+ a) is determined by the properties of the process P1(–b) = –P2( b). Therefore, the process quickly 

reaches the number kN. To obtain general relations for the process P1(k0), we represent k0 as k0 = 2
n+2 

– b, where 

b is an odd number from the interval 2
n+1

... 2
n+2

 for even values of t; 3 ≤ b ≤ 2
n+1

 – 1. We write the first iteration 

as the sum of terms that are divisible only by 2. We have P1(2
n+2 

–b) = (3∙2
n + 2

 – 3b – 1)/2 = [(3∙2
n + 2

 – 3 +
 
1) –

 (3b + 1) + 2]/2. For even values of t, the expressions (3∙2
n + 2

 –3 +
 
1) and (3b + 1) are divisible only by 2. After 

cancellation by 2, we obtain the following relation 
2 2

1 2 2(2 ) (2 1) ( ) 1n nP b P P b              (5) 

In (5) P2(2
n+2 

– 1) is determined from (4). It follows from (4) that the process P2(2
n+2 

– 1) does not diverge; P2(b) 

does not diverge, since b belongs to one of the previous intervals. Therefore, the process P1(2
n+2 

– b) cannot 

diverge. Thus, we have proved Lemma 2 for the process P1 for even values of t.  

Now let t is an odd number. We put t = 2l – 1, where l = 1, 2, 3, etc., 2
n–1

. Then a = 4l – 3 and a takes 

the values 1, 5, 9, 13, etc., 2
n+1 

– 3, forming an arithmetic progression 1 + 4l2. Consider the process P1(2
n+1 

+ a). 

For small values of t << 2
n 
– 1, when a << 2

n+1 
– 3, the behavior of the process P1(2

n +1 
+ a) is determined by the 

properties of the process P1(a). In this case, 3a – 1 is divisible only by 2. The length of the chain of iterations on 

which F1(a) is divisible only by 2 varies from n at t = 1 to 1 at t = 2
n 
–1. For the values of a, which are the 

centers of attraction for the process P1(a), i.e. for a = 1, 5, 17, as well as for the odd numbers from the area of 

attraction of the centers 5 or 17 obtained during subsequent iterations, the number of iterations required to reach 

kN from the previous interval can be large, but it does not exceed the above estimate x0. For large values of a, put 

a = 2
n+1 

– b, where b corresponds already to even values of t1. We put t1 = 2l, where l = 1, 2, 3, etc. Then b = 4l –

 1 and b takes the values 3, 7, 11, etc., forming the arithmetic progression 3 + 4l1, where l1 = 0, 1, 2, etc. In this 

case, for small values of l1, when b << 2
n+1 

– 1, the behavior of the process P1(2
n +1 

+ a) is determined by the 

properties of the process P1(–b) = –P2( b). Therefore, the process quickly reaches the number kN. To obtain 

general relations for the process P1(k0), we represent k0 as k0 = 2
n+2 

– b, where b is an odd number from the 

interval 2
n+1

... 2
n+2

 for odd values of t; 1 ≤ b ≤ 2
n+1

 – 3. Take the smallest odd number t =1, then b = 1. After 

three iterations, we have P1P1P1(2
n+2  

– 1) = 3
3
∙2

n–4  
–1 < 2

n +
 
1 
– 1; therefore, the number 3

3
∙2

n – 4  
– 1  belongs to 

the previous interval for which Lemma 2 is valid by assumption. Take the largest odd number t = 2
n
 – 1, then 
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b = 2
n+1

 – 3. After the first iteration, we have P1(2
n +

 
2 
– (2

n+1
 – 3)) = P1(2

n+1
 + 3) = 3∙2

n –2 
+ 1 < 2

n + 1 
+ 1; 

therefore, the number 3∙2
n – 2

 + 1 belongs to the previous interval for which Lemma 2 is valid by assumption. So, 

we have proved Lemma 2 for the largest and smallest values of t if t is odd. Consider the general case for 

arbitrary b. For odd t, the values b = 2t – 1 form an arithmetic progression 1 + 4l2, where l2 = 0, 1, 2, etc., 2
n–1  

–

1. Then (3b –1) = 2 + 12l2 is divisible only by 2 We write the first iteration as a sum of terms that are divisible 

only by 2. We have P1(2
n +

 
2 
–b) = (3∙2

n + 2
 – 3b –1)/2 = ((3∙2

n + 2
 – 3 + 1) – (3b – 1))/2. After cancellation by 2, 

we obtain the following relation 
2 2

1 2 1(2 ) (2 1) ( )n nP b P P b             (6) 

Each term on the right side of (6) is an odd number. Therefore, both sides of (6) can be simultaneously cancelled 

by 2 or a power of 2, depending on the value of b. It follows from (4), that the process P2(2
n +

 
2 
– 1) does not 

diverge; P1(b) does not diverge, since b belongs to one of previous intervals; 1 ≤ b ≤ 2
n+1 

– 3. P1(b) = 1 + 6l2; 

1 ≤ P1(b) ≤ 3∙2
n 
– 5. In addition, it follows from (6) that P1(2

n+2 
– b) < P2(2

n+2 
– 1) , since P2(2

n+2 
– 1) > P1(b) . 

Therefore, the process P1(2
n+2 

– b) cannot diverge. So, we have proved Lemma 2 for process P1 for odd values 

of t. Consider process P2(2
n +1 

+ a) for odd t. We put, as above, t = 2l – 1, where l = 1, 2, 3, etc., 2
n–1

. Then a 

= 4l – 3 and a takes the values 1, 5, 9, 13, etc., 2
n+1 

– 3, forming the arithmetic progression 1 + 4l2. The behavior 

of the process P2(2
n +1 

+ a) is determined by the properties of the process P2(a). In this case, 3a + 1 = 12l – 8 is 

divisible at least by 8 for even l and divisible by 4 for odd l. We can verify directly by calculations that in the 

first case, for any a, the process P2(2
n +1 

+ a) reaches the number kN in several iterations. In the second case, i.e. 

for odd l, for small values of a, a larger number of iterations is required, but no more than n. For large values of 

a, put a = 2
n+1 

– b, where b corresponds already to even t1. We put t1 = 2l, where l = 1, 2, 3, etc. Then b = 4l – 1 

and b takes the values 3, 7, 11, etc., forming the arithmetic progression 3 + 4l1, where l1 = 0, 1, 2, etc. In this 

case, for small values of l1, when b << 2
n+1 

– 1, the behavior of the process P2(2
n +1 

+ a) is determined by the 

properties of the process P2(–b) = –P1( b). For the values of b, which are the centers of attraction for the process 

P1(b), namely, for b = 17, as well as for odd numbers from the area of attraction of centers 5 or 17 obtained 

during subsequent iterations, the number of iterations required to reach kN from the previous interval can be 

large, but it does not exceed the above estimate x0. In particular, for t =1 (l = 1) and t = 2
n
 – 1 (l = 2

n–1
), only one 

iteration is required to reach the number kN from the previous interval. Thus, Lemma 2 is valid for the smallest 

and largest odd number t in the interval under consideration. To obtain a general relationship, we write the first 

iteration as the sum of terms that are divisible only by 2. We have 

P2(2
n +1 

+ a) = (3∙2
n + 1 

+ 3a +1)/2 = ((3∙2
n + 1 

+ 3 – 1) + (3a – 1))/2. After cancellation by 2, we obtain the relation 
1 1

2 1 1(2 ) (2 1) ( )n nP a P P a             (7) 

Each term on the right side of (7) is an odd number. Therefore, both sides of (7) can be simultaneously cancelled 

by 2 or a power of 2, depending on the value of a. It follows from (5), that the process P1(2
n+1 

+ 1) does not 

diverge, since  P1(2
n+1 

+ 1) = P1(2
n+2 

– b) for b = 2
n+1 

– 1. The process P1(a) does not diverge, since a belongs to 

one of previous intervals; 1 ≤ a ≤ 2
n+1 

– 3. P1(a) = 1 + 6l2; 1 ≤ P1(a) ≤ 3∙2
n 
– 5. Therefore, the 

process P2(2
n +

 
1 
+ a) cannot diverge. Thus, we have proved Lemma 2 for P2 in the considered interval for odd 

numbers t. We give in addition some relations that establish a connection between the processes P1 and P2 and 

allow mutual verification of the results obtained. We have obtained these relations in the same way as the 

previous ones. For odd values of t, the following equalities are valid 
1 1

1 1 1(2 ) (2 1) ( ) 1n nP a P P a              (8) 

2 2

2 2 1(2 ) (2 1) [ ( ) 1]n nP b P P b      .        (9) 

In equality (9), P2(2
n+2 

– b) < P2(2
n+2 

– 1). For even values of t, the following equalities are valid 
1 1

2 1 2(2 ) (2 1) ( ) 1n nP a P P a              (10) 

1 1

1 1 2(2 ) (2 1) ( ) 2n nP a P P a              (11) 

2 2

2 2 2(2 ) (2 1) [ ( ) 2]n nP b P P b      .        (12) 

In (11) the terms P1(2
n+1 

+ 1) and P2(a) are odd numbers. Therefore, both sides of (11) can be simultaneously 

cancelled by 2 or a power of 2, depending on the value of a. In equality (12) P2(2
n+2 

– b) < P2(2
n+2 

– 1). In (12) 

both sides of equality can be simultaneously cancelled by 2 or a power of 2, depending on the value of b. In 

equalities (4) – (12), all values are obtained using a single iteration, i.e. by division an even number only by 2. 

In equalities (5), (6), (9) and (12), b can be replaced by a, using the relation a + b = 2
n+1

. Then, in some cases, 

when 2
n+2 

– b > 3∙2
n
, i.e. 2

n+2 
– b more than the middle of the interval under consideration, the equalities are 

simplified and the validity of Lemma 2 becomes obvious. For example, put in (5) b = 2
n+1 

– a, where a = 1. 

Then (5) is transformed to the form P1(2
n+2 

– b) = P1(2
n+1 

+ 1) = P2(2
n+2 

–1) – P2(2
n+1 

– 1) + 1. From (4) we 

have P2(2
n+2 

– 1) = P2(2
n+1 

– 1) + P2(2
n+1 

– 1) + 1. Finally we obtain the equality P1(2
n+1 

+ 1) = P2(2
n+1 

– 1) + 2. 

Since 2
n+1 

– 1 belongs to the previous interval, then for P2(2
n+1 

–1)  Lemma 2 is valid by assumption; therefore, 
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it is also valid for P1(2
n+1 

+ 1). Relations (4) –(12) are valid for arbitrary n. Due to relations (9), (12) for process 

P2 and relations (5), (6) for process P1, the number of iterations required to reach kN from the previous interval 

does not exceed the estimate x0 obtained above. Thus, Lemma 2 is proved for the interval 2
n+1 

… 2
n+2

. This 

implies its validity for the processes P2 and P1 that start at an arbitrary odd number. Process P2(2
n+2 

– 1), as well 

as process P1(2
n+1 

+ 1), has exponential complexity, since the number kN from the previous interval is reached in 

O(n) iterations; the process P3(2
n+2 

– 1), as well as the process P3(2
n+1 

+ 1), has polynomial complexity, since kN 

is reached in 1 iteration. We use the results of this section to consider the looping problem.  

 

IV. Lemma on looping. Solving the Collatz problem  
So, in the iterative process P2, the reason preventing the achievement of 1 can be looping. We will 

prove that looping is not possible in this process. Consider in more detail odd numbers and their areas of 

attraction in the iterative processes P2 and P1.  

In the iterative process P1 using the sequence (3k
 
– 1), the number 3 has the trajectory (3, 8, 4, 2, 1), i.e. 

3 is included in the area of attraction of the number 1. The number 5 has the trajectory (5, 14, 7, 20, 10, 5), i.e. 5 

forms the loop and this number is the center of attraction. For the number 7, the trajectory has the form (7, 20, 

10, 5), i.e. 7 is included in the area of attraction of the number 5 and participates in the formation of the loop. 

Similarly, we determine that the area of attraction of the number 5, in addition to the number 7, includes the 

numbers 9, 13, 19, 27, 35, 47, 51, 63, 75, 81, 89, 93, 107, etc. All these numbers lead to looping in the iterative 

process P1. Take the number 17. For it, the trajectory has the form (17, 50, 25, 74, 37, 110, 55, 164, 41, 122, 61, 

182, 91, 272, 136, 68, 34, 17), so the number 17 forms a new loop independently from the number 5, and 17 is 

the center of attraction. The area of attraction of number 17 includes numbers 21, 23, 25, 31, 33, 37, 41, 45, 49, 

55, 61, 67, 73, 79, 83, 91, 99, etc. The area of attraction of number 1 includes numbers 11, 15, 29, 39, 43, 53, 

57, 59, 65, 69, 71, 77, 85, 87, 95, 97, 101, 103, 105, etc. The trajectories of large numbers always contain a part 

of the trajectory of smaller numbers, which makes it easier to determine their belonging to the area of attraction 

of a given center of attraction. Therefore, if the trajectory of a large number includes a smaller number for which 

the area of attraction is already known, then the large number also belongs to the area of attraction of this center. 

The presence in the iterative process P1 of two centers of attraction other than 1, namely 5 and 17, is a sufficient 

reason that this process does not always reach 1. The presence of other centers does not change this conclusion. 

The number 5 (k = 2) is the smallest number in the sequence (3k
 
– 1), the numbers 3, 7, 9, 13 and 15 do not 

belong to this sequence. The number 11 (k = 4) corresponds to the first case, i.e. it forms the power of number 2; 

so it does not form loop. The number 17 (k = 6) is the next smallest number in this sequence, that is not included 

in the area of attraction of number 5 ore number 1; therefore, 17 is the center of attraction. Numbers included in 

the area of attraction of these centers lead to a looping of the iterative process P1. We can assume that there are 

no other centers (see Lemma 3). In this case, since the iterative process P1 cannot diverge, we always reach 

numbers (even or odd) that belong to the area of attraction of one of the numbers 1, 5 or 17, which are the 

smallest odd numbers attainable in the iterative process P1. The following relations allow us to determine the 

values of k at which P1(k) does not go in loops. For values k = (2
n
 + 1)/3 corresponding to the first case, there is 

no looping in the iterative process P1. Put k1 = (2
m1

k + 1)/3; where m1 runs through the values 1, 2, 3, 4, etc. for 

each value of k. If, for a given k, we select m1 so that k1 is an integer, then there is no looping for this value of 

k1. Put k2 = (2
m2

k1 + 1)/3; where m2 runs through the values 1, 2, 3, 4, etc. for each value of k1 obtained above. If 

we select m2 for given k1 so that k2 is an integer, then there is no looping for this value of k2. We can continue 

this process. Using these values, we can determine other values of k that do not have looping. If there is no 

looping at a known value k1, then assuming k2 = (((2
m1

k1 + 1)/3)2
m2

 + 1)/3… etc. and choosing at each step the 

values m1, m2, etc. so that the expressions in parentheses are divisible by 3, we obtain the values of k2 for which 

there is no looping. The above relations allow, at least theoretically, to obtain all values of k for which the 

process P1(k) does not go in loops. We cannot establish a simple general rule, which would allow us to predict 

the appearance of loop. For example, at k = 5461 there is no looping, since this number is in the area of 

attraction of number 1, and when k = 341 there is looping, since this number is in the area of attraction of 

number 5. It is easy to check that in these examples the number kN is achieved in several iterations.  

We can explain the cause of looping as follows. For even k, the smallest odd number in the sequence F1 

is 5 (for k = 2). Then, if in the iterative process P1 using this sequence, we reach the number 5 after division of 

even number, for example, 20/4 = 5, then further decrease the number in this process is impossible. Put k = 5, 

we obtain (3k
 
– 1) = 14 and 14/2 = 7; put k = 7, we obtain (3k

 
– 1) = 20, 20/4 = 5. The loop is formed, since 5 ≠ 

(2
n
 + 1)/3. In the sequence F2, the smallest odd number for even k is 7 (for k = 2). If in the iterative process P2 

using this sequence, we reach the number 7 after division of even number, for example, 28/4 = 7, then further 

decrease the number in this process is possible, since number 7 is in the area of attraction of number 1. Put k = 

7, we obtain (3k + 1) = 22 and 22/2 = 11. If we apply the optimal iterative process P3 using both sequences, then 

put k = 11, and we obtain (3k
 
– 1) = 32 and 32/32 = 1 (end of procedure). If we use only the sequence (3k + 1), 

then it takes more operations to reach 1. For k = 11 we get (3k + 1) = 34 and 34/2 = 17. Put k = 17, we get (3k + 



Investigation of the Collatz problem 

DOI: 10.9790/5728-1704014353                            www.iosrjournals.org                                                 51 | Page 

1) = 52 and 52/4 = 13. Put k = 13, we obtain (3k + 1) = 40 and 40/8 = 5. But 5 = (2
n
 – 1)/3, so for k = 5, we 

obtain (3k + 1) = 16 and 16/16 = 1. There is no looping, although the iterative process P2 is not optimal. Similar 

reasoning is valid for the number 17 (k = 6). If in the iterative process P1 we reach the number 17 after division 

of even number, for example, 68/4 = 17, then further decrease the number in the iterative process P1 is 

impossible, since the number 17 is not included in the area of attraction of the number 5 or the number 1. In the 

iterative process P2, further decrease the number is possible, since 17 is included in the area of attraction of the 

number 1.  

Now consider the process P2 in more detail. In this process, the number 3 has the trajectory (3, 10, 5, 

16, 8, 4, 2, 1), i.e. 3 is included in the area of attraction of number 1. The number 5 has the trajectory (5, 16, 8, 

4, 2, 1), which is part of the trajectory of the number 3, i.e. 5 is included in the area of attraction of number 1. 

For the number 7, the trajectory is (7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1), it contains the 

trajectory of the number 5, i.e. 7 is included in the area of attraction of number 1. Similarly, if the trajectories of 

numbers more than 7 have a common part with the trajectory of the number 7, then these numbers are included 

in the area of attraction of the number 1. In particular, the trajectories of odd numbers from 9 to 107 contain a 

part of the trajectory of the number 7, and each subsequent number contains a part of the trajectory at least one 

of the previous numbers. Lemma 3 is valid: “The iterative process P2 based on the sequence (3k + 1) cannot go 

in loops”. We shall prove Lemma 3 by induction. We use the notation and results of the previous section. In the 

interval from 2
1
 to 2

2
, there is one odd number 3. The process P2(3) does not go in loops. Therefore, Lemma 3 is 

valid for this interval. Take the interval 2
2
 ... 2

3
. In this interval, there are two odd numbers 5 and 7. The process 

P2(5), as well as the process P2(7) does not go in loops. Therefore, Lemma 3 is valid for this interval. Take the 

interval 2
n
 ... 2

n+1
. Suppose that for an arbitrary initial odd number k0 from this interval the process P2(k0) does 

not go in loops. Suppose that the Lemma 3 is valid for all intervals 2
n
 ... 2

n+1
, if n ≤ m. We shall prove the 

validity of Lemma 3 for an arbitrary initial odd number k0 from the interval 2
n+1 

... 2
n+2

, if n = m. Since the 

process P2(k0) cannot diverge, the numbers obtained in this process cannot infinitely move away from k0. 

Therefore, it suffices to prove that k0 cannot be a new center of attraction for the process P2(k0). This statement 

is equivalent to the fact that either P2(k0) cannot return to k0, or k0 belongs to the trajectory of the number k1 < k0. 

It follows from the previous section that if k0 = 2
n+1 

+ a, then for small values of a the process P2(k0) 

reaches, in several iterations, the number kN, kN < 2
n+1 

+ 1 < k0, from the previous interval for which Lemma 3 is 

valid by assumption. Therefore, the number k0 cannot be a new center of attraction. In particular, for a = 1, the 

number kN is reached in one iteration. Similarly, if k0 = 2
n+2 

– b, then for some small values of b the number kN is 

reached in several iterations. For all such numbers k0, Lemma 3 is valid. If b = 1, then a large number of 

iterations of order O(n) are required to reach kN, and it is impossible to prove the validity of Lemma 3 directly 

by calculations. It follows from relations (9), (12) that P2(2
n+2 

– b) < P2(2
n+2 

– 1); therefore, the number of 

iterations in the process P2(2
n+2 

– b) required to reach the number kN is is not more than the estimate x0 obtained 

in the previous section for the process P2(2
n+2 

– 1).  

Now we prove that an arbitrary odd number k0 from the considered interval cannot be a new center of 

attraction for the process P2(k0). For the process P2(k0) three cases are possible: 1). 2k0 belongs to the sequence 

F2 = (3k + 1); 2). 4k0 belongs to the sequence F2; 3). k0 is divisible by 3. In the first and second cases, it is 

sufficient to consider the smallest odd and even powers of 2, respectively. In the first case, k0 belongs to the 

sequence F1, but already for even k. We have 2k0 = 3k1 + 1, then k1 = (2k0 – 1)/3 < k0. Consequently, k0 cannot be 

a new center of attraction since it belongs to the trajectory of the number k1 in the process P2: P2(k1) = k0. The 

number k1 does not necessarily belong to the previous interval; it can belong to the considered interval. In the 

third case, k0 belongs to the sequence 3k for odd k. We have after the first iteration P2(k0) = (3k0 + 1)/2
m 

= k1. If 

m is even, then k1 belongs to the sequence F2, and if m is odd, then k1 belongs to the sequence F1 = 3k – 1 (here k 

is an even number). Continuing the process P2, we obtain a series of odd numbers that alternately belong to F2 

or F1 and, therefore, are not divisible by 3. Therefore, in the process P2(k0) we cannot return to the number k0, 

and k0 cannot be a new center of attraction. The second case is reduced to the first or third case. In the second 

case, k0 belongs to the sequence F2. We have 4k0 = 3k1 + 1, then k1 = (4k0 – 1)/3 > k0. If k1 belongs to the 

sequence F1, then 2k1 belongs to the sequence F2, and we obtain, as in the first case, k2 = (2k1 –1)/3 < k0. If k1 

belongs to F2, then 4k1 belongs to F2, hence k2 = (4k1 –1)/3 > k1. If k2 again belongs to F2, then k3 = (4k2 –

1)/3 > k2, and if k2 belongs to F1, then k3 = (2k2 –1)/3 < k2, etc. The numbers k1, k2, k3, etc. form a trajectory 

along which the number k0 can be reached in the process P2. The trajectory is determined in a unique manner by 

the value of the number k0. The trajectory of this “reverse” process always ends with the number k0 and begins 

with a multiple of 3 belonging to the sequence F3 = 3 + 6l, where l = 0, 1, 2, etc. Indeed. The odd numbers 4k0 –

1, 2k1 –1, 4k1 –1, 4k2 – 1, 2k2 –1 and others, obtained in the above “reverse” process, belong to the sequence F3, 

that is, are divisible at least by 3. Therefore, among these numbers there is always a number divisible at least by 

9. As a result, on a finite segment of this "reverse" process, we obtain a series of odd numbers belonging 

alternately to F1 and F2, and one number belonging to F3. The number k0 can be reached in the process P2 from a 

number belonging to F3, but a number belonging to F3 cannot be reached in the process P2(k0), since this process 
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does not contain numbers divisible by 3. Therefore, k0 cannot be a new center of attraction. After a finite 

number of iterations, we reach the number kl, which satisfies one of the conditions: 1). kl < k0, 2). kl is divisible 

by 3. The first condition can be satisfied because the odd numbers from the sequences F1 and F2 alternate, and 

the chain of numbers from the sequence F2 always has a finite (limited) length. The second condition is satisfied 

because odd numbers divisible by 3 are evenly distributed along the number axis and have the shortest repetition 

period compared to other numbers. If numbers from sequence F2 prevail over numbers from F1, then the second 

condition is satisfied earlier than the first one. If numbers from sequence F1 prevail over numbers from F2, then 

the first condition is satisfied earlier than the second one, or both conditions can be satisfied simultaneously. In 

any case, the above "reverse" process always ends with an odd number divisible by 3, if the number k0 is taken 

as the beginning. In other words, arbitrary odd number k0 from the sequences F1 and F2 can be obtained from an 

odd number divisible by 3 using the process P2, but it is impossible to obtain a number divisible by 3 from the 

number k0 in the process P2(k0). Let us show that numbers divisible by 3 regularly appear in the "reverse" 

process described above. If k0 belongs to F2, then k0 can be represented as k0 = 7 + 6l (see Section I). Hence we 

obtain k1 = (4k0 – 1)/3 = 9 + 8l. The number k1 belongs to F3, i.e. is divisible by 3, for l = 3l1, where l1 = 0, 1, 2, 

etc., and then the proof ends, since the second condition is satisfied. The belonging of the number k1 to the 

sequence F2 or F1 depends on its position relative to the number divisible by 3. So k1 belongs to F2 for 

l = 2 + 3l1, where l1 = 0, 1, 2, etc.; k1 belongs to F1 for l = 1 + 3l1. Let k1 belongs to F2. Continuing the “reverse” 

process, we obtain k2 = (4k1 –1)/3 = (35 + 32l)/3 = 33 + 32l1. The number k2 is divisible by 3 for l1 = 3l2, and 

then the proof ends, since the second condition is satisfied. The number k2 belongs to F2 for l1 = 2 + 3l2; k2 

belongs to F1 for l1 = 1 + 3l2. Let k2 again belongs to F2. We obtain k3 = (4k2 –1)/3 = 129 + 128l2. The number k3 

is divisible by 3 for l2 = 3l3, and then the proof process ends, since the second condition is satisfied. The number 

k3 belongs to F2 for l2 = 2 + 3l3; k3 belongs to F1 for l2 = 1 + 3l3. If k3 again belongs to F2, then the relationships 

that determine whether k4 belongs to F1, F2, and F3 remain the same as for k3. The general expression has the 

form kn = (2
2n+1

 + 1) + 2
2n+1

ln, where ln = 0, 1, 2, etc., and for any n, the relationships that determine whether kn 

belongs to F1, F2, and F3 remain the same as above. Now let k1 belongs to F1, that is, l = 1 + 3l1. Continuing the 

“reverse” process, we reach k2 = (2k1 –1)/3 = (17 + 16l)/3 = 11 + 16l1. The number k2 is divisible by 3 for 

l1 = 1 + 3l2, and then the proof process ends, since the second condition is satisfied. The number k2 belongs to F2 

for l1 = 2 + 3l2; k2 belongs to F1 for l1 = 3l2. Here the first condition is satisfied before the second one, and the 

second condition can be satisfied simultaneously with the first one. Now let kn is an odd number closest to k0, 

which belongs to F1, such that k0 < kn, and all numbers preceding kn belong to F2. Here the result depends on n, 

i.e. on how many preceding numbers belong to F2. We write at once the general expression for kn. We have 

kn = (2
2n+3

 + 1)/3 + 2
2n+2

ln, where ln = 0, 1, 2, etc. for any n. The terms (2
2n+3

 + 1)/3 corresponding to different 

values of n form the sequence 11, 11 + 2
5
, 11 + 2

5
 +2

7
, 11 + 2

5
 +2

7
 + 2

9
, etc. If n = 1, then one number 

belonging to F2, namely, the number k0 itself, precedes kn; if n = 2, then two numbers belonging to F2 precede 

kn, etc. In this case, for an arbitrary n, n iterations F1 are required to satisfy the first condition. We consider only 

one iteration F1 for each n. Hence, for n = 1, we obtain k1 = 11 + 2
4
l1. The number k1 is divisible by 3 for 

l1 = 1 + 3l12, and then the proof process ends, since the second condition is satisfied; k1 belongs to F2 for 

l1 = 2 + 3l12, k1 belongs to F1 for l1 = 3l12, which coincides with the above result. For n = 2 we obtain 

k2 = 43 + 2
6
l2. The number k2 is divisible by 3 for l2 = 2 + 3l21, and then the proof process ends; k2 belongs to F2 

for l2 = 3l21, k2 belongs to F1 for l2 = 1 + 3l21. For n = 3, we have k3 = 171 + 2
8
l3. The number k3 is divisible by 3 

for l3 = 3l31, and then the proof process ends; k3 belongs to F2 for l3 = 1 + 3l31, k3 belongs to F1 for l3 = 2 + 3l31. 

For n = 4 we obtain k4 = 683 + 2
10

l4. The number k4 is divisible by 3 for l4 = 1 + 3l41, and then the proof process 

ends; k4 belongs to F2 for l4 = 2 + 3l41, k4 belongs to F1 for l4 = 3l41. The belonging of numbers kn to sequences 

F1, F2 and F3 changes with n and repeats with period 3. Therefore, after a certain number of steps, we always 

reach an odd number divisible by 3, and then the proof process ends. Similarly, the possibility is considered 

when F2 and F1 alternate, but in such a way that the first condition is not satisfied. Of course, not all of the 

possibilities discussed above are realized simultaneously, since the trajectory is completely (in a unique manner) 

determined by the value of k0. Thus, in all three cases, k0 cannot be a new center of attraction. Thus, Lemma 3 is 

proved for the interval 2
n+1 

... 2
n+2

. This implies its validity for the process P2, which starts at an arbitrary odd 

number. Below we will explain this behavior of the process P2. Using the results of the previous section and 

carrying out arguments similar to those given above, we can also conclude that k0 cannot be a new center of 

attraction for the process Р1(k0), if n + 1 ≥ 5. However, for the process Р1, Lemma 3 is not valid, since k0 

(respectively, kN or k1) can belong to the area of attraction of numbers 5 or 17. 

Consider the process P2(k0 = 2
n+2 

– 1) as an example (see Section III). If the number n + 2 is even, then 

k0 = 2
n+2 

– 1 is divisible by 3 (case 3). If the number n + 2 is odd, then k0 belongs to the sequence F2 (case 2). 

Therefore, the number k0 cannot be a new center of attraction. Sometimes it is possible to verify the validity of 

Lemma 3 for P2(k0 = 2
n+2 

– 1) by calculations. If n + 2 is an odd number, then the process P1(k0) and, therefore, 

P1(k
n+2

/2), can go in loops (see Section III). To establish this, several iterations are sufficient, since the process 
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P1(k0) converges quickly. If P1(k0) goes in loops, then P2(k0) cannot go in loops, since this would contradict the 

conditions of Lemma 1.  

The reason for the difference between the processes Р1 and P2 is as follows. An iterative process goes 

in loops if some number (even or odd) repeat in it. The pair of numbers {(3k – 1), (3k + 1)}, when k is even, 

forms a representation of an even number 6k as a sum of two odd terms, and if k is odd, this pair forms a 

representation of an even number as a sum of two even terms. Let k is an arbitrary initial odd number. This is 

the center of representation for the even number 2k. Then the even numbers (3k
 
– 1) and (3k

 
+ 1) form the 

representation of the even number 6k with the center of the representation equal to 3k. The number (3k
 
–1) from 

the sequence F1 is always located to the left of the center of the representation of the corresponding even 

number, and the number (3k + 1) from the sequence F2 is always located to the right of the center. When k 

changes, the numbers to the left of the center belonging to the sequence F1 can repeat in the iterative process Р1, 

which leads to looping. At the same time, this problem does not exist for the process P2, since the numbers to 

the right of the center belonging to the sequence F2 are always replaced with new ones in the iterative process P2 

and cannot be repeated, so there is no looping.  

Since according to Lemma 2 and Lemma 3, the iterative process P2 cannot diverge or go in loops, then 

Corollary 1 from Lemmas 2 and 3 is valid: “The iterative process P2 based on the sequence (3k
 
+ 1) always 

reaches 1”.  

 

V. Conclusion 
Thus, the optimal iterative process P3 for achieving 1 uses both sequences (3k

 
– 1) and (3k

 
+ 1). The 

process P2 that uses only a sequence (3k
 
+ 1) also achieves 1, but in general case it requires much more 

iterations. The process P1 that uses only the sequence (3k
 
– 1) in the general case does not allow reaching 1, 

since this process can go in loops. The above reasoning and conclusions, mutatis mutandis, remain valid when k 

takes negative values. In this case, the relations P1(– k) = –P2(k) and P2(– k) = –P1(k) are valid. The sequence 

(3k
 
– 1) is replaced by the sequence [–(3ǀk

 
ǀ + 1)], and the sequence (3k

 
+ 1) is replaced by the sequence [–(3ǀk

 
ǀ –

 1)], where ǀk
 
ǀ is the modulus of the number k. Center of attraction 5 is replaced by (–5), center 17 by (–17), 

center 1 by (–1). The optimal iterative process P3 uses both sequences [– (3ǀk
 
ǀ + 1)] and [–(3ǀk

 
ǀ –1)]; it achieves 

(–1) in the minimum number of iterations. The iterative process based on the sequence [– (3ǀk
 
ǀ + 1)] also 

achieves (–1), but in more iterations. The process using the sequence [– (3ǀk
 
ǀ –1)] does not always reach (–1), 

since at k = –5 and k = –17 there is looping. 
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