A Remark on Squaring the Circle

Alcantara-Montes Samuel, González-Sánchez America
${ }^{1}$ (Higher School of Mechanical and Electrical Engineering/ National Polytechnic Institute, campus Zacatenco, México)

Abstract

: Following the wonderful geometrical construction of Ramanujan we propose a geometrical magnitude that solve the old problem-find a square whose area is equal to that of a given circle.

Key Word: pi, chord, circle, square

I. Introduction

Construct a square that has an area equal to that of an arbitrary given circle, is called a quadrature of the circle. Square the circle according to the ancient Greeks is a problem no yet solved. The first quadrature is due to Hippocrates. In our days this is possible with the Gayatripi $=(14-\sqrt{2}) / 4 .[1,2,3]$
However with the official $\pi=3.141592654 \ldots$... this seems to be imposible after F. Lindemann's work. In 1913 SriniavasaRamanujan [4] published a very interesting geometrical construction.
In Ramanujan geometrical construction the fundamental geometric magnitude is $T Q=(\sqrt{5 / 3}) R$ what is used to construct the chord RS. In our work we find a geometrical length very close to that given by Ramanujan, from purely geometric consideration.

II. Procedure

Let R be the radius of the given circle, D its diameter and center 0 .Draw a square of side D that circumscribe the circle.

$R=O P$
$\mathrm{D}=\mathrm{PE}$
$T Q=(\sqrt{5 / 3}) R$ is the Ramanujan geometrical magnitude.
From the obvious:
$A=\left(1-\frac{\pi}{4}\right) R^{2}$ is the area between the circle and the square.
From this very simple geometrical construction:

$$
\begin{gathered}
D^{2}-16 A=(\pi-3) D^{2}=(\pi-3)(2 R)^{2}=(\pi-3)\left(\frac{6}{3} R\right)^{2} \\
\sqrt{D^{2}-16 A}=\frac{\sqrt{36 \pi-108}}{3} R
\end{gathered}
$$

$\sqrt{D^{2}-16 A}=\frac{\sqrt{5.097335529 \ldots}}{3} R$ this number is very close to TQ.
If we divide R into 22 equal parts, the geometrical length
$R \cos 45^{0}+\frac{R}{22}=0.752561327 \ldots R \quad$ is very close to:

$$
\frac{\sqrt{5.097335529 \ldots}}{3} R=0.752575986 \ldots R
$$

Now place $\quad \mathrm{ES}=\frac{\sqrt{5.097335529 \ldots}}{3} R$
And following Ramanujan geometrical construction. Join P and S and draw OM parallel to $\mathrm{ES} \cdot P M=1 / 2 P S$. Place a chord $P K=P M$. Join E and K. If $\alpha=$ angle EPS. Then:

$$
\sin \alpha=\frac{\sqrt{5.097335529 \ldots}}{6} ; \quad \cos \alpha=\sqrt{\frac{30.902664471 \ldots}{36}}
$$

$$
\begin{aligned}
& P K=P M=\frac{D}{2} \cos \alpha \\
& \quad P K^{2}=\frac{30.902664471 \cdots}{144} D^{2}
\end{aligned}
$$

For the right triangle PEK:

$$
\begin{gathered}
D^{2}=E K^{2}+P K^{2} \\
E K^{2}=D^{2}-P K^{2} \\
E K^{2}=D^{2}-\frac{30.902664471 \cdots}{144} D^{2} \\
E K^{2}=\frac{36 \pi}{144} D^{2}=\frac{\pi}{4} D^{2}
\end{gathered}
$$

If $E K=L$ the side of the square searched
$L^{2}=\pi R^{2} \quad$ Exactly

III. Conclusion

If we place $E S=\frac{\sqrt{5.097335529 \ldots}}{3} R$ the quadrature is perfect.
This work would not be possible without the enlightenment of the Ramanujan's geometrical construction. The same result will be obtained if we place $P K^{2}=4 A$.

References

[1]. R. D. SarvaJagannadha Reddy. No more a mathematical impossibility - Square root of pi found. International Journal of Engineering Sciences \& Research Technology. 19-42-ST 374, STV Nagar, Titupati-51750, INDIA, 2016.
[2]. R. D. SarvaJagannadha Reddy. Durga Method of squaring the circle.IOSRJournal of Mathematics. IOSR-JM. E-ISSN:2278-5728,p-ISSN:2319=765X2319-765X Volume 10, Issue1 ver.IV.(Feb.2014),PP14-15
[3]. R. D. SarvaJagannadha Reddy. Supporting Evidence to the Exact Value from the Works of Hippocrates of Quios. Alfred S. Posamentier and Ingmar Lehman.IOSRJournal of Mathematics. IOSR-JM. E-ISSN:2278-5728,p-ISSN:2319=765X Volume 10, Issue 2 ver II (Mar-Apr 2014),PP09-12.
[4]. S. Ramanujan. Journal of the Indian Mathematical Society 1913, 138.

