A Remark on Squaring the Circle

Alcantara-Montes Samuel, González-Sánchez America

¹(Higher School of Mechanical and Electrical Engineering/National Polytechnic Institute, campus Zacatenco, México)

Abstract:

Following the wonderful geometrical construction of Ramanujan we propose a geometrical magnitude that solve the old problem –find a square whose area is equal to that of a given circle.

Key Word: pi, chord, circle, square.

Date of Submission: 07-09-2021 Date of Acceptance: 22-09-2021

Date of Submission. 67 67 2021

I. Introduction

Construct a square that has an area equal to that of an arbitrary given circle, is called a quadrature of the circle. Square the circle according to the ancient Greeks is a problem no yet solved. The first quadrature is due to Hippocrates. In our days this is possible with the Gayatri $pi = (14 - \sqrt{2})/4$. [1,2,3]

However with the official $\pi = 3.141592654$... this seems to be imposible after F. Lindemann's work.

In 1913 SriniavasaRamanujan [4] published a very interesting geometrical construction.

In Ramanujan geometrical construction the fundamental geometric magnitude is $TQ = (\sqrt{5/3})R$ what is used to construct the chord RS. In our work we find a geometrical length very close to that given by Ramanujan, from purely geometric consideration.

II. Procedure

Let R be the radius of the given circle, D its diameter and center 0.Draw a square of side D that circumscribe the circle.

R=0P

D=PE

 $TQ = (\sqrt{5/3})R$ is the Ramanujan geometrical magnitude.

From the obvious:

 $A = \left(1 - \frac{\pi}{4}\right)R^2$ is the area between the circle and the square.

From this very simple geometrical construction:

$$D^{2} - 16A = (\pi - 3)D^{2} = (\pi - 3)(2R)^{2} = (\pi - 3)\left(\frac{6}{3}R\right)^{2}$$
$$\sqrt{D^{2} - 16A} = \frac{\sqrt{36\pi - 108}}{3}R$$

$$\sqrt{D^2 - 16A} = \frac{\sqrt{5.097335529...}}{3}R$$
 this number is very close to TQ.

If we divide R into 22 equal parts, the geometrical length

$$R\cos 45^0 + \frac{R}{22} = 0.752561327 \dots R$$
 is very close to:

$$\frac{\sqrt{5.097335529...}}{3}R = 0.752575986...R$$

$$ES = \frac{\sqrt{5.097335529 \dots}}{3} R$$

And following Ramanujan geometrical construction. Join P and S and draw OM parallel to ES. $PM = \frac{1}{2}PS$. Place a chord PK=PM. Join E and K. If α =angle EPS. Then:

$$\sin \alpha = \frac{\sqrt{5.097335529...}}{6};$$
 $\cos \alpha = \sqrt{\frac{30.902664471...}{36}}$

$$PK = PM = \frac{D}{2}\cos\alpha$$

$$PK^2 = \frac{30.902664471 \dots}{144} D^2$$

For the right triangle PEK:

$$D^{2} = EK^{2} + PK^{2}$$

$$EK^{2} = D^{2} - PK^{2}$$

$$EK^{2} = D^{2} - \frac{30.902664471...}{144}D^{2}$$

$$EK^{2} = \frac{36\pi}{144}D^{2} = \frac{\pi}{4}D^{2}$$

If EK=L the side of the square searched

$$L^2 = \pi R^2$$
 Exactly

III. Conclusion

If we place ES $=\frac{\sqrt{5.097335529...}}{3}R$ the quadrature is perfect. This work would not be possible without the enlightenment of the Ramanujan's geometrical construction.

The same result will be obtained if we place $PK^2 = 4A$.

References

- R. D. SarvaJagannadha Reddy. No more a mathematical impossibility Square root of pi found. International Journal of [1]. Engineering Sciences & Research Technology. 19-42-ST 374, STV Nagar, Titupati-51750, INDIA, 2016.
- R. D. SarvaJagannadha Reddy. Durga Method of squaring the circle.IOSRJournal of Mathematics. IOSR-JM. E-ISSN:2278-5728,p-ISSN:2319=765X2319-765X Volume 10, Issue1 ver.IV.(Feb.2014),PP14-15 [2].
- R. D. SarvaJagannadha Reddy. Supporting Evidence to the Exact Value from the Works of Hippocrates of Quios. Alfred S. Posamentier and Ingmar Lehman.IOSRJournal of Mathematics. IOSR-JM. E-ISSN:2278-5728,p-ISSN:2319=765X Volume 10, Issue 2 ver II (Mar-Apr 2014),PP09-12.
- [4]. S. Ramanujan. Journal of the Indian Mathematical Society 1913, 138.