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In this paper, we numerically solve the one-dimensional stochastic nonlinear Schrödinger equation in the case of 

an additive white noise and with mixed concave convex, sub-super nonlinearities. The aim is to investigate their 

influence on the well-known deterministic solutions: stationary states and blowing-up solutions.  
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I. Introduction 

In this work, we are interested to the study of the one-dimensional stochastic nonlinear Schrödinger 

(NLS) equation with both a subcritical and a supercritical power nonlinearities in the presence of an additive 

noise. The deterministic equation occurs as a basic model in many areas of physics, hydrodynamics, plasma 
physics, nonlinear optics, molecular biology. It describes the propagation of waves in media with both nonlinear 

and dispersive responses. It is an idealized model and does not take into account many aspects such as 

in-homogeneities, high order terms, thermal fluctuations, external forces which may be modeled as random 

excitations (see [?, ?, ?, ?, ?]). Propagation in random media may also be considered. The resulting re-scaled 

equation is a random perturbation of the dynamical system of the following form 
 

  
  

  
 

   

   
                                                       

  

  
                   

  

  
       

  

  
             

 

 (1.1) 

 

 where          ,            is a complex-valued function and   is            and    

are real parameters. The term      includes the stochastic contribution. For an additive noise,         is 

real-valued, Gaussian, white in time and either white or correlated in space. In this case, the noise does not depend 

on the solution. The size of the noise is controlled by the parameter      
Here, we are particularly interested in the influence of a noise acting as a potential on the behavior of 

resolution. Such noise has been considered in [7] : there the paths of the noise are smooth functions and the 
nonlinearity is subcritical. In the case of a white noise, considered here, this type of model has been introduced in 

the context of crystals (see [?, ?] and also [?, ?] for other models). It is expected that such noise has a strong 

influence on the solutions which blow-up. It may delay or even prevent the formation of a singularity. In [1], some 

numerical simulations tend to show that this is the case for a very irregular noise: for a space-time white noise. 

However, in the supercritical case and for a noise which is correlated in space but non degenerate, it has been 

observed that, on the contrary, any solution seems to blow-up in a finite time. Recall that in the deterministic case, 

only a restricted class of solutions blow-up. Our aim is to prove rigorously such a behavior. 

The case of an additive noise has been considered in [?, ?] and it has been proved that for any initial data, 

blow-up occurs in the sense that, for arbitrary    , the probability that the solution blows up before the time t is 

strictly positive. Thus, the noise strongly influences this blow-up phenomenon. In the present paper, result is in 

perfect agreement with the numerical simulations. The argument is based on three ingredient: first, we generalize 
the deterministic argument to prove that blow-up occurs for some initial data: this is based on a stochastic version 

of the variance identity (see [?, ?]). Then, we use the fact that the NLS equation is controllable by a forcing term. 

Thus, any initial data can be transformed into a state which yields a singular solution. Finally, since the noise is 

non-degenerate and the solution depends continuously on the path of the noise, we can argue that, with positive 

probability, the noise will be close to the control so that blow-up will happen afterward. 

The paper is organized as follows: In Section  , we introduce the discrete scheme and transform problem 

(1.1) into a linear algebraic system.In Section  , the analysis of local truncation error and stability are shown by 

introducing Fourier development replacements in order to apply the Von Neumann techniques. The scheme is 

proved to be uniquely solvable. We study the convergence and we analyze the method for consistency and 

stability. The Von Neumann method consists in testing the impact of the proposed scheme on an isolated Fourier 
mode. Some numerical examples are exposed in order to validate the scheme. 
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II. The stochastic Schrödinger equation 
The considered noises have their paths in   . In order to state precisely the equation considered in this 

work, we introduce the probability space        , endowed with a filtration         and a sequence         

of independent real valued Brownian motions on   , associated to the filtration        . We are interested to the 
NLS equations with additive noise. We consider the space of complex (resp. real) valued square integrable 

functions on    endowed with an Hilbertian basis         and we are given a bounded linear operator   on this 

space. The process  

             
                  

 defined for           and    , is then a Wiener process on the space of complex valued square 

integrable functions on   , with covariance operator    . We then set  

    
  

  
  

Note that if   is defined through a kernel  , which means that for any square integrable function  ,  

         
  

                

As a consequence, the correlation function of the noise is given by  

   
  

  
      

  

  
                   

 with  

          
  

                  

This kind of noise is always uncorrelated -or white- in time. Particularly, if   is a cylindrical Wiener process, i.e. 

if       the noise is also white in space and the spatial correlation        is the Dirac mass       Moreover, 

a correlation described by the Dirac mass          indicates a white noise both in time and space. 

 Taking in account these notations, we then rewrite the system (1.1) in the form 
 

  
  

  
 

   

   
                                                        

  

  
       

  

  
              

 

 (2.1) 

 

2.1  Finite difference scheme 

Consider a time step      and denote  

                       
Now, fix some integer   and consider, a space step  

      
     

   
  

We subdivide the interval         into subintervals           where  

                                         
Consider also positive parameters           and            such that                     

Denote by   
  the approximation of          and   

  the numerical solution. We introduce the following 
notations  

 

  
   

  
      

   

  
                 

   
    
     

      
 

  
 

   
 

  
       

       
         

   

   
 

  
 

    
      

 

  

    
 

   
       

       
         

   

 

Let’s denote  

                        
We then discretize problem (1.1) as follows 

 

  
   

 

  
 

    
 

   
     

      
  

 

  (2.2) 

 

 where  

   
  

 

  
 

     
    

  
 

   

In this case of an additive noise,   
  

 

  should be an approximation of  
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If the orthonormal basis         of           is chosen in such a way that  

 

   
 

   
 
    

 

 
       

 

 
    

            

   
 

 
  

 

 
   

 

 
   
 

     
 

 
  

 

 
    

 

 
            

 

 

then, by orthogonality, we obtain  

   
   

 

 
   

   
 

 
   

                                                  

Furthermore,  

 

  
  

 

  
 

     
                             

  
  

 

  
 

   
  

 

                  

    
  

 

  
 

   
  

 

                      

 

Since the random variables defined by  

 
               

   
 

 are independent random with normal law         we choose also the sequence  

    
  

 

                    

 to be a sequence of independent random variables with normal law         

 Note that from   
  

 

 , we can see that the numerical noise has the form         where      is the orthogonal 

projector on the space spanned by             and the associated correlation function is given by 

 

      

 
 
 

 
 

 

  
               

 

 
         

 

 
       

 

  
              

 

 
                   

 

 
                 

           

  

 

This confirms that we have an approximation of a space-time white noise. Indeed, it is easily seen that      in an 

approximation of       However, it also shows that the numerical noise has length scales always larger than    

and in that sense, it is not white. 

 The numerical problem is considered under the initial data  

 

  
                              

  
    

       
                  

 

 and the boundary conditions  

   
    

                
    

          
Let         and consider the approximation  

     
         

         
      

 where  
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 Next, denote  

 

                        

                           

                         

                                   

 

 where   
 

  
. We then obtain 

 

 
      

        
          

          
      

        
        

        
   

       
       

  
 

 
 (2.3) 

 

 with the boundary conditions  

 
         

        
             

      
           

   

     
       

  
 

 
 (2.4) 
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 (2.5) 

 

 

2.2  Solvability of the difference scheme 

In the matrix form, (2.3)-(2.5) becomes 

 

                               (2.6) 

 

 where   is the white noise vector and     and   are the matrix defined as follows  
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 In order to prove the solvability of the difference scheme (2.3)-(2.5), we have to calculate the determinant of the 

matrix  . This is based on techniques developed in [?, ?, ?, ?] and treating the invertibility of a general tri-diagonal 

matrix. We recall the basic result in what follows 

 

Lemma 2.1  Consider the following real matrix    

    

                
               
                      
  

  

 and define the real vector  

               
 as follows  

                                                       
 Then, there holds  

            
 

 

 Now, we are able to state the main result of this section. 

  

Theorem 2.2  The difference scheme (2.3)-(2.5) is uniquely solvable.  

 

  

Proof. Denote by           the determinant of the matrix  . Then, from Lemma 2.1, we have the following 

recursive equation  

                                           
We now divide the proof into three cases. 

 Case 1:     ,    
             

   
 and         . 

 Standard computations yield  

                             
      

 

 
          

  Case 2:     ,    
             

   
 and         . 

 If we denote by  

 

                       

      
       

 
 

      
       

 
 

      
     

 
 

 

 

                    

           
 

   
     

 
 

 

 
  
                    

           
 

 

 Then, also by standard computations, we obtain  

               
        

       
  Case 3:     . 

 Let’s consider the complex values  

           
                

         

 
               

         

 
  

 Then, we have  
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 It follows from the cases above that the system (2.6) is uniquely solvable.  

 

2.3  Consistency, Stability And Convergence of the Discrete method  

The principal part of the local truncation error of the method arising from the scheme (2.2) is given by  

 

         
   

    
                 

 

  

  

  
 

   

     
 

    
 

  
       

   

   
 

 

 

   

   
     

 

 
       

   

     
 

 

  

   

   
 

         

 (2.10) 

 

 It follows, particularly that, taking        , it becomes that        tends to 0 as   and   tend to 0. This 
means obviously that the method is consistent. 

 Our good is to optimize numerically (2.10), (relativity to the parameters    and   , for        ) in order to 

obtain the minimal possible error. 
 We remark that, in the particular case when 

 

  

                     

                     

                           
                     

                     

  

  we obtain  

           
  

  

   

   
 

 

 

   

   
       

   

     
 

 

  

   

   
            

 This particular case makes that the scheme is consistent just when taking the condition        , and not 

necessarily         as in the general case. This is due to the fact that the second term of the summation in the 

right hand of (2.10), which was in the origin of the last condition          , is simplified as      . 
We now proceed by proving the stability of the method by applying the Lyapunov criterion. A linear system 

                      is stable in the sense of Lyapunov if for any bounded initial solution    the solution 

   remains bounded for all      Here, we will precisely prove the following result. 
 

Lemma 2.3    : The solution    is bounded independently of   whenever the initial solution    is bounded.  
 

We will proceed by recurrence on  . Assume firstly that        for some   positive. Using the system (2.6), 
we obtain  

                                           (2.11) 
 

Next, recall that, for           small enough,    , we have  

 

       
                     

    

        
                 

          

       
                  

          

       
                            

          

 

As a consequence, for   small enough, 

 

                                       
 

 
  (2.12) 

 

and  

                                                                  
 (2.13) 
 

The operator A converges to the operator    as h goes towards 0 and           with      where  
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Next, observing  

             (2.14) 

 

 

Lemma 2.4  It exists    such as                       ,  

        Denote by            the determinant of the matrix   . Then,let         and    are continuous and 

      observing that  

                                               
Recall here that we have already proved in (2.2) for      (Case 1 and Case 2) that the               which 

means that    is invertible. 

The following lemma deduced from (2.14). 

 

Lemma 2.5  For   small enough, it holds for all   that  

 
    

 
            

                     
      

     

 
     

  

 -17pt Indeed, recall that equation (2.14) affirms that             for some constant    . 

Consequently, for any   we get  

         
                       

       

 For   
    

       
, we obtain  

 
    

 
         

           
   

     

 
 

 and thus Lemma 2.5. As a result, (2.19) yields that  

 
    

 
       

 

 
                  (2.15) 

 For    , this implies that  

      
 

    
     

 

    
      

 

    
     (2.16) 

Using the discrete initial condition  

            
Here we identify the function   to the matrix whom coefficients are         . We obtain  

                  (2.17) 
 Hence, equation (2.18) yields that  

      
 

    
     

     

    
 

    

    
  (2.18) 

 Now, the Lyapunov criterion for stability states exactly that  

                                               (2.19) 

 For     and       , we seek an     for which       . Indeed, using (2.18), this means that, it 

suffices to find   such that  

 
 

    
  

     

    
 

    

    
      (2.20) 

 For    
                

 
, 

Consequently, choosing          we obtain (2.20). Finally, (2.18) yields that       . 

Assume now that the    is bounded for           (by   ) whenever    is bounded by   and let    . 

We shall prove that it is possible to choose   satisfying         . Indeed, from (2.15), we have  

        
 

    
            (2.21) 

So, one seeks,    for which 
 

    
               

For    
          

 
 then          whenever        ,          . 

Next, it holds from the recurrence hypothesis for   , that there exists     for which        implies that 

       , for          , which by the next induces that         . 
 

Lemma 2.6  As the numerical scheme is consistent and stable, it is then convergent.  

 This lemma is a consequence of the well known Lax-Richtmyer equivalence theorem, which states that for 
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consistent numerical approximations, stability and convergence are equivalent. Recall here that we have already 

proved in (2.10) that the used scheme is consistent. Next, Lemma 2.3, Lemma 2.5 and equation (2.19) yields the 

stability of the scheme. Consequently, the Lax equivalence Theorem guarantees the convergence. So as Lemma 

2.6. 

 

III. Numerical implementations 
We want to investigate the noise effects on stationary solutions in different cases. As mentioned in the 

introduction, stationary waves play an important role in physics and the effect of white noise on propagation in not 

well-known. Noise effects on solitary waves have already been studied for the NLS equation and for 

Korteweg-de-Vries equation (see [?, ?, ?, ?]). Let us recall that there exist deterministic solutions of the following 

form ([?]) 

 

         
  

  
      

 

 
                           

 where        
  

 
     and   are some appropriate constants. For fixed  , this function decays 

exponentially as        It is a soliton-type disturbance which travels with speed   and with a governed 

amplitude. 

 In the first one, subject of Figure 1, the time and the space partial derivative parameters are fixed to the particular 
case where  

         
 

 
                                 

 

 
  

In the second case, which is more general then the first one, we take different values for the parameters    and    
       , precisely,  

 

 
 
 

 
 
       

       

       

                          

 
 
 

 
 
       

       

      

  

This last example is expressed numerically in Figures 2, 3 and 4. 

 In both cases, the presented simulations of the equation (2.1) are given considering an additive noise. In the 

numerical scheme (2.2), the computations are done for           with a space step     and for 

       with a time step         We fix also the soliton parameters                     and the 

phase parameters        Finally, we consider the parameters of the nonlinearity       ,       and 

     . 

 For small amplitudes of the noise, corresponding to small values of the parameter  , we can see that the 

solitary wave is not strongly perturbed and the noise does not prevent its propagation. This is clearly expressed in 

the particular case where         
 

 
 and         

 

 
 by Figure 1 (e, f and g). It is also confirmed, in 

the more general case where       and      , by Figure 3 (g, h, and i). However, going to Figure 1 (c, d and 

e), we can remark that, as the noise level becomes higher, the wave is progressively destroyed. We can remark the 

same behavior in the general case, especially in Figure 2 (c, d, e and f). For the deterministic case corresponding to 

   , and physically interpreted by the absence of noise, the solution of the problem is given, in the first case by 

Figure 1-h and in the second one by Figure 1-j. It represents the stationary wave. 

 Now, in both cases, taking the amplitude of the noise         , it is clearly seen that the wave 

explodes under the influence of the additive noise. The phenomenon appears respectively in Figure 1 (a and b) for 

the particular case where       and       and in Figure 2 (left side of a and b) for the more general case 

where       and      . 

 In the next, we will look at the general case. Being interested to the right side of Figures 2 and 3, we can 

see that the infinite norm of   presents many observable peaks. As we decrease the value of    the amplitude of 

the noise decreases consequently and its influence on the the deterministic solution disappears progressively. That 

is why the blow-up phenomenon appears less and less, and so are the peaks. More precisely, we can remark that 

the soliton wave starts to appear with small perturbations of the deterministic equation, corresponding to weak 

values of the parameter  . As examples, we can cite          ,           and           respectively 

in Figures 3-g, 3-h and 3-i. 

 Finally, taking     in Figure 3-j, we can say that we did proceed to a simulation of the solution in the 

deterministic case and the infinite norm’s figure tends to a linear shape. We can say that we did start with a 

blow-up phenomenon to convert it into a soliton wave, also we did straightening the infinite norm of the solution. 

 Looking at the effect of noise on one trajectory, we show, in Figure 4, the profiles of the solution with 

additive noise at a final computation time for several values of  . We see that in any case the profile has the same 
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shape as the solitary wave and has been diffused and damped. But, we see in Figure 4 (g and h) that the noise effect 

is really strong and the wave has been completely destroyed. 

 

IV. Conclusion 
It is noted that the stochastic nonlinear equation (1.1) can be considered as a white noise random 

perturbation of the deterministic equation defined by      . Such a perturbation occurs when the size of the 

noise, described by the real-value parameter   is positive. We proved, in this work, that as    , the solution of 

the perturbed case converges to the unique trajectory of the deterministic equation. Then, we can say that the 

stochastic model would be more realistic, and we can observe a similar evolution phenomena about the solution as 

that given by the deterministic case. 

  

 

Plots in      -plane of     for one trajectory in the case where         
 

 
 and         

 

 
: 1.3cm 

(a)        , 0.5cm (b)        , 0.5cm (c)        , 0.5cm (d)         , 1.9cm (e)         , 

0.87cm (f)         , 0.68cm (g)         , 0.65cm (h)    . 
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Plots in      -plane of     (left side) and of its infinite norm (right side) for one trajectory in the general case: 

2.3cm (a)        , 0.5cm (b)        , 0.7cm (c)         , 0.7cm (d)         , 0.8cm (e)   
      . 
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Plots in      -plane of     (left side) and of its infinite norm (right side) for one trajectory in the general case: 

2.3cm (f)          , 0.5cm (g)          , 0.8cm (h)          , 0.8cm (i)          , 0.8cm (j) 

   . 
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Plots in      -plane of     for one trajectory 1.3cm (a)        , 0.5cm (b)         , 0.5cm (c)   
      , 0.5cm (d)         , 1.9cm (e)          , 0.56cm (f)          , 0.6cm (g)          , 

0.35cm (h)          , 0.5cm (i)          , 0.8cm (j)    . 

 

References 
[1]. A. Debussche and L . Di Menza, Numerical simulation of focusing stochastic nonliner Schrödinger equations, Physica D, 162 (2002), 

131-154. 

[2]. S. A. Derevyanko, S. K. Turitsyn and D. A. Yakushev, Non-Gaussian statistics of an optical soliton in the presence of amplified 

spontaneous emission, Opt. Lett., 28 (2003), 2097-2099. 

[3]. P. D. Drummond and J. F. Corney, Quantum noise in optical fibers. II. Raman jitter in soliton communications, J. Opt. Soc. Am. B, 18 

(2001), 153-161. 

[4]. G. E. Falkovich, I. Kolokolov, V. Lebedev and S. K. Turitsyn, Statistics of soliton-bearing systems with additive noise, Phys. Rev. E, 

63 (2001), 025601(R). 

[5]. G. E. Falkovich, I. Kolokolov, V. Lebedev, V. Mezentsev and S. K. Turitsyn, Non-Gaussian error probability in optical soliton 

transmission, Physica D, 195 (2004), 1-28. 

[6]. R. O. Moore, G. Biondini and W. L. Kath, Importance sampling for noise-induced amplitude and timing jitter in soliton transmission 

systems, Optics Letters, 28 (2003), 105-107. 

[7]. J. Garnier, Asymptotic transmission of solitons through random media. SIAM J. Appl. Math. 58 (1998), 1969-1995. MR1644311 

[8]. O. Bang, P. L. Christiansen, F. If, K. O. Rasmussen and Y. B. Gaididei, Temperature effects in a nonlinear model of monolayer 

Scheibe aggregates. Phys. Rev. E 49 (1994), 4627-4636. 

[9]. O. Bang, P. L. Christiansen, F. If, K. O. Rasmussen and Y. B. Gaididei, White noise in the two-dimensional nonlinear Schrödinger 

equation. App. Anal. 57 (1995), 3-15. MR1382938 

[10]. V. Konotop and L. Vazquez, Nonlinear Random Waves. World Scientific, River Edge, NJ. (1994), MR1425880 

[11]. T. Ueda and W. L. Kath, Dynamics of optical pulses in randomly birefrengent fibers. Phys. D 55 (1992), 166-181. 

[12]. A. De Bouard and A. Debussche, On the effect of a noise on the solutions of the focusing supercritical nonlinear Schrödinger equation. 

Probab. Theory Related Fields, 123 (2002), 76-96. MR1906438. 

[13]. A. De Bouard and A. Debussche, Finite time blow-up in the additive supercritical stochastic nonlinear Schrödinger equation: The real 

noise case, Contemp. Math. 301 (2002), 183-194. MR1947366. 

 



Numerical Solution for Stochastic Mixed Nonlinear Shrödinger Equation 

DOI: 10.9790/5728-1705030113                   www.iosrjournals.org                             13 | Page 

[14]. A. De Bouard and A. Debussche, A semi-discrete scheme for the stochastic nonlinear Schrödinger equation. Preprint. 

[15]. C. Sulem and P. L. Sulem, The Nonlinear Schrödinger Equation, Self-Focusing and Wave Collapse, Springer, New York (1999), 

MR1696311. 

[16]. V. E. Zakharov, Collapse of Langmuir waves, Soviet Phys. JETP 35 (1972), 908-914. 

[17]. A. Debussche and J. Printems, Numerical simulation of stochastic Korteweg-de Vries equations, Phys. D 134 (1999), 220-226. 

[18]. J. Printems, Aspects théoriques et numériques de l’équation de Korteweg-de Vries stochastique, Ph. D. University Paris-Sud Orsay 

(2009). 

[19]. J. C. Scalerandi, A. Romano and C. A. Condat, A Korteweg-de Vries solitons under additive stochastic perturbation, Phys. Rev. A, 

204 (1995), 121-127. 

[20]. A. Ben Mabrouk and M. Ayadi, A linearized finite-difference method for the solution of some mixed concave and convex non-linear 

problems, Applied Mathematics and Computation, 197 (2008), 1-10. 

[21]. M. El-Mikkawy, A note on a three-term recurrence for a tridiagonal matrix, Appl. Math. Computa., 139 (2003), 503-511. 

[22]. M. El-Mikkawy, A fast algorithm for evaluating  th order tri-diagonal determinants, J. Computa. & Appl. Math., 166 (2004), 

581-584. 

[23]. M. El-Mikkawy, On the inverse of a general tridiagonal matrix, J. Computa. & Appl. Math., 150 (2004), 669-679. 

[24]. M. El-Mikkawy and A. Karawia, Inversion of general tridiagonal matrices, Appl. Math. Letters, 19 (2006), 712-720.  

 

 

Fouzia Aouini. "Numerical Solution for Stochastic Mixed Nonlinear Shrödinger Equation." IOSR 

Journal of Mathematics (IOSR-JM), 17(5), (2021): pp. 01-13. 


