Application for sequence of compact metric spaces U_n and X_n

Ahmed M.H.Yahya¹, Elsiddeg Ali^{1,2}

1. Shendi University Faculty of Science and Technology, Department of Mathematics, Sudan 2. Taif University ,Turabah University College, Department of Mathematics, Kingdom of Saudi Arabia,

Abstract

in this present study, we discuss and generalize the proof that, if the sequence of Banach spaces X_n contains some regular convex sequence of subspaces at a given geometrical position, then the $C(U_n, X_n)$ distances (U_n, X_n) for all continuous functions with value X_n specified on the sequence of combined metric spaces U_n have exactly the same isomorphism classes Such as $C(U_n)$ spaces. As a consequence, we show that if $1 and <math>\varepsilon > 0$ then for every infinite sequence of countable compact metric spaces U_{n+1} , U_{n+2} , U_{n+3} and U_{n+4} are equivalent:

(a) $C(U_{n+1}, l_p) \oplus C(U_{n+2}, l_{p+\varepsilon})$ is isomorphic to $C(U_{n+3}, l_p) \oplus C(U_{n+4}, l_{p+\varepsilon})$. (b) $C(U_{n+1})$ is isomorphic to $C(U_{n+3})$ and $C(U_{n+2})$ is isomorphic to $C(U_{n+4})$. **Keywords:** Isomorphic classification of $C(U_n, X_n)$ spaces Bessaga–Pelczyn' ski's and Milutin's theorems on separable $C(U_n)$ spaces

Date of Submission: 10-10-2021 Date of Acceptance: 24-10-2021

I. Introduction

Let X_n besequence of a Banach spaces and U_n sequence of a compact Hausdorff spaces. By $C(U_n, X_n)$ we denote the sequence of Banach spaces of all continuous X_n -valued functions defined on U_n and equipped with the supremum norm. This spaces will be denoted by $C(U_n)$ in the case $X_n = \mathbb{R}$. We write $X_n \sim X_{n+1}$ when these quence of Banach spaces X_n and X_{n+1} are isomorphic and $X_{n+1} \hookrightarrow X_n$ when X_n contains a copy of , that is, a subspace isomorphic to X_{n+1} . The interval of real numbers [0, 1] will be denoted by I. By $[0, \alpha]$ we denote the interval of ordinals $\{(\gamma + \varepsilon), 0 \le (\gamma + \varepsilon) \le \alpha\}$ endowed with the order topology (See[13]). We will follow [6] for the related notation and terminology on Banach spaces. (See[2,9]).

Theorem 1.1.Let $\omega \leq \alpha < \omega_1, \varepsilon > 0$ be ordinals and U_n an infinite sequence of compact metric spaces. Then (a) $C([0, \alpha]) \sim C([0, \alpha + \varepsilon]) \Leftrightarrow (\alpha + \varepsilon) < \alpha^{\omega}$.

(b) $C(I) \sim C(U_n) \Leftrightarrow U_n$ is uncountable.

We recall that a well-known theorem of Mazurkiewicz and Sierpin´ ski [7] states that every infinite sequence of countable compactmetric spaces is homeomorphic to an interval $[0, \alpha]$ with $\omega \leq \alpha < \omega_1$.(See[12]).

We consider here the problem of determining geometric conditions on the subspaces of a sequence of Banach spaces X_n which would allow generalizations of Theorem 1.1 to the spaces of the form $C(U_n, X_n)$. In order to state our main result (Theorem 1.3) it is convenient to introduce:

Definition 1.2. We say that sequence of a subspace H_n of sequence of a Banach space X_n is a maximal factor of X_n whenever X_n is the direct sum of H_n and some subspace X_{n+1} of X_n such that every finite sum $(X_{n+1})^n$ of X_{n+1} contains no copy of H_n .

Recall also that sequence of a Banach space H_n is said to be uniformly convex [3] if for each ε , $0 < \varepsilon \leq 2$, there corresponds a $\delta(\varepsilon)$ such that for every h_n and h_{n+1} in H_n we have

 $\|\hat{h}_n\| = \|h_{n+1}\| = 1 \text{ and } \|h_n - h_{n+1}\| \ge \varepsilon \Rightarrow \|h_n + h_{n+1}\| \le 2(1 - \delta(\varepsilon)).$ Thus the principal purpose of the present work is to prove:

Theorem 1.3. Suppose that $1 and <math>H_n$ is a uniformly convex space containing a copy of l_p . Then for very Banach spaces X_{n+1} containing no copy of l_p and infinite compact metric spaces U_{n+1} and U_{n+2}

 $\mathcal{C}(U_{n+1}, X_{n+1} \oplus H_n) \sim \mathcal{C}(U_{n+2}, X_{n+1} \oplus H_n) \Leftrightarrow \mathcal{C}(U_{n+1}) \sim \mathcal{C}(U_{n+2}).$

We use Theorem 1.3. to provide the isomorphic classification of the following spaces.

(a) $C(U_{n+1}, l_p) \oplus C(U_{n+2}, l_{(p+\varepsilon)})$, where 1 0 and U_{n+1} and U_{n+2} are arbitrary infinite countable compact metric spaces(Theorem 3.1).

(b) $C(I, X_n) \oplus C(U_n, l_p(\Gamma))$, where X_n is an arbitrary separable Banach space, $1 , <math>\Gamma$ is an uncountable set and U_n is arbitrary infinite countable compact metric space.

II. Preliminary results

Before proving Theorem 3.1, we establish some auxiliary results. From now on following [2] the $C([0, \alpha], X_n)$ spaces will be denoted by $(X_n)^{\alpha}$. We set $(X_n)_0^{\alpha} = \{f_n \in (X_n)^{\alpha}: f_n(\alpha) = 0\}$. In what follows, we will often make use without explicit mention of [2] which states that $(X_n)^{\alpha}$ is isomorphic to $(X_n)_0^{\alpha}$ whenever $\alpha \geq \omega$.

Proposition 2.1. Let H_n be a uniformly convex Banach space and X_{n+1} a Banach space containing no copy of H_n . Suppose that

$$X_n^{(\gamma+\varepsilon)^{\omega}} \hookrightarrow X_{n+1} \oplus H_n^{(\gamma+\varepsilon)}$$

 $H_n^{(\gamma+\varepsilon)^-} \hookrightarrow X_{n+1} \oplus H_n^{(\gamma+\varepsilon)}$ for some $\omega \le \gamma + \varepsilon < \omega_1$, $\varepsilon > 0$. Then there exists $\omega \le \gamma$ such that

$$H_n^{(\gamma+\varepsilon)} \hookrightarrow X_{n+1} \oplus H_n^{(\gamma)}$$

Proof. First of all notice that since H_n is a uniformly convex space, it follows from a Pisier theorem, see [11] that H_n admits an equivalent norm which will be denoted by $\|\cdot\|$ such that there exist $\delta > 0$ and $p \in \mathbb{R}, 2 < \infty$ $p < \infty$ in such a way that if $b \in \mathbb{R}_+$ and $h_n, h_{n+1} \in H_n$ with $||h_n|| \ge 1$ and $||h_{n+1}|| \ge b$, then

$$||h_n + h_{n+1}|| \ge \sqrt[p]{1+\delta b}$$
 or $||h_n - h_{n+1}|| \ge \sqrt[p]{1+\delta b}$.

So, given $h_n, h_{n+1}, ..., h_{n+m} \in H_n$, with $||h_n|| = 1, ||h_{n+i}|| \ge \sqrt[p]{b}, i = 2, 3, ..., m$, there exists $c_i \in \mathbb{R}, |c_i| = 1, i = 1, 2, ..., m, n = 1, 2, 3, ...$ such that

$$\left\|\sum_{n=1}^{\infty}\sum_{i=1}^{m}c_{i}h_{n+i}\right\| \geq \sqrt[p]{1+(m-1)\delta b}.$$
(1)
e that

We now assum

$$H_n^{(\gamma+\varepsilon)} \twoheadrightarrow X_{n+1} \bigoplus (H_n)_0^{\gamma}, \quad \forall \ 0 < \varepsilon,$$

and argue to a contradiction. By hypothesis there exist two bounded linear operators $\Pi_n : H_n^{(\gamma+\varepsilon)^{\omega}} \to X_{n+1}$ and $\Pi_{n+1} : H_n^{(\gamma+\varepsilon)^{\omega}} \to (H_n)_0^{(\gamma+\varepsilon)}$ and $a \in \mathbb{R}_+$ such that for every $f_n \in H_n^{(\gamma+\varepsilon)^{\omega}}$ we have $a \|f_n\| \le \sup(\|\Pi_n(f_n)\|, \|\Pi_{n+1}(f_n)\|) \le \|f_n\|.(2)$ Fix $m \in N$ such that

$$a\sqrt[p]{1+(m-1)\delta} > 1,$$

and $\varepsilon > 0$ such that $1 + \varepsilon < a \sqrt[p]{1 + (m - 1)\delta}.$ (3) $1 + \varepsilon < u_{\gamma 1 + \tau} (\eta \epsilon),$ Denote for every $\eta \in [0, (\gamma + \varepsilon)),$ $\Delta_{\eta}^{1} = [(\gamma + \varepsilon)^{m} \eta + 1, (\gamma + \varepsilon)^{m} (\eta + 1)],$

and

$$(H_n)_m = \left\{ f_n \in H_n^{(\gamma+\varepsilon)^m} : \forall \eta \in [0, (\gamma+\varepsilon)), f_n \text{ is constant in } \Delta_\eta^1 \text{ and } f_n(\gamma) = 0, \forall \gamma \in [(\gamma+\varepsilon)^{m+1}, (\gamma+\varepsilon)^m] \right\}.$$

It is easy to check that $(H_n)_m$ is isometric to $H_n^{(\gamma+\varepsilon)}$. Since X_{n+1} contains no copy of H_n , the restriction of Π_n to $(H_n)_m$ is not anisomorphism onto its image. Therefore there exists $f_n \in (H_n)_m$ with $\|f\| = 1$ and $\|\Pi_n(f_n)\| < \varepsilon/2$.

$$\|f_n\| = 1 \text{ and } \|\Pi_n(f_n)\| \le \varepsilon/2.$$

Let $0 \le \eta_n < (\gamma + \varepsilon)$ be such that there exists $h_n \in H_n$ with
 $\|h_n\| = 1 \text{ and } f_n(\gamma) = h_n, \forall \gamma \in \Delta_\eta^1$

Since $\Pi_{n+1}(f_n) \in (H_n)_0^{(\gamma+\varepsilon)}$, it follows that there exists $\gamma_1 < (\gamma + \varepsilon)$ such that

$$\|\Pi_{n+1}(f_n(\gamma))\| \le \frac{c}{2}, \qquad \forall \gamma \in [\gamma_1 + 1, (\gamma + \varepsilon)).$$

Denote for every $\eta \in [0, (\gamma + \varepsilon))$,

$$\Delta_{\eta}^{2} = [(\gamma + \varepsilon)^{m} \eta_{n} + (\gamma + \varepsilon)^{m-1} \eta + 1, (\gamma + \varepsilon)^{m} \eta_{n} + (\gamma + \varepsilon)^{m-1} (\eta + 1)],$$

and

$$\begin{aligned} (H_n)_{m-1} &= \left\{ f_n \in H^{(\gamma+\varepsilon)^m} : \, \forall \eta \in [0, (\gamma+\varepsilon)), f_n \text{ is constant in } \Delta_\eta^2 \text{ and } f_n (\gamma) = 0, \forall \gamma \\ &\notin [(\gamma+\varepsilon)^m \eta_n, (\gamma+\varepsilon)^m (\eta_n+1)] \right\}. \end{aligned}$$

Again it is easy to see that $(H_n)_{m-1}$ is isometric to $H_n^{(\gamma+\varepsilon)}$. Let P_{γ_1} be the canonical projection from $H_n^{(\gamma+\varepsilon)}$ onto $H_n^{\gamma_1}$. Since byhypothesis

$$H_n^{(\gamma+\varepsilon)} \not\rightarrow X_{n+1} \oplus H_n^{\gamma_1}$$

it follows that the restriction of the bounded linear operator $\Pi_n + P_{\gamma_1} \Pi_{n+1}$ defined by

$$(\Pi_n + P_{\gamma_1} \Pi_{n+1})(g) = (\Pi_n(g), P_{\gamma_1} \Pi_{n+1}(g))$$

to $(H_n)_{m-1}$ cannot be an isomorphism onto the image. Therefore there exists $f_{n+1} \in (H_n)_{m-1}$ such that

$$\begin{split} \|f_{n+1}\| &= 1, \qquad \|\Pi_n(f_{n+1})\| < \frac{\varepsilon}{2^2} \text{ and } \|\Pi_{n+1}(f_{n+1})\| \le \varepsilon/2^2, \qquad \forall \gamma \in [0,\gamma_1]. \end{split}$$
Pick $\gamma_2 \in [\gamma_1 + 1, (\gamma + \varepsilon))$ such that $\|\Pi_2(f_{n+1})\| < \varepsilon/2^2, \qquad \forall \gamma \in [\gamma_2 + 1, (\gamma + \varepsilon)).$ Let $0 \le \eta_{n+1} < (\gamma + \varepsilon)$ be such that there exists $h_{n+1} \in H_n$ with $\|h_{n+1}\| = 1$ and $f(\gamma) = h_{n+1}, \forall \gamma \in \Delta^2_{\eta_{n+1}}.$ Repeating this procedure mtimes we can find ordinals $\eta_n, \eta_{n+1}, \dots, \eta_{n+m}$, functions $f_n, f_{n+1}, \dots, f_{n+m}$ and elements $h_n, h_{n+1}, \dots, h_{n+m} \in H_n$ such that: (i) $\|\Pi_n(f_{n+i})\| < \frac{\varepsilon}{2^i}, 1 \le i \le m.$ (ii) $\|\Pi_{n+1}(f_{n+i})(\gamma)\| < \frac{\varepsilon}{2^i}, \forall \gamma \in [0, \gamma_{i-1}] \text{ and } 2 \le i \le m - 1.$ (iii) $\|\Pi_{n+2}(f_{n+i})(\gamma)\| < \frac{\varepsilon}{2^i}, \forall \gamma \in [\gamma_i, (\gamma + \varepsilon)] \text{ and } 2 \le i \le m$ (iv) $\|h_{n+i}\| = 1, 1 \le i \le m.$ (v) $f_{n+i}(t) = h_{n+i}, \forall \gamma \in \Delta^i_{\eta_i} \text{ and } 1 \le i \le m$, where $\Delta^i_{\eta_i} = [(\gamma + \varepsilon)^m \eta_1 + (\gamma + \varepsilon)^{m-1} \eta_2 + \dots + (\gamma + \varepsilon)^{m-(i-1)} \eta_i, (\gamma + \varepsilon)^m \eta_1 + (\gamma + \varepsilon)^{m-1} \eta_2 + \dots + (\gamma + \varepsilon)^{m-(i-1)} (\eta_i - 1)].$ According to (1) there exists $c_i \in \mathbb{R}$ with $|c_i| = 1, i = 1, 2, \dots, m$, such that $\|\sum_{j=1}^m c_j h\|_{j=j}^m \gamma \frac{1}{j+1} (m-1)\delta$

 $\left\|\sum_{i=1}^{m} c_i h_i\right\| \ge \sqrt[p]{1 + (m-1)\delta}.$ clear that the following hold

Let $f_n = \sum_{m=1}^{\infty} \sum_{i=1}^{m} f_i$. Hence it is clear that the following hold (vi) $||f_n|| \ge \sqrt[p]{1 + (m - 1)\delta}$. (vii) $||\Pi_{n+1}(f_n)|| \le \varepsilon$. (viii) $||\Pi_{n+2}(f_n)|| \le 1 + \varepsilon$ Therefore by (2) we conclude that

$$a \sqrt[p]{1+(m-1)\delta} \le 1+\varepsilon,$$

a contradiction with (3) and the proof is complete. \Box Lemma 2.2.Let H_n and X_{n+1} be Banach spaces such that every bounded linear operator from c_0 to H is compact and X_{n+1} contains no copy of H_n . Then

 $H_0^{\omega} \neq X_{n+1} \bigoplus H_n$. **Proof.** Let $(H_n)_j = \{f \in H_0^{\omega} : f(m) = 0, \forall m < j\}$ and $P_2 : X_{n+1} \bigoplus H_n \rightarrow H_n$ be the canonical projection. Let *T* be a bounded linear operator from $(H_n)_0^{\omega}$ to $X_{n+1} \bigoplus H_n$. Since every bounded linear operator from c_0 to H_n is compact, it follows that

$$P_2T|_{H_n} \xrightarrow{n \to \infty} 0.$$

Putting $Q = I - P_2$ we deduce that

$$\left|T - Q T\right|_{(H_n)_j} \left\| \xrightarrow{j \to \infty} 0.$$

Therefore if *T* was one-to-one and with closed image, then we would have that for *j* large enough $Q T|_{(H_n)_j}$ would be anisomorphism onto its image, a contradiction because X_{n+1} contains no copy of H_n .

Proposition 2.3.Let H_n be a uniformly convex Banach space and X_{n+1} a Banach space containing no copy of H_n . Then for every $\omega \le (\gamma + \varepsilon) < \omega_1$

$$H_n^{(\gamma+\varepsilon)^{\omega}} \not\rightarrow X_{n+1} \oplus H_n^{(\gamma+\varepsilon)}$$

Proof. Let Abe the set of ordinals $\omega \leq (\gamma + \varepsilon) < \omega_1$ satisfying the following condition:

 $\begin{array}{l} H_n^{(\gamma+\varepsilon)^{\omega}} \hookrightarrow X_{n+1} \bigoplus H_n^{(\gamma+\varepsilon)} \text{ for some} X_{n+1} \text{ with } H_n \nrightarrow X_{n+1} \text{ .} \\ \text{Suppose that } A \neq \emptyset \text{ and let } (\gamma+\varepsilon)_1 \text{ be the minimum of } A. \text{ So we infer that} \\ H_n^{(\gamma+\varepsilon)^{\omega}} \hookrightarrow (X_{n+1})_1 \bigoplus H_n^{(\gamma+\varepsilon)} , (4) \end{array}$

for some Banach space $(X_{n+1})_1$ containing no copy of H_n .

On the other hand, a well-known Milman–Pettis theorem states that every uniformly convex space is reflexive [8]or [10]. Therefore $(H_n)_j$ contains no copy of c_0 , for every $1 \le j < \omega$. Hence every bounded linear operator from c_0 to $(H_n)_j$ is compact, see for instance [1]. Thus, if $(X_{n+1})_2$ is an arbitrary Banach space containing no copy of H, then by Lemma 2.2 and [2] we deduce that

$$H_n^{\omega} \sim H_n^{j\omega} \sim \left(H_n^j\right)^{\omega} \sim \left(H_n^j\right)_0^{\omega} \neq (X_{n+1})_2 \oplus H_n^j$$

for every $1 \le j < \omega$. So, by Proposition 2.1, we infer that

$$H_n^{\omega^{\omega}} \not\rightarrow (X_{n+1})_2 \oplus H_n^{\omega}.$$

This means that $\omega < (\gamma + \varepsilon)_1$.

Next observe that

$$\begin{split} H_n^{(\gamma+\varepsilon)_1} & \not\rightarrow (X_{n+1})_1 \bigoplus H_n^{(\gamma+\varepsilon)} \quad , \forall (\gamma+\varepsilon) < (\gamma+\varepsilon)_1.(5) \\ \text{Indeed, otherwise, there exists an ordinal } (\gamma+\varepsilon)_0 < (\gamma+\varepsilon)_1.(5) \\ \text{Indeed, otherwise, there exists an ordinal } (\gamma+\varepsilon)_0 < (\gamma+\varepsilon)_1. \text{ such that} \\ H_n^{(\gamma+\varepsilon)_1} & \hookrightarrow (X_{n+1})_1 \bigoplus H_n^{(\gamma+\varepsilon)_0}. (6) \\ \text{Hence by the minimality of } (\gamma+\varepsilon)_1 \text{ we deduce that} \\ H_n^{(\gamma+\varepsilon)_0^{\omega}} & \not\rightarrow (X_{n+1})_1 \bigoplus H_n^{(\gamma+\varepsilon)_0}. (7) \\ \text{Thus } (6) \text{ and } (7) \text{ together imply that} \\ H_n^{(\gamma+\varepsilon)_0^{\omega}} & \not\rightarrow H_n^{(\gamma+\varepsilon)_1}. (8) \\ \text{Now we distinguish two cases:} \\ Case 1. (\gamma+\varepsilon)_0^{\omega} < (\gamma+\varepsilon)_1^{\omega}. \text{ Then by } [2] \text{ we see that} \\ R^{(\gamma+\varepsilon)_0^{\omega}} & \hookrightarrow R^{(\gamma+\varepsilon)_1}. \end{split}$$

Consequently,

 $H_n^{(\gamma+\varepsilon)_0^\omega} \hookrightarrow H_n^{(\gamma+\varepsilon)_1}$,

which is absurd by (8).

Case 2. $(\gamma + \varepsilon)_1^{\omega} \le (\gamma + \varepsilon)_0^{\omega}$. In this case, since $(\gamma + \varepsilon)_0^{\omega} \le (\gamma + \varepsilon)_1^{\omega}$, it follows that $(\gamma + \varepsilon)_0^{\omega} = (\gamma + \varepsilon)_1^{\omega}$. That is, $(\gamma + \varepsilon)_0 < (\gamma + \varepsilon)_1 < (\gamma + \varepsilon)_1^{\omega} = (\gamma + \varepsilon)_0^{\omega}$. Then again by [2] we conclude that $R^{(\gamma + \varepsilon)_0} \sim R^{(\gamma + \varepsilon)_1}$.

and hence

 $H_n^{(\gamma+\varepsilon)_0} \sim H_n^{(\gamma+\varepsilon)_1}$. Then we can rewrite (7) as follows

$$H_n^{(\gamma+\varepsilon)_1^{\omega}} \not\rightarrow (X_{n+1})_1 \oplus H_n^{(\gamma+\varepsilon)_1},$$

again a contradiction with (4).

So (5) holds and therefore by Proposition 2.1 applied in (5) we conclude that

$$H_n^{(\gamma+\varepsilon)_1^{\omega}} \nleftrightarrow (X_{n+1})_1 \bigoplus H_n^{(\gamma+\varepsilon)}$$

this contradicts (4). Thus $A = \emptyset$ and the proposition is proved. \Box

Theorem 2.4. Let X_n be a Banach space containing some maximal factor H_n which is uniformly convex, $\omega \le \alpha < \omega_1$, $\varepsilon > 0$ ordinals and U_n an infinite compact metric space. Then

(a) $C([0, \alpha], X_n) \sim C([0, \alpha + \varepsilon], X_n) \Leftrightarrow 1 + \varepsilon < \alpha^{\omega - 1}$. (b) $C(I, X_n) \sim C(U_n, X_n) \Leftrightarrow U_n$ is uncountable.

Proof. By Bessaga and Pełczyn' ski's theorem and Milutin's theorem the conditions areof course sufficient. Let us show that they are also necessary. Since H_n is a maximal factor of X_n there exists a subspace X_{n+1} of X_n such that

$$\begin{array}{l} X_n = X_{n+1} \bigoplus H_n \ and \ H_n \ \not \rightarrow (X_{n+1})^j, \forall 1 \le j < \omega.(9) \\ \text{(a) Suppose then that } \omega \le \alpha < \omega_1, \varepsilon > 0 \text{ and} \end{array}$$

$$(X_n)^{\alpha} \sim (X_n)^{\alpha+\varepsilon}$$

Assume the contrary that $\alpha^{\omega-1} \leq \varepsilon + 1$. Thus we have

 $H_n^{\alpha^{\omega}} \hookrightarrow (X_n)^{\alpha^{\omega}} \hookrightarrow (X_n)^{\alpha+\varepsilon} \sim (X_n)^{\alpha} \sim (X_{n+1})^{\alpha} \oplus H_n^{\alpha}$. (10) As we noticed in the proof of Proposition 2.3, H_n contains no copy of c_0 and since (9) holds, it follows from [4]

As we noticed in the proof of Proposition 2.3, H_n contains no copy of c_0 and since (9) holds, it follows from [4] That

$$H_n \not\rightarrow (X_{n+1})^d$$

Hence according to Proposition 2.3, (10) cannot hold. So we are done. (b) Finally suppose that

$$C(I,X_n) \sim C(U_n,X_n),$$

for some infinite compact metric space U_n . We assume that U_n is countable and derive a contradiction. So by Mazurkiewiczand Sierpin' ski's theorem there exists an infinite countable ordinal α such that U_n is homeomorphic to $[0, \alpha]$. Consequently

$$H_n^{\alpha^{\omega}} \hookrightarrow (X_n)^{\alpha^{\omega}} \hookrightarrow \mathcal{C}(I, X_n) \sim (X_n)^{\alpha}.$$

Hence proceeding as in (10) we obtain the required contradiction. Thus Theorem 2.4. is proved.

III. Applications

In this section we devoted to providing some applications of Theorem 1.3 together with Theorem 1.1. Let us begin recalling if U_n is a compact Hausdorff space, the derivative of a subset Aof U_n is defined to be the set of limits points of A. Thus a transfinite inductive sequence is defined as follows: $A^{(0)} = A_n A^{(1)}$ is the derivative of A, in general suppose $A^{(\alpha)}$ has been defined for all ordinals $0 < \varepsilon$, if $\alpha + \varepsilon = \gamma + 1$, then $A^{(\alpha + \varepsilon)}$ is the derivative of $A^{(\gamma)}$, otherwise $A^{(\alpha+\varepsilon)} = \bigcap_{0 \le \varepsilon} A^{(\alpha)}$.

Theorem 3.1Let $1 , <math>\varepsilon > 0$. Then for every infinite countable compact metric spaces $U_{n+1}, U_{n+2}, U_{n+3}$ and U_{n+4}

$$C(U_{n+1}, l_p) \bigoplus C(U_{n+2}, l_{p+\varepsilon}) \sim C(U_{n+3}, l_p) \bigoplus C(U_{n+4}, l_{p+\varepsilon}) \Leftrightarrow C(U_{n+1}) \sim C(U_{n+3}) \text{ and } C(U_{n+2})$$
$$\sim C(U_{n+4}).$$

Proof. Let us show the non-trivial implication. So suppose that

 $C(U_{n+1}, l_p) \oplus C(U_{n+2}, l_{p+\varepsilon}) \sim C(U_{n+3}, l_p) \oplus C(U_{n+4}, l_{p+\varepsilon}).$ (11)

Observe that Theorem 1.1(a) means that the spaces $C([0, \omega^{\omega^{\gamma}}])$ for $0 \leq \gamma < \omega_1$ are a complete set of representatives of theisomorphism classes of $C(U_n)$ where U_n is countably infinite, compact metric space. Then, let $\delta_1, \delta_2, \delta_3$ and δ_4 be ordinals such that for every $1 \le i \le 4$

$$C(U_{n+i}) \sim C\left(\left[0, \omega^{\omega^{\delta_i}}\right]\right)$$

Fix $\omega < (\alpha + \varepsilon) < \omega_1$ satisfying $(\alpha + \varepsilon) > \delta_i$ for every $1 \le i \le 4$. Now, for every $1 \le i \le 4$ consider the following compact metric spaces

$$F_{i} = \left[0, \omega^{\omega^{\delta_{i}}}\right] \times \left[0, \omega^{\omega^{(\alpha+\varepsilon)}}\right].$$

Since that $[0, \omega^{\lambda}](\lambda) = \{\omega^{\lambda}\}$ for every ordinal λ [5], it follows that $(F_i)^{(\omega^{(\alpha+\varepsilon)})} = [0, \omega^{\omega^{\delta_i}}] \times [0, \omega^{\omega^{(\alpha+\varepsilon)}}],$

and therefore

$$(F_i)^{\left(\omega^{(\alpha+\varepsilon)}+\omega^{\delta_i}\right)} = \left((F_i)^{\left(\omega^{(\alpha+\varepsilon)}\right)}\right)^{\omega^{\delta_i}} = \left\{\left(\omega^{\omega^{(\alpha+\varepsilon)}}, \omega^{\omega^{\delta_i}}\right)\right\}.$$

Hence by $[5]F_i$ is homeomorphic to $[0, \omega^{(\omega^{(\alpha+\varepsilon)}+\omega^{\circ i})}]$, for every $1 \le i \le 4$. Set $U_{n+5} = [0, \omega^{\omega^{(\alpha+\varepsilon)}}]$. So again by Theorem 1.1(a) we have

$$C\left(\left[0,\omega^{\left(\omega^{(\alpha+\varepsilon)}+\omega^{\delta_{i}}\right)}\right]\right) \sim C\left(\left[0,\omega^{\omega^{(\alpha+\varepsilon)}}\right]\right).$$

Hence

$$C(U_{n+i} \times U_{n+5}) \sim C(F_i) \sim C\left(\left[0, \omega^{\left(\omega^{(\alpha+\varepsilon)}+\omega^{\delta_i}\right)}\right]\right) \sim C\left(\left[0, \omega^{\omega^{(\alpha+\varepsilon)}}\right]\right) \sim C(U_{n+5}), \quad (12)$$

and

 $C(U_{n+5}) \oplus C(U_{n+i}) \sim C\left(\left[0, \omega^{\omega^{(\alpha+\varepsilon)}}\right] \oplus \left[0, \omega^{\omega^{\delta_i}}\right]\right) \sim C\left(\left[0, \omega^{\left(\omega^{(\alpha+\varepsilon)}+\omega^{\delta_i}\right)}\right]\right) \sim C(U_{n+5}).(13)$ On the other hand, by (11) we deduce

 $\mathcal{C}(U_{n+5}, l_p) \oplus \mathcal{C}(U_{n+1}, l_p) \oplus \mathcal{C}(U_{n+2}, l_{p+\varepsilon}) \sim \mathcal{C}(U_{n+5}, l_p) \oplus \mathcal{C}(U_{n+3}, l_p) \oplus \mathcal{C}(U_{n+4}, l_{p+\varepsilon}).$ (14) Thus by (13) and (14), we infer

$$C(U_{n+5}, l_p) \oplus C(U_{n+2}, l_{p+\varepsilon}) \sim C(U_{n+5}, l_p) \oplus C(U_{n+4}, l_{p+\varepsilon}).$$

But in view of (12) we conclude

$$\mathcal{C}(U_{n+2} \times U_{n+5}, l_p) \oplus \mathcal{C}(U_{n+2}, l_{p+\varepsilon}) \sim \mathcal{C}(U_{n+4} \times U_{n+5}, l_p) \oplus \mathcal{C}(U_{n+4}, l_{p+\varepsilon}),$$

that is

$$C(U_{n+2}, C(U_{n+5}, l_p)) \oplus C(U_{n+2}, l_{p+\varepsilon}) \sim C(U_{n+4}, C(U_{n+5}, l_p)) \oplus C(U_{n+4}, l_{p+\varepsilon})$$

Consequently,

$$C(U_{n+2}, C(U_{n+5}, l_p) \oplus l_{p+\varepsilon}) \sim C(U_{n+4}, C(U_{n+5}, l_p) \oplus l_{p+\varepsilon}).$$

Furthermore, by [2] and [4] we know that $C(U_{n+5}, l_p)$ contains no copy of $l_{p+\epsilon}$. Hence by Theorem 1.3, we conclude that $C(U_{n+2})$ is isomorphic to $C(U_{n+4})$. Analogously we prove that $C(U_{n+1})$ is isomorphic to $C(U_{n+3}).\square$

Theorem 3.2. Let U_n be an infinite countable compact space and 1 . Then for every infinite countablecompact metric spaces U_{n+1} and U_{n+2}

 $\mathcal{C}(U_n) \oplus \mathcal{C}(U_{n+1}, l_p) \sim \mathcal{C}(U_n) \oplus \mathcal{C}(U_{n+2}, l_p) \Leftrightarrow \mathcal{C}(U_{n+1}) \sim \mathcal{C}(U_{n+2}).$

Theorem 3.3. Let X_n be a separable Banach space, $1 and <math>\Gamma$ an uncountable set. Then for every infinite compact metric spaces U_{n+1} and U_{n+2}

 $\mathcal{C}(I,X_n) \oplus \ \mathcal{C}(U_{n+1},l_p(\Gamma)) \ \sim \ \mathcal{C}(I,X_n) \oplus \ \mathcal{C}(U_{n+2},l_p(\Gamma)) \ \Leftrightarrow \ \mathcal{C}(U_{n+1}) \ \sim \ \mathcal{C}(U_{n+2}).$ **Proof.** Observe that by the Milutin theorem

 $\mathcal{C}(I,X_n) \sim \mathcal{C}(U_n \times I,X_n) \sim \mathcal{C}(U_n,\mathcal{C}(I,X_n)),$

for every infinite compact metric space U_n . Therefore

$$C(I, X_n) \oplus C(U_n, l_p(\Gamma)) \sim C(U_n, C(I, X_n) \oplus l_p(\Gamma)).$$

Thus by Theorem 1.3 we are done.□

References

- [1]. E.M. Bator, Unconditionally converging and compact operators on c₀, Rocky Mountain J. Math. 22 (2) (1992) 417–422.
- [2]. C. Bessaga, A. Pełczyn' ski, Spaces of continuous functions, IV, Studia Math. XIX (1960) 53-61.
- [3]. J.A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (3) (1936) 396–414.
- [4]. E.M. Galego, On subspaces and quotients of Banach spaces C(K, X), Monatsh. Math. 136 (2) (2002) 87–97.
- [5]. H.E. Lacey, The Isometric Theory of Classical Banach Spaces, Grundlehren Math. Wiss., vol. 208, Springer-Verlag, New York-Heidelberg, 1974.
- [6]. W.B. Johnson, J. Lindenstrauss, Basic concepts in the geometry of Banach spaces, in: Handbook of the Geometry of Banach Spaces, North-Holland Publishing Co., Amsterdam, 2001, pp. 1–84.
- [7]. S. Mazurkiewicz, W. Sierpin´ski, Contribution a la topologie des ensembles denombrables, Fund. Math. 1 (1920) 17–27.
- [8]. V.D. Milman, Geometric theory of Banach spaces, I: Theory of basic and minimal systems, Russian Math. Surveys 25 (1970) 111– 170.
- [9]. A.A. Milutin, Isomorphisms of spaces of continuous functions on compacts of power continuum, TieoriaFunc. (Kharkov) 2 (1966) 150–156 (in Russian).
- [10]. B.J. Pettis, A proof that every uniformly convex space is reflexive, Duke Math. J. 5 (1939) 249–253.
- [11]. H.P. Rosenthal, Some recent discoveries in the isomorphic theory of Banach spaces, Bull. Amer. Math. Soc. 5 (1978) 803-831.
- [12]. H.P. Rosenthal, The Banach space C(K), in: Handbook of the Geometry of Banach Spaces, North-Holland Publishing Co., Amsterdam, 2001, pp. 1547–1602.
- [13]. Elói Medina Galego. The C(K, X) spaces for compact metric spaces K and X with a uniformly convex maximal factor. J. Math. Anal. Appl. 384 (2011) 357–365.

Ahmed M.H.Yahya. "Application for sequence of compact metric spaces U_nand X_n." *IOSR Journal of Mathematics (IOSR-JM)*, 17(5), (2021): pp. 14-19.