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I. Introduction 
It is found from literature that during the recent years many topologists are interested in the study of 

generalized type of closed sets.  For instance, a certain form of generalized closed sets was initiated by Levine 
[7].  Following this trend, we have introduced and investigated a kind of generalized closed sets the definition 

being formulated in terms of grills.  The concept of grill was first introduced by Choquet [2] in the year 1947.  

From subsequent investigations it is revealed that grills can be used as an extremely useful device for 

investigation of a number of topological Problems. 

Many topologists have put forth various types of generalizations of continuity T. M Nour[8] 

introduced and studied totally semi continuous function.  In this paper we study totally        continuous 

function. 

 

II. Preliminaries 
Definition 2.1:     A nonempty collection G of non-empty subsets of a topological space X is called a grill if (i) 

                                                         
Let G be a grill topological space          an operator             was defined by          /     
                 denotes the neighborhood of x.  Also the map              given by         
     for all       . Corresponding to a grill G on a topological space       there exists a unique topology  G 

on X given by  G       /            where for any                   G – cl(A). 

 

 

Thus a subset A of X is  G – closed (resp.  G – dense in itself) if        or equivalently if        (resp. 

         
In the next section, we introduce and analyze a new class of generalized continuity, called totally         

continuity.  Throughout the paper, by a space X, we always mean a topological space(X,   with no separation 

properties assumed.  If      we shall adopt the usual notations int(A) and cl(A) respectively for the interior  

of A and closure of A in (X, ).  Similarly, whenever we say that a subset A of a space X is open (or closed), it 

will mean that A is open (or closed) in (X,    For open and closed set with respect to any other topology on X, 

eg.  G we shall write G – open  G – closed.  The collection of all open neighborhoods of a point x in(X,    will be 

denoted  (x). (X,  , G) denotes a topological space(X,  ) with a grill G. 

Definition 2.2:  A subset A of a topological space (X, ) is called 

1. b open if                         
2. b*g closed if cl(A)                                

3. (b*g)*closed if cl(A)    whenever A   and U is b*g open 

4.  closed if A=       where                                         
5.  closed if A=         where                                          . 
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Definition 2.3:A function f: (X,  )       is called totally continuous if    (V) is clopen in X, for every open 

set V of Y. 

3. TOTALLY        CONTINUOUS FUNCTION 

Definition 3.1:  A subset A of a (X, ,G) is called         closed if         whenever A   and U is b*g 

open in X. 

Definition3.2:A function f: (X, ,G)        is called totally         continuous of    (V) is        clopen in X, 

for every open set V of Y. 

 

Theorem 3.3:  The following statements are equivalent for a function f: (X,  , G)        
1. f is totally         continuous 

2. For each x X and for each open set V of Y containing f(x) there exists a         clopen set U of X such 

that         
 

Proof  : (i) => (ii) 

Let  x Xand V be open in y containing f(x).  Then x f-1(V) which is        clopen in X. f(   (V))    

 
(ii) => (i) 

Let V be open in Y and x    (V).  Then f(x)     There exists a        clopen set Ux of X such that f(Ux) V.  

Hence Ux    (V).     (V) =              , which is        clopen in  X. 

 

Remark3.4:  It is clear that every totally         continuous function is         continuous.  But the converse 

need not be true can be seen from the follow example. 

Example3.5:Let X={a,b,c},                                                Define                 

to be the identity function f is G(b*g)* continuous but not totally G(b*g)* continuous as   ({a})={a} is not         

closed. 

Remark3.6:  It is clear that totally continuous function is totally         continuous.  But the converse need not 

be true can be seen from the following example. 

Example 3.7:Let X={a,b,c}                           G={{b, c} , X}Define                 by f(a)=a, 

f(b)= a, f(c)=b  

 f is totally         continuous but not totally continuous as f-1({a}) = {a, b} is not closed. 

Definition3.8:A space        is said to be         space if every         open set of X is open in X. 

Theorem3.9:A function                 is totally         continuous and X is         space then f is totally 

continuous 

Proof :Let V be open in Y.  Then f-1(V) is         clopen in X.  As X is a          space    (V) is clopen. 

Definition3.10:A topological space X is said to be         connected if it cannot be written as the union of two 

nonempty disjoint         open sets. 

Theorem  3.11:If f is a totally         continuous function from a         connected space X onto any space Y, 

then Y is an indiscrete space. 

 

Proof :If possible let Y be not indiscrete.  Let A be a proper nonempty open subset of Y.  Then    (A) is a 

proper nonempty         clopen subset of X, which is a contradiction to the fact that X is        connected. 

Theorem 3.12  A topologicalspace (X,   )is         connected if and only if every totally         continuous 

function from a space (X,     into any T0 space (Y,  is constant. 

Proof:  Let X be not         connected.  Let every totally         continuous function from (X,     to (Y,    be 

constant.  Since (X,     is not         connected there exists a proper nonempty         clopen subset A of X.  

Let Y = {a, b},                 be a topology on Y.  Let f: (X,           be a function such that f(A)= 

{a}, f(Y-A)={b}.  Then f is non constant and totally G(b*g)* continuous such that Y is T0 which is a 

contradiction.  Hence X must be         connected.   

Conversely, let X be         connected.  Let f: X    be totally         continuous.  Let a, b be distinct points of 

X such that f(a) =                and they are distinct.  As Y is    there exists open set U containing   

but not  .  So U is a proper open subset of Y.    (U) is a proper         clopen subset of X, which contradicts X 

is         connected. Hence f must be constant. 

Theorem 3.13:  Let                 be a totally         continuous function and Y is    space.  If A is a 

nonempty         connected subset of X, then f(A) is a single point. 

Proof:Obvious. 



TOTALLY         Continuous Function in Grill Topological Spaces 

DOI: 10.9790/5728-1706011117                            www.iosrjournals.org                                                 13 | Page 

Lemma 3.14:If                and B          O(Y) then A x B         O(X x Y). 

Theorem 3.15: If the function fi: Xi  Yiis totally         continuous function for each i=1, 2 then f1 x f2 : X1 x 

X2  Y1 x Y2 defined by (f1 x f2)(x1 : x2)=(f1(x1), f2(x2)), for each x1  X1, x2  X2 is totally         continuous. 

Proof:  Let    x    O(   x   ) then     O(  ),     O(  ).  
   (  ) G(b*g)* CO(X1),   

  (  )          

CO(X2)  (f1 x f2)
-1 (   x V2) = (  

   (  ),  
  (  )) = (  

   (  ) x   
  (  ))   G(b*g)* CO(X1 x X2).  Hence f1 x f2 is 

totally         continuous. 

Definition 3.16:  Let (X,     be a topological space.  Then the set of all points y in X such that x and y cannot 

be separated by         separation of X is said to be the quasi         component of X. 

Theorem 3.17:  Let f : (X,            be a totally         continuous function from a grill topological space 

X into a T1 space Y.  Then f is constant on each quasi        component. 

Proof:  Let x, y   X that lie in the same quasi         component of X.   Let f(x) =            Since Y is T1, 

    is closed in Y and       is open in Y.  Since f is totally         continuous f-1      and f-1        are 

disjoint         clopen subsets of X.  Further x  f-1({ })  and y     (Y – {     which is a contradiction to the 

fact that x and y belongs to the same quasi         component of X.  Hence the Theorem. 

 

Definition 3.18:A         frontier of a subset A of X is         (Fr(A) =        (cl(A))        (cl(X – A)). 

 

Theorem 3.19:The set of all points x    in which a function f :(              is not totally         

continuous is the union of         frontier of the inverse images of open sets containing f(x) if arbirtrary union 

of         clopen sets in X is         clopen in X. 

 

Proof:  Let A = { x      is not totally        continuous at x}.  Let B be the union of         frontier of the 

inverse images of open sets containing f(x).  Let x   .  Then there exists an open set V of Y containing f(x) 

such that f(U) is not contained in V for each U              containing x.  Hence x         cl(X –    (V)).  

On the other hand x     (V)          cl(   (V). So x          Fr(   (V).  Hence    .  Conversely, let f 

be totally         continuous at x   X.  Let V be open in Y containing f(x).  Then there exists U          

CO(X) containing x such that f     .  That is      (V).  Hence x         int(   (V).  x          cl(X – 

   (V).  Hence x          Fr    (V).  So x   A implies x      Hence x      

 

Theorem3.20:  Let {   :       be any family of topological spaces.  If f: X       is a totally         

continuous function, then   :     is totally         continuous function for each      where    is the 

projection of      onto     
 

Proof:  We shall consider a fixed       Suppose    is an arbitrary open set in      Then  
  (    is open in 

    .  Since f is totally         continuous, we have by    (  
  (    )     o f)-1(  ) is         clopen in X.  

Hence the assertion. 

Definition 3.21:  i) A filter base A is said to be         co-convergent to a point x   X, if for any U          

CO(X)  containing x, there exists B    such that      
ii) A filter base A is said to be convergent to a point x    of for any U       containing x, there exists B 

  such that B     
 

Theorem3.22:  If a function f: (X,            is totally         continuous, then for each point x    and each 

filter base A in X          co-convergent to x, the filter base f(A) is convergent to f(x) . 

 

Proof:  Let x    and A be any filter base in X,        co-convergent to x.  Since f is totally         continuous 

then for any V       containing f(x) there exists a U          CO(X) containing x such that f(U)       Since A 

is         co-convergent to x, there exists a B    such that       This implies f(B)      Hence the filter base 

f(A) converges to f(x). 

4 Covering Properties 

Definition 4.1:A space         is said to be           if for any two distinct points x and y of X, there exists 

disjoint         open sets U and V such that    and    .   

Theorem 4.2:If arbitrary intersection of         closed sets is         closed in a grill topological space X, then 

X is         T2 if and only if for any two distinct points x and y of X, there exists a         neighborhood Ny of y 

such that x           . 
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Proof :Let X be G(b*g)* T2.  Let x and y be distinct points of X.  Then there exists         open sets U and V 

such that         and          But        implies       so           Put X – U = 

  .We have            =         cl(X – U) = X – U =    as X – U is         closed.     is a         

neighbourhood of y such that           cl   . 

Conversely, let X be a grill topological space such that for any two distinct points x and y of X, there exists 

        neighbourhood    of y such that x         cl            cl    is also         neighbourhood of y.  

Since         cl             closed, X –         cl    is         open.  x         cl   implies x           cl 

  . As    is a         neighbourhood of y, there exists a         open set U that y    and (X –         cl   ) 

     .  Hence X is          . 

 

Theorem 4.3:If arbitrary intersection of         closed sets is         closed in a grill topological space X, then 

X is           if for any two distinct points x and y of X, there exists a         open sets U and V such that x 

      and         clU        clV =   

Proof:Let X be a grill topological space.  Let x and y be distinct points of X.  Then there exists         open sets 

U and V such that         and         clU        clV =     V is a         neighbourhood of y such that x 

         cl V, as x          cl U.  Hence by the above theorem X is          . 

 

Lemma 4.4:Let arbitrary intersection of         closed sets be         closed in a grill topological space X and 

let f :               be a totally         continuous injective function.  If Y is   , then X is         . 

 

Proof :Let x and y be any pair of distinct points of X.  Then f(x)         Since Y is    there exists an open sets 

U containing f(x) but not f(y).  Then x     (U) and y     (U).  As f is totally         continuous,    (U) is 

        clopen in X.  Also x     (U) and y  x –    (U).  By the above theorem X is          . 

 

Definition 4.5:A grill topological space X is said to be         compact if every         open cover of X has a 

finite subcover. 

 

Definition 4.6:A subset A of grill topological a space X is said to be         cocompact relative to X if every 

cover of A by         clopen sets of X has a finite subcover. 

 

Definition 4.7:  A subset A of a grill topological space X is said to be         cocompact if the subspace A is 

        cocompact. 

 

Theorem 4.8:If arbitrary union of         clopen sets             clopen for a grill topological space X and a 

function f :               is totally         continuous and A is         cocompact relative X, then f(A) is 

compact in Y. 

 

Proof :Let {         be any cover of f(A) by open sets of the subspace f(A).  For each      there exists an open 

set   of Y such that            .  For each     there exists      such that f(x)     and there exists 

Ux         CO(X) containing x such that f(Ux)        Since the family {Ux : x   A} is a cover of A by         

clopen sets of X, there exists a finite subset    of A such that A    Ux : x    }.   

Therefore we obtain f(A)    f(Ux) : x    } which is a subset of {           Thus f(A) = U {    
       A0} = U{       A0}. Hence f(A) is compact. 

 

Corollary 4.9:If arbitrary union of         clopen sets is         clopen in grill topological space X and if f : 

              is totally G(b*g)* continuous surjective function and X is         cocompact, the Y is compact. 

 

Proof: Follows from the above theorem 

 

Definition 4.10:A grill topological space X is said to be 

I) Countably         cocompact if every         clopen countable cover of X has a finite subcover 

II)         co-Lindelof if every         clopen cover of X has a countable subcover. 

Theorem 4.11:Let f : f :               be a totally         continuous surjective function.  Then the 

following statements hold: 

I) If X is         co-Lindelof, the Y is Lindelof 
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II) If X is countably         cocompact, the Y is countably compact 

Proof: i) Let           be an open cover of Y.  Since f is totally         continuous then {              is a 

        clopen cover of X.  Since X is         co-Lindelof, there exists a countable subset I0 of I such that X = 

U{                Then Y = U{         and hence Y is Lindelof. 
ii) similar to (i) 

 

Definition 4.12:A grill topological space X is said to be 

I)         co  , if for each pair of distinct points x and y of X, there exist         clopen sets U and V 

containing x and y respectively such that y    and x     
II)         coT2, if for each pair of distinct points x and y of X, there exist  disjoint         clopen sets U 

and V in X such that x   and y    
Theorem 4.13:If f :               is a totally         continuous injective function and Y is   , then X is 

        co  . 

 

Proof:Suppose Y is    for any distinct points x and y in X, there exists V, W      such thatf(x)           

and f(y)             Since f is totally        continuous f-1(V) and f-1(W) are         clopen subsets of 

        such that x     (V) y     (V) and y     (W), x         (W).  This shows X is         co   . 

 

Theorem 4.14:  If f :               is a totally         continuous injective function and Y is T2, then X is 

        coT2. 

 

Proof:For any pair of distinct points x and y in X, there exists disjoint open sets U and V in Y such that           

f(x)             Since f is totally         continuous    (U) and    (V) are         clopen in X containing x and 

y respectively.   (U)     (V)   because           This shows X is         co T2. 

 

Definition 4.15:A grill topological space X is called         coregular if for each                set F and each 

point     F, there exists disjoint open sets U and V such that      and       
 

Definition 4.16:A grill topological space X is said to be         conormal if for any pair of distinct 

       clopen sets F1 and F2, there exists disjoint open sets U and V such that      and       

Definition 4.17:  If f is totally         continuous injective open function from a         coregular space X onto 

a space Y, the Y is regular. 

Proof:Let F be a closed set of Y and y   F.  Take y = f(x) sincef is totally        continuous f-1(F) is a         

clopen set.  Take G = f-1(F) we have x   G.  Since X is         coregular, there exists disjoint open sets U and V 

such that G  U and x   V.  We obtain that F = f(G)   f(U) and y = f(x)   f(V) such that f(U) and f(V) are 

disjoint open sets.  Hence Y is regular. 

 

Theorem 4.18:If f is totally         continuous injective open function from a         conormal space X onto a 

space Y, then Y is normal. 

 

Proof:  Similar to the above proof. 

 

Definition 4.19:For a function f                , the subset {(x, f(x)) : x   X}   X x Y is called the graph 

of f and is denoted by G(f). 
 

Definition 4.20:A graph G(f) of a function f                 is said to be strongly         co-closed if for 

each (x , y)              there exist U          CO(X) containing x and V   O(Y) containing y such that (U 

x V)           
 

Lemma 4.21:A graph G(f) of a function                   is strongly        co-closed in X x Y if and only 

if for each (x, y)   (X x Y)  –       there exist           CO(X) containing x and        containing y such that 

f(U)         
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Proof:  Let G(f) be strongly        - co-closed.  Let (x, y)   (X x Y) – G(f).  Then there exist         clopen set 

U containing x and V   O(Y) containing y such that (U   V) x G(f) =     That is V            That is V 

          
Conversely, let for each (x, y)   (X x Y) – G(f), there exist U          CO(X) containing x and V   O(Y) 

containing y such that f(U)      Let y     y            That is y       for any x.  That is V            
This implies (U x V)   (X x f(X))     
That is (U x V)          
 

Theorem 4.22:  Let                  has a strongly         co-closed graph G(f).  If f is injective, then X 

is         Co     
 

Proof:  Let x and y be any two distinct points of X.   

Then, we have (x, f(y))   (X x Y) – G(f).   

By the above Lemma there exist         clopen set U of X and V   O(Y) such that (x, f(y))   (U x V) and f(U) 

        
Hence U      (V)   , x    and y      (V). 

Hence X is         co     

 

Theorem 4.23: If arbitrary union of         clopen sets is         clopen in a grill topological space X and 

                 is a totally         continuous and Y is   , then G(f) is strongly         co-closed in the 

product space X x Y. 
 

Proof:  Let (x , y)  (X x Y) –        Then         and there exist open sets    and    such that            
                    From hypothesis, there exists U          CO(X, x) such that f(U)   V1.  Therefore we 

obtain f(U)   V2      So G(f) is strongly         co-closed graph. 

 

Definition 4.24: A function                  is said to be: 

I) Totally         irresolute if the preimage of         clopen subset of Y is         clopen in X 

II) Totally pre         clopen if the image of every         clopen subset of X is         clopen in Y 

 

Theorem 4.25: Let                be surjective and totally         irresolute and totally pre         

clopen and              be any function.  Then g o f               is totally         continuous if and 

only if g is totally         continuous. 

 

Proof:  Let g be totally         continuous.  Let V be open in Z.     (V) is         clopen in Y.    ((   (V)) is 

        clopen in X.  Hence g o f is totally         continuous.   

Conversely, let g o f :              be totally         continuous.  Let V be open in Z.  Then (g o f)-1(V) is 

        clopen in X.  That if    ((   (V)) is         clopen.  Since f is totally pre         clopen, f(   ((   (V))) 

is         clopen in Y. That is    (V) is         clopen in Y.  Hence g is totally         continuous. 

 

Theorem 4.26: Let                 has a strongly         co-closed graph G(f).  If f is surjective totally 

pre         clopen function, then Y is           space. 

 

Proof:  Let    and    be distinct points of Y.  Since f is surjective f(x) = y1, for some x      (x, y2)   (X x Y) – 

G(f).  There exist U           CO(X) and V       such that (x, y2)  U x Y and (U x Y)            Then 

we have f(U)        Since f is totally pre        clopen f(U) is        clopen such that f(x) =           

Hence Y is          . 
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