TOTALLY G_{(b*g)*} Continuous Function in Grill Topological Spaces

M.Kanchana¹, V. Senthil Kumaran², Y. Palaniappan³

1. M. Phil, Scholar, Aringar Anna Government Arts College, Musiri, Tamil Nadu, India.

- 2. Associate Professor of Mathematics, Aringar Anna government Arts College, Musiri, Tamil Nadu, India,
- 3. Associate Professor of Mathematics (Retd.), Aringar Anna Government Arts College, Musiri, Tamil Nadu,

India.

Abstract : The purpose of this paper is to introduce and study a new class of totally continuous function called totally $G_{(b*g)*}$, continuous function, Its relation to other continuous function are obtained. **Keywords :** (b*g)* closed, $G_{(b*g)*}$ closed, totally $G_{(b*g)*}$ continuous function 2010 AMS subject classification : 54B05, 54C05

Date of Submission: 12-11-2021

Date of Acceptance: 28-11-2021

I. Introduction

It is found from literature that during the recent years many topologists are interested in the study of generalized type of closed sets. For instance, a certain form of generalized closed sets was initiated by Levine [7]. Following this trend, we have introduced and investigated a kind of generalized closed sets the definition being formulated in terms of grills. The concept of grill was first introduced by Choquet [2] in the year 1947. From subsequent investigations it is revealed that grills can be used as an extremely useful device for investigation of a number of topological Problems.

Many topologists have put forth various types of generalizations of continuity T. M Nour[8] introduced and studied totally semi continuous function. In this paper we study totally $G_{(b*g)*}$ continuous function.

II. Preliminaries

Definition 2.1: A nonempty collection G of non-empty subsets of a topological space X is called a grill if (i) $A \in G$ and $A \subseteq B \subseteq X \implies B \in G$ and (ii) $A, B \subseteq X$ and $A \cup B \in G \implies A \in G$ or $B \in G$.

Let G be a grill topological space (X, τ) In an operator $\Phi : P(x) \to P(x)$ was defined by $\Phi(A) = \{X \in X/U \cap A \in G, \forall U \in \tau(x)\}, \tau(x)$ denotes the neighborhood of x. Also the map $\Psi: P(X) \to P(X)$, given by $\Psi(A) = \{A \cup \Phi(A) \text{ for all } A \in P(X).$ Corresponding to a grill G on a topological space (X, τ) there exists a unique topology τ_G on X given by $\tau_G = \{U \subseteq X/\Psi(X - U) = X - U\}$ where for any $A \subseteq X, \Psi(A) = A \cup \Phi(A) = \tau_{G-} cl(A)$.

Thus a subset A of X is τ_G – closed (resp. τ_G – dense in itself) if $\psi(A) = A$ or equivalently if $\Phi(A) \subseteq A$ (resp. $A \subseteq \Phi(A)$).

In the next section, we introduce and analyze a new class of generalized continuity, called totally $G_{(b*g)*}$ continuity. Throughout the paper, by a space X, we always mean a topological space(X, τ) with no separation properties assumed. If $A \subseteq X$, we shall adopt the usual notations int(A) and cl(A) respectively for the interior of A and closure of A in (X, τ). Similarly, whenever we say that a subset A of a space X is open (or closed), it will mean that A is open (or closed) in (X, τ). For open and closed set with respect to any other topology on X, eg. τ_G we shall write τ_G – open τ_G – closed. The collection of all open neighborhoods of a point x in(X, τ) will be denoted $\tau_{(x)}$. (X, τ , G) denotes a topological space(X, τ) with a grill G.

- **Definition 2.2:** A subset A of a topological space (X,τ) is called
- 1. b open if $A \subseteq int cl(A) \cup cl(int(A))$
- 2. b^*g closed if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is b open
- 3. $(b^*g)^*$ closed if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is b^*g open
- 4. θ closed if A= θ cl(A) where θ cl(A) = { x \in X : cl(U) \cap, A \neq \theta \forall U \in \tau \text{ and } X \in U }
- 5. δ closed if A= δ cl(A) where δ cl(A) = { x \in U: int(cl(U) \cap A \neq \theta, \forall U \in \tau and x \in U)}.

Definition 2.3: A function f: $(X, \tau) \rightarrow (y, \sigma)$ is called totally continuous if $f^{-1}(V)$ is clopen in X, for every open set V of Y.

3. TOTALLY $G_{(b*g)*}$ CONTINUOUS FUNCTION

Definition 3.1: A subset A of a (X,τ,G) is called $G_{(b*g)*}$ closed if $\Phi(A) \subseteq U$ whenever $A \subseteq U$ and U is b^*g open in X.

Definition 3.2: A function f: $(X,\tau,G) \rightarrow (Y,\sigma)$ is called totally $G_{(b*g)*}$ continuous of $f^{-1}(V)$ is $G_{(b*g)*}$ clopen in X, for every open set V of Y.

Theorem 3.3: The following statements are equivalent for a function f: $(X, \tau, G) \rightarrow (Y, \sigma)$.

1. f is totally $G_{(b*g)*}$ continuous

2. For each $x \in X$ and for each open set V of Y containing f(x) there exists a $G_{(b*g)*}$ clopen set U of X such that $f(U) \subseteq V$.

Proof : (i) => (ii)

Let x \in X and V be open in y containing f(x). Then x \in f¹(V) which is G_{(b*g)*} clopen in X. f(f⁻¹(V)) \subseteq V

(ii) => (i)

Let V be open in Y and $x \in f^{-1}(V)$. Then $f(x) \in V$. There exists a $G_{(b*g)*}$ clopen set U_x of X such that $f(U_x) \subseteq V$. Hence $U_x \subseteq f^{-1}(V)$. $f^{-1}(V) = U_{x \in f^{-1}(V)} U_x$, which is $G_{(b*g)*}$ clopen in X.

Remark3.4: It is clear that every totally $G_{(b*g)*}$ continuous function is $G_{(b*g)*}$ continuous. But the converse need not be true can be seen from the follow example.

Example3.5:Let X={a,b,c}, $\tau = \{\Phi, \{a\}, X\} G = \{\{a, \}, \{b\}, \{c\}, \{a, c\}, \{a, c\}, \{b, c\}, X\}$ Define f: (X, τ, G) \rightarrow (X, τ) to be the identity function f is $G_{(b^*g)^*}$ continuous but not totally $G_{(b^*g)^*}$ continuous as $f^{-1}(\{a\})=\{a\}$ is not $G_{(b^*g)^*}$ closed.

Remark3.6: It is clear that totally continuous function is totally $G_{(b*g)*}$ continuous. But the converse need not be true can be seen from the following example.

Example 3.7:Let X={a,b,c} $\tau = {\Phi, {a}, {b}, {a, b}, {a, c}X}G={\{b, c}, X}Define f: (X, \tau, G) \rightarrow (X, \tau) by f(a)=a, f(b)=a, f(c)=b$

f is totally $G_{(b*g)*}$ continuous but not totally continuous as $f^{-1}(\{a\}) = \{a, b\}$ is not closed.

Definition 3.8: A space (X, τ, G) is said to be $T_{G(b*g)*}$ space if every $G_{(b*g)*}$ open set of X is open in X.

Theorem3.9: A function $f: (X, \tau, G) \rightarrow (Y, \sigma)$ is totally $G_{(b*g)*}$ continuous and X is $T_{G(b*g)*}$ space then f is totally continuous

Proof :Let V be open in Y. Then $f^{1}(V)$ is $T_{G(b*g)*}$ clopen in X. As X is a $T_{G(b*g)*}$ space $f^{-1}(V)$ is clopen.

Definition3.10: A topological space X is said to be $G_{(b*g)*}$ connected if it cannot be written as the union of two nonempty disjoint $G_{(b*g)*}$ open sets.

Theorem 3.11: If f is a totally $G_{(b*g)*}$ continuous function from a $G_{(b*g)*}$ connected space X onto any space Y, then Y is an indiscrete space.

Proof : If possible let Y be not indiscrete. Let A be a proper nonempty open subset of Y. Then $f^{-1}(A)$ is a proper nonempty $G_{(b*g)*}$ clopen subset of X, which is a contradiction to the fact that X is $G_{(b*g)*}$ connected.

Theorem 3.12 A topological space (X,τ,G) is $G_{(b*g)*}$ connected if and only if every totally $G_{(b*g)*}$ continuous function from a space (X,τ,G) into any T_0 space (Y,σ) is constant.

Proof: Let X be not $G_{(b*g)*}$ connected. Let every totally $G_{(b*g)*}$ continuous function from (X,τ,G) to (Y,σ) be constant. Since (X,τ,G) is not $G_{(b*g)*}$ connected there exists a proper nonempty $G_{(b*g)*}$ clopen subset A of X. Let $Y = \{a, b\}, \sigma = \{\Phi, \{a\}, \{b\}, Y\}$ be a topology on Y. Let f: $(X,\tau,G) \rightarrow (Y,\sigma)$ be a function such that $f(A)=\{a\}, f(Y-A)=\{b\}$. Then f is non constant and totally $G_{(b*g)*}$ continuous such that Y is T_0 which is a contradiction. Hence X must be $G_{(b*g)*}$ connected.

Conversely, let X be $G_{(b*g)*}$ connected. Let f: X \rightarrow Y be totally $G_{(b*g)*}$ continuous. Let a, b be distinct points of X such that $f(a) = \alpha \neq \beta = f(b), \alpha, \beta \in Y$ and they are distinct. As Y is T_0 there exists open set U containing α but not β . So U is a proper open subset of Y. $f^{-1}(U)$ is a proper $G_{(b*g)*}$ clopen subset of X, which contradicts X is $G_{(b*g)*}$ connected. Hence f must be constant.

Theorem 3.13: Let $f: (X, \tau, G) \to (Y, \sigma)$ be a totally $G_{(b*g)*}$ continuous function and Y is T_1 space. If A is a nonempty $G_{(b*g)*}$ connected subset of X, then f(A) is a single point. **Proof:**Obvious. **Lemma 3.14:** If $A \in G_{(b*g)*}O(X)$ and $B \in G_{(b*g)*}O(Y)$ then $A \times B \in G_{(b*g)*}O(X \times Y)$.

Theorem 3.15: If the function $f_i: X_i \rightarrow Y_i$ is totally $G_{(b*g)*}$ continuous function for each i=1, 2 then $f_1 \ge X_1 \ge X_1 \ge X_2 \rightarrow Y_1 \ge Y_2$ defined by $(f_1 \ge f_2)(x_1 \ge x_2) = (f_1(x_1), f_2(x_2))$, for each $x_1 \in X_1, x_2 \in X_2$ is totally $G_{(b*g)*}$ continuous.

Proof: Let $V_1 \times V_2 \in O(Y_1 \times Y_2)$ then $V_1 \in O(Y_1)$, $V_2 \in O(Y_2)$. $f_1^{-1} (V_1) \in G_{(b^*g)^*} CO(X_1)$, $f_2^{-1}(V_2) \in G_{(b^*g)^*} CO(X_1)$, $f_2^{-1}(V_2) \in G_{(b^*g)^*} CO(X_1 \times X_2)$. Hence $f_1 \times f_2$ is totally $G_{(b^*g)^*}$ continuous.

Definition 3.16: Let (X,τ,G) be a topological space. Then the set of all points y in X such that x and y cannot be separated by $G_{(b*g)*}$ separation of X is said to be the quasi $G_{(b*g)*}$ component of X.

Theorem 3.17: Let $f: (X,\tau,G) \to (Y,\sigma)$ be a totally $G_{(b*g)*}$ continuous function from a grill topological space X into a T_1 space Y. Then f is constant on each quasi $G_{(b*g)*}$ component.

Proof: Let x, $y \in X$ that lie in the same quasi $G_{(b*g)*}$ component of X. Let $f(x) = \alpha \neq \beta = f(y)$. Since Y is T_1 , $\{\alpha\}$ is closed in Y and $Y - \{\alpha\}$ is open in Y. Since f is totally $G_{(b*g)*}$ continuous $f^1(\{\alpha\})$ and $f^1(Y - \{\alpha\})$ are disjoint $G_{(b*g)*}$ clopen subsets of X. Further $x \in f^1(\{\alpha\})$ and $y \in f^{-1}(Y - \{\alpha\})$ which is a contradiction to the fact that x and y belongs to the same quasi $G_{(b*g)*}$ component of X. Hence the Theorem.

Definition 3.18: A $G_{(b*g)*}$ frontier of a subset A of X is $G_{(b*g)*}$ (Fr(A) = $G_{(b*g)*}(cl(A)) \cap G_{(b*g)*}(cl(X - A))$.

Theorem 3.19:The set of all points $x \in X$ in which a function $f : (X, \tau, G) \to (Y, \sigma)$ is not totally $G_{(b*g)*}$ continuous is the union of $G_{(b*g)*}$ frontier of the inverse images of open sets containing f(x) if arbitrary union of $G_{(b*g)*}$ clopen sets in X is $G_{(b*g)*}$ clopen in X.

Proof: Let $A = \{ x \in X : f \text{ is not totally } G_{(b*g)*} \text{ continuous at } x \}$. Let B be the union of $G_{(b*g)*}$ frontier of the inverse images of open sets containing f(x). Let $x \in A$. Then there exists an open set V of Y containing f(x) such that f(U) is not contained in V for each $U \in G_{(b*g)*}O(X)$ containing x. Hence $x \in G_{(b*g)*}cl(X - f^{-1}(V))$. On the other hand $x \in f^{-1}(V) \subset G_{(b*g)*} cl(f^{-1}(V)$. So $x \in G_{(b*g)*} Fr(f^{-1}(V)$. Hence $A \subseteq B$. Conversely, let f be totally $G_{(b*g)*}$ continuous at $x \in X$. Let V be open in Y containing f(x). Then there exists $U \in G_{(b*g)*}$ CO(X) containing x such that $f(U) \subseteq V$. That is $U \subseteq f^{-1}(V)$. Hence $x \in G_{(b*g)*}int(f^{-1}(V))$. $x \notin G_{(b*g)*} cl(X - f^{-1}(V))$. Hence $x \notin G_{(b*g)*} Fr f^{-1}(V)$. So $x \notin A$ implies $x \notin B$. Hence $x B \subseteq A$.

Theorem3.20: Let $\{X_{\lambda} : \lambda \in A\}$ be any family of topological spaces. If f: $X \to IIX_{\lambda}$ is a totally $G_{(b*g)*}$ continuous function, then $P_{\lambda}: X \to X_{\lambda}$ is totally $G_{(b*g)*}$ continuous function for each $\lambda \in A$, where P_{λ} is the projection of IIX_{λ} onto X_{λ} .

Proof: We shall consider a fixed $\lambda \in A$. Suppose U_{λ} is an arbitrary open set in X_{λ} . Then $P_{\lambda}^{-1}(U_{\lambda})$ is open in IIX_{λ}. Since f is totally $G_{(b*g)*}$ continuous, we have by $f^{-1}(P_{\lambda}^{-1}(U_{\lambda})) = (P_{\lambda} \circ f)^{-1}(U_{\lambda})$ is $G_{(b*g)*}$ clopen in X. Hence the assertion.

Definition 3.21: i) A filter base A is said to be $G_{(b*g)*}$ co-convergent to a point $x \in X$, if for any $U \in G_{(b*g)*}$ CO(X) containing x, there exists B \in A such that $B \subseteq U$.

ii) A filter base A is said to be convergent to a point x ϵ X of for any U ϵ O(X) containing x, there exists B ϵ Asuch that B \subseteq U.

Theorem3.22: If a function $f: (X,\tau,G) \to (Y,\sigma)$ is totally $G_{(b*g)*}$ continuous, then for each point $x \in X$ and each filter base A in X, $G_{(b*g)*}$ co-convergent to x, the filter base f(A) is convergent to f(x).

Proof: Let $x \in X$ and A be any filter base in $X, G_{(b*g)*}$ co-convergent to x. Since f is totally $G_{(b*g)*}$ continuous then for any $V \in O(Y)$ containing f(x) there exists a $U \in G_{(b*g)*} CO(X)$ containing x such that $f(U) \subseteq V$. Since A is $G_{(b*g)*}$ co-convergent to x, there exists a B $\in A$ such that $B \subseteq U$. This implies $f(B) \subseteq V$. Hence the filter base f(A) converges to f(x).

4 Covering Properties

Definition 4.1:A space (X, τ, G) is said to be $G_{(b*g)*}T_2$ if for any two distinct points x and y of X, there exists disjoint $G_{(b*g)*}$ open sets U and V such that x \in Uand y \in V.

Theorem 4.2: If arbitrary intersection of $G_{(b*g)*}$ closed sets is $G_{(b*g)*}$ closed in a grill topological space X, then X is $G_{(b*g)*}$ T₂ if and only if for any two distinct points x and y of X, there exists a $G_{(b*g)*}$ neighborhood N_y of y such that $x \notin G_{(b*g)*}$ N_y.

Proof :Let X be $G_{(b^*g)^*}$ T₂. Let x and y be distinct points of X. Then there exists $G_{(b^*g)^*}$ open sets U and V such that $x \in U, y \in V$ and $U \cap V = \Phi$. But $U \cap V = \Phi$ implies $V \subseteq X - U$ so $y \in V \subseteq X - U$. Put $X - U = N_y$. We have $G_{(b^*g)^*} \operatorname{clN}_y = G_{(b^*g)^*} \operatorname{cl}(X - U) = X - U = N_y$ as X - U is $G_{(b^*g)^*}$ closed. N_y is a $G_{(b^*g)^*}$ neighbourhood of y such that $X \notin G_{(b^*g)^*}$ cl N_y.

Conversely, let X be a grill topological space such that for any two distinct points x and y of X, there exists $G_{(b*g)*}$ neighbourhood N_y of y such that $x \notin G_{(b*g)*}$ cl N_y . $G_{(b*g)*}$ cl N_y is also $G_{(b*g)*}$ neighbourhood of y. Since $G_{(b*g)*}$ cl N_y is $G_{(b*g)*}$ closed, $X - G_{(b*g)*}$ cl N_y is $G_{(b*g)*}$ open. $x \notin G_{(b*g)*}$ cl N_y implies $x \in X - G_{(b*g)*}$ cl N_y . As N_y is a $G_{(b*g)*}$ neighbourhood of y, there exists a $G_{(b*g)*}$ open set U that $y \in U$ and $(X - G_{(b*g)*}$ cl N_y) $\cap U = \Phi$. Hence X is $G_{(b*g)*}T_2$.

Theorem 4.3: If arbitrary intersection of $G_{(b*g)*}$ closed sets is $G_{(b*g)*}$ closed in a grill topological space X, then X is $G_{(b*g)*}T_2$ if for any two distinct points x and y of X, there exists a $G_{(b*g)*}$ open sets U and V such that $x \in Uy \in V$ and $G_{(b*g)*} clU \cap G_{(b*g)*} clV = \Phi$

Proof:Let X be a grill topological space. Let x and y be distinct points of X. Then there exists $G_{(b*g)*}$ open sets U and V such that $x \in U$, $y \in V$ and $G_{(b*g)*}$ $clU \cap G_{(b*g)*}clV = \Phi$. V is a $G_{(b*g)*}$ neighbourhood of y such that $x \notin G_{(b*g)*}$ cl V, as $x \in G_{(b*g)*}$ cl U. Hence by the above theorem X is $G_{(b*g)*}T_2$.

Lemma 4.4: Let arbitrary intersection of $G_{(b*g)*}$ closed sets be $G_{(b*g)*}$ closed in a grill topological space X and let $f : (X, \tau, G) \to (Y, \sigma)$ be a totally $G_{(b*g)*}$ continuous injective function. If Y is T_0 , then X is $G_{(b*g)*}T_2$.

Proof :Let x and y be any pair of distinct points of X. Then $f(x) \neq f(y)$. Since Y is T_0 there exists an open sets U containing f(x) but not f(y). Then $x \in f^{-1}(U)$ and $y \notin f^{-1}(U)$. As f is totally $G_{(b*g)*}$ continuous, $f^{-1}(U)$ is $G_{(b*g)*}$ clopen in X. Also $x \in f^{-1}(U)$ and $y \in x - f^{-1}(U)$. By the above theorem X is $G_{(b*g)*}T_2$.

Definition 4.5: A grill topological space X is said to be $G_{(b*g)*}$ compact if every $G_{(b*g)*}$ open cover of X has a finite subcover.

Definition 4.6: A subset A of grill topological a space X is said to be $G_{(b*g)*}$ cocompact relative to X if every cover of A by $G_{(b*g)*}$ clopen sets of X has a finite subcover.

Definition 4.7: A subset A of a grill topological space X is said to be $G_{(b*g)*}$ cocompact if the subspace A is $G_{(b*g)*}$ cocompact.

Theorem 4.8: If arbitrary union of $G_{(b*g)*}$ clopen sets is $G_{(b*g)*}$ clopen for a grill topological space X and a function $f : (X, \tau, G) \rightarrow (Y, \sigma)$ is totally $G_{(b*g)*}$ continuous and A is $G_{(b*g)*}$ cocompact relative X, then f(A) is compact in Y.

Proof :Let { H_{α} : $\alpha \in I$ } be any cover of f(A) by open sets of the subspace f(A). For each $\alpha \in I$, there exists an open set A_{α} of Y such that $H_{\alpha} = A_{\alpha} \cap f(A)$. For each $x \in A$ there exists $\alpha_x \in I$ such that $f(x) \in A_{\alpha x}$ and there exists $U_x \in G_{(b*g)*}$ CO(X) containing x such that $f(U_x) \subset A_{\alpha x}$. Since the family { $U_x : x \in A$ } is a cover of A by $G_{(b*g)*}$ clopen sets of X, there exists a finite subset A_0 of A such that $A \subset U\{U_x : x \in A_0\}$.

Therefore we obtain $f(A) \subseteq U\{f(U_x) : x \in A_0\}$ which is a subset of $\{A_{\alpha x} : x \in A\}$. Thus $f(A) = U\{A_{\alpha x} \cap f(A) : x \in A_0\} = U\{H_{\alpha x} : x \in A_0\}$. Hence f(A) is compact.

Corollary 4.9: If arbitrary union of $G_{(b*g)*}$ clopen sets is $G_{(b*g)*}$ clopen in grill topological space X and if $f: (X, \tau, G) \rightarrow (Y, \sigma)$ is totally $G_{(b*g)*}$ continuous surjective function and X is $G_{(b*g)*}$ cocompact, the Y is compact.

Proof: Follows from the above theorem

Definition 4.10: A grill topological space X is said to be

I) Countably $G_{(b*g)*}$ cocompact if every $G_{(b*g)*}$ clopen countable cover of X has a finite subcover

II) $G_{(b*g)*}$ co-Lindelof if every $G_{(b*g)*}$ clopen cover of X has a countable subcover.

Theorem 4.11:Let $f : f : (X, \tau, G) \to (Y, \sigma)$ be a totally $G_{(b*g)*}$ continuous surjective function. Then the following statements hold:

I) If X is $G_{(b*g)*}$ co-Lindelof, the Y is Lindelof

II) If X is countably $G_{(b*g)*}$ cocompact, the Y is countably compact

Proof: i) Let $\{V_{\alpha} : \alpha \in I\}$ be an open cover of Y. Since f is totally $G_{(b*g)*}$ continuous then $\{f^{-1}(V_{\alpha}) : \alpha \in I\}$ is a $G_{(b*g)*}$ clopen cover of X. Since X is $G_{(b*g)*}$ co-Lindelof, there exists a countable subset I_0 of I such that $X = U\{f^{-1}(V_{\alpha}) : \alpha \in I\}$. Then $Y = U\{V_{\alpha} : \alpha \in I\}$ and hence Y is Lindelof. ii) similar to (i)

Definition 4.12: A grill topological space X is said to be

I) $G_{(b*g)*}$ coT₁, if for each pair of distinct points x and y of X, there exist $G_{(b*g)*}$ clopen sets U and V containing x and y respectively such that $y \notin U$ and $x \notin V$;

II) $G_{(b*g)*}$ coT₂, if for each pair of distinct points x and y of X, there exist disjoint $G_{(b*g)*}$ clopen sets U and V in X such that $x \in U$ and $y \in V$.

Theorem 4.13: If $f: (X, \tau, G) \to (Y, \sigma)$ is a totally $G_{(b*g)*}$ continuous injective function and Y is T_1 , then X is $G_{(b*g)*}$ co T_1 .

Proof: Suppose Y is T_1 for any distinct points x and y in X, there exists V, WeO(Y) such that $f(x) \in V$, $f(y) \notin V$ and $f(y) \in W$, $f(x) \notin W$. Since f is totally $G_{(b*g)*}$ continuous $f^1(V)$ and $f^1(W)$ are $G_{(b*g)*}$ clopen subsets of (X, τ, G) such that $x \in f^{-1}(V) y \notin f^{-1}(V)$ and $y \in f^{-1}(W)$, $x \notin f^{-1}(W)$. This shows X is $G_{(b*g)*}$ co T_1 .

Theorem 4.14: If $f: (X, \tau, G) \to (Y, \sigma)$ is a totally $G_{(b*g)*}$ continuous injective function and Y is T_2 , then X is $G_{(b*g)*}$ co T_2 .

Proof: For any pair of distinct points x and y in X, there exists disjoint open sets U and V in Y such that $f(x) \in U$, $f(y) \in V$. Since f is totally $G_{(b*g)*}$ continuous $f^{-1}(U)$ and $f^{-1}(V)$ are $G_{(b*g)*}$ clopen in X containing x and y respectively. $f^{-1}(U) \cap f^{-1}(V) = \Phi$ because $U \cap V = \Phi$. This shows X is $G_{(b*g)*}$ co T_2 .

Definition 4.15: A grill topological space X is called $G_{(b*g)*}$ coregular if for each $G_{(b*g)*}$ *clopen* set F and each point $x \notin F$, there exists disjoint open sets U and V such that $F \subset U$ and $x \in V$.

Definition 4.16: A grill topological space X is said to be $G_{(b*g)*}$ conormal if for any pair of distinct $G_{(b*g)*}$ clopen sets F_1 and F_2 , there exists disjoint open sets U and V such that $F_1 \subseteq U$ and $F_2 \subseteq V$.

Definition 4.17: If f is totally $G_{(b*g)*}$ continuous injective open function from a $G_{(b*g)*}$ coregular space X onto a space Y, the Y is regular.

Proof:Let F be a closed set of Y and $y \notin F$. Take y = f(x) since f is totally $G_{(b*g)*}$ continuous $f^1(F)$ is a $G_{(b*g)*}$ clopen set. Take $G = f^1(F)$ we have $x \notin G$. Since X is $G_{(b*g)*}$ coregular, there exists disjoint open sets U and V such that $G \subseteq U$ and $x \in V$. We obtain that $F = f(G) \subset f(U)$ and $y = f(x) \in f(V)$ such that f(U) and f(V) are disjoint open sets. Hence Y is regular.

Theorem 4.18: If f is totally $G_{(b*g)*}$ continuous injective open function from a $G_{(b*g)*}$ conormal space X onto a space Y, then Y is normal.

Proof: Similar to the above proof.

Definition 4.19: For a function $f : (X, \tau, G) \to (Y, \sigma)$, the subset $\{(x, f(x)) : x \in X\} \subset X \times Y$ is called the graph of f and is denoted by G(f).

Definition 4.20: A graph G(f) of a function $f : (X, \tau, G) \to (Y, \sigma)$ is said to be strongly $G_{(b*g)*}$ co-closed if for each $(x, y) \in (XxY) - G(f)$, there exist $U \in G_{(b*g)*} CO(X)$ containing x and $V \in O(Y)$ containing y such that $(U \times V) \cap G(f) = \Phi$.

Lemma 4.21: A graph G(f) of a function $f: (X, \tau, G) \to (Y, \sigma)$ is strongly $G_{(b*g)*}$ co-closed in X x Y if and only if for each (x, y) $\in (X \times Y) - G(f)$, there exist $U \in G_{(b*g)*} CO(X)$ containing x and $V \in O(Y)$ containing y such that $f(U) \cap V = \Phi$.

Proof: Let G(f) be strongly $G_{(b*g)*}$ - co-closed. Let $(x, y) \in (X \times Y) - G(f)$. Then there exist $G_{(b*g)*}$ clopen set U containing x and V $\in O(Y)$ containing y such that $(U \cap V) \ge G(f) = \Phi$. That is $V \cap f(X) = \Phi$. That is V $\cap f(U) = \Phi.$

Conversely, let for each (x, y) \in (X x Y) – G(f), there exist U $\in G_{(b*g)*}$ CO(X) containing x and V \in O(Y) containing y such that $f(U) \cap V = \Phi$.Let $y \in V$. $y \in Y - f(X)$. That is $y \neq f(x)$ for any x. That is $V \cap f(U) = \Phi$. This implies $(U \times V) \cap (X \times f(X)) = \Phi$. That is $(U \times V) \cap G(f) = \Phi$.

Theorem 4.22: Let $f: (X, \tau, G) \to (Y, \sigma)$ has a strongly $G_{(b*g)*}$ co-closed graph G(f). If f is injective, then X is $G_{(b*g)*}$ Co T_2 .

Proof: Let x and y be any two distinct points of X. Then, we have $(x, f(y)) \in (X \times Y) - G(f)$. By the above Lemma there exist $G_{(h*g)*}$ clopen set U of X and V $\in O(Y)$ such that $(x, f(y)) \in (U \times V)$ and f(U) $\cap V \neq \Phi.$ Hence $U \cap f^{-1}(V) = \Phi$, $x \in U$ and $y \in f^{-1}(V)$. Hence X is $G_{(h*g)*}$ co T_2 .

Theorem 4.23: If arbitrary union of $G_{(b*g)*}$ clopen sets is $G_{(b*g)*}$ clopen in a grill topological space X and $f: (X, \tau, G) \to (Y, \sigma)$ is a totally $G_{(b*g)*}$ continuous and Y is T_2 , then G(f) is strongly $G_{(b*g)*}$ co-closed in the product space X x Y.

Proof: Let $(x, y) \in (X \times Y) - G(f)$. Then $y \neq f(x)$ and there exist open sets V_1 and V_2 such that $f(x) \in V_1$ $y \in V_1$ V_2 and $V_1 \cap V_2 \neq \Phi$. From hypothesis, there exists $U \in G_{(b*g)*} CO(X, x)$ such that $f(U) \subseteq V_1$. Therefore we obtain $f(U) \cap V_2 = \Phi$. So G(f) is strongly $G_{(b*g)*}$ co-closed graph.

Definition 4.24: A function $f: (X, \tau, G) \rightarrow (Y, \sigma)$ is said to be:

I) Totally $G_{(b*g)*}$ irresolute if the preimage of $G_{(b*g)*}$ clopen subset of Y is $G_{(b*g)*}$ clopen in X

II) Totally pre $G_{(b*g)*}$ clopen if the image of every $G_{(b*g)*}$ clopen subset of X is $G_{(b*g)*}$ clopen in Y

Theorem 4.25: Let $f: (X, \tau, G) \to (Y, \sigma)$ be surjective and totally $G_{(b*g)*}$ irresolute and totally pre $G_{(b*g)*}$ clopen and $g: (Y, \sigma) \rightarrow (Z, \eta)$ be any function. Then g o $f: (X, \tau, G) \rightarrow (Z, \eta)$ is totally $G_{(b*g)*}$ continuous if and only if g is totally $G_{(b*g)*}$ continuous.

Proof: Let g be totally $G_{(b*g)*}$ continuous. Let V be open in Z. $g^{-1}(V)$ is $G_{(b*g)*}$ clopen in Y. $f^{-1}((g^{-1}(V)))$ is $G_{(b*g)*}$ clopen in X. Hence g of is totally $G_{(b*g)*}$ continuous.

Conversely, let g o f :(X, τ , G) \rightarrow (Z, η) be totally $G_{(b*g)*}$ continuous. Let V be open in Z. Then (g o f)⁻¹(V) is $G_{(b*g)*}$ clopen in X. That if $f^{-1}((g^{-1}(V)))$ is $G_{(b*g)*}$ clopen. Since f is totally pre $G_{(b*g)*}$ clopen, $f(f^{-1}((g^{-1}(V))))$ is $G_{(b*g)*}$ clopen in Y. That is $g^{-1}(V)$ is $G_{(b*g)*}$ clopen in Y. Hence g is totally $G_{(b*g)*}$ continuous.

Theorem 4.26: Let $f: (X, \tau, G) \rightarrow (Y, \sigma)$ has a strongly $G_{(b*g)*}$ co-closed graph G(f). If f is surjective totally pre $G_{(b*g)*}$ clopen function, then Y is $G_{(b*g)*}T_2$ space.

Proof: Let y_1 and y_2 be distinct points of Y. Since f is surjective $f(x) = y_1$, for some $x \in X$. $(x, y_2) \in (X \times Y) - (X \times Y)$ G(f). There exist $U \in G_{(b*g)*} CO(X)$ and $V \in O(Y)$ such that $(x, y_2) \in U \times Y$ and $(U \times Y) \cap G(f) = \Phi$. Then we have $f(U) \cap V = \Phi$. Since f is totally pre $G_{(b*g)*}$ clopen f(U) is $G_{(b*g)*}$ clopen such that $f(x) = y_1 \in f(U)$. Hence Y is $G_{(b*g)*}T_2$.

References:

- [1]. D.Andrijevic., "b - open sets", Mat. Vesink, 48, 59 - 64, 1996
- [2]. G - Choquet, "Sur les notations de filter et grille", Comptes Rendus Acad. Sci. Paris, 224(1947), 171 - 173
- Dhananjoy Mandal and M. N. Mukherjee, "On a type of generalized closed sets", Bol. Soc. Paran. Mat. 30 1(2012), 67-76 [3].
- [4]. J. Dontchev and T. Noiri, "Quasi Normal spaces and π_q – closed sets", Acta. Math. Hunger, 89(3) (2000), 211-219
- J. Dontchev and H. Maki, "On θ generalized closed sets", Topology Atlass [5].
- [6]. S. Fomin, "Extensions of topological spaces", Ann. Math., 44(1943), 471-480
- N. Levine, "Generalized closed sets in topology", Rend. Circ. Mat. Palermo, (2), 19(1970), 89 96 T. M. Nour "Totally semi continuous function", Ind. J. Pure Appl. Math. 26(70) (1995) 675 678 [7].
- [8].

B. Roy and M. N Mukherjee, "On a typical topology induced by a grill", Soochow J. Math., 33(4)(2007), 771 – 786 M. H. Stone, "Application of the theory of Boolean rings to genral topology", Trans. Amer. Math. Soc., 41(1937), 374 - 481 [9].

[10].

M.Kanchana, et. al. "TOTALLY G_((b*g)*) Continuous Function in Grill Topological Spaces." IOSR Journal of Mathematics (IOSR-JM), 17(6), (2021): pp. 11-17. _____