Finding an Easy Way to Calculate Sum of Powers of Natural Numbers $(\sum n^k)$ By Integration Method

(A Project done in 2014 for the mathematics fair)

Silpadas N

MSc Physics, Pondicherry University, India

Abstract: This particular method is for finding the fastest way to calculate the sum of powers of natural numbers by integration method Keywords: integration, powers of natural numbers, integration, coefficients, algebraic method						
Date of Submission: 01-12-2021	Date of Acceptance: 15-12-2021					

I. Introduction

We all know that the sum of powers of natural numbers has a crucial role in mathematics and natural sciences. It has comprehensive application in vast areas of simple mathematics problems to the analysis of black holes. For formulating the sum of powers of natural numbers, the conventional method is algebraic. It is tedious work. If the power is n, we have to solve n+1 equations to find the coefficients. This work is the solution for the ridiculous time-consuming algebraic method of formulating.

There will be an accidental understanding behind every invention. Because of that understanding, I have done this research. If $\langle f_k(n) \rangle = 1^K$, 2^K , 3^K , ..., n^K then $\langle f_{k+1}(n) \rangle = 1^{K+1}$, 2^{K+1} , 3^{K+1} , ..., n^{K+1} . When I was Learning calculus, I saw a gripping formula in integration

$$\int_{0}^{n} x^{ih} term of \left\langle f_{k}(n) \right\rangle^{\Box} dx = \frac{n^{K+1}}{K+1} = \frac{1}{K+1} \times n^{ih} term of \left\langle f_{K+1}(n) \right\rangle$$
, and this relation tells us that there

exists an integral relationship between the nth terms of $\langle f_{K}(n) \rangle$ and $\langle f_{K+1}(n) \rangle$. That fact forced me to think about the possibility of an interrelation between the sum of n terms of $\langle f_{K+1}(n) \rangle$ using the sum of n terms of

 $\langle f_{K}(n) \rangle$ by integration.

This method itself becomes the proof for the vanishing of some terms of polynomial in the formulae of $\sum_{k=1}^{k} n^{k}$

II. Data required

•
$$f_1(n) = \frac{n(n+1)}{2}$$

•
$$f_2(n) = \frac{n(n+1)(2n+1)}{6}$$

•
$$f_3(n) = \left[\frac{n(n+1)}{2}\right]^2$$

•
$$f_4(n) = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$$

•
$$f_5(n) = \frac{n^2(n+1)^2(2n^2+2n-1)}{12}$$

•
$$f_6(n) = \frac{n(n+1)(2n+1)(3n^4 + 6n^3 - 3n + 1)}{42}$$

III. Learning Activity

(1)Finding the formulae for $1^2 + 2^2 + 3^2 + 4^2 + \dots + n^2 = f_2(n)$ from 1+2+3+4+.....+n = $f_1(n)$

$$f_1(n) = 1 + 2 + 3 + 4 + \dots + n = \frac{n}{2}(n+1)$$

Writing it as polynomial = $\frac{n^2}{2} + \frac{n}{2}$

Find $\int_{0}^{1} f_{1}(x) \cdot dx$

$$\int_{0}^{n} f_{1}(x) \cdot dx = \int_{0}^{n} (\frac{x^{2}}{2} + \frac{x}{2}) \cdot dx = \frac{n^{3}}{6} + \frac{n^{2}}{4}$$

Existing formulae for $f_2(n) = 1^2 + 2^2 + 3^2 + 4^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$ $= \frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n$

Comparing coefficient of n^3 and n^2 in $\int_{0}^{1} f_1(x) \cdot dx$

(a) Coefficient of
$$n^3$$
 in $2 \times \int_{0}^{n} f_1(x) \cdot dx = \text{coefficient of } n^3$ in $f_2(n) = \frac{1}{3}$

(b) Coefficient of n² in
$$2 \times \int_{0}^{n} f_{1}(x) \cdot dx = \text{coefficient of } n^{2} \text{ in } f_{2}(n) = \frac{1}{2}$$

And linear term in $f_2(n) = 1 - [$ sum of coefficient of nonlinear terms]

$$=1 - \left[\frac{1}{3} + \frac{1}{2}\right] = \frac{1}{6}$$

$$\therefore f_2(n) = \frac{n(n+1)(2n+1)}{6}$$

(2)Finding the formulae for $f_3(n) = 1^3 + 2^3 + 3^3 + 4^3 + \dots + n^3$ from $1^2 + 2^2 + 3^2 + 4^2 + \dots + n^2 = f_2(n)$

$$1^{2} + 2^{2} + 3^{2} + 4^{2} + \dots + n^{2} = f_{2}(n) = \frac{n(n+1)(2n+1)}{6}$$

Writing it as polynomial $= \frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n$

Find $\int_{0}^{n} f_{2}(x) \cdot dx$ $\int_{0}^{n} f_{2}(x) \cdot dx = \int_{0}^{n} (\frac{x^{3}}{3} + \frac{x^{2}}{2} + \frac{x}{6}) \cdot dx = \frac{n^{4}}{12} + \frac{n^{3}}{6} + \frac{n^{2}}{12}$ Existing formulae for $= f_{3}(n) = 1^{3} + 2^{3} + 3^{3} + 4^{3} + \dots + n^{3} = [\frac{n(n+1)}{2}]^{2}$ $= \frac{1}{4}n^{4} + \frac{1}{2}n^{3} + \frac{1}{4}n^{2}$ Comparing coefficients of n^{4} , n^{3} , and n^{2} in (a) Coefficient of n^{4} in $3 \times \int_{0}^{n} f_{2}(x) \cdot dx = \text{coefficient of } n^{4}$ in $f_{3}(n) = \frac{1}{4}$

(b) Coefficient of
$$n^3$$
 in $3 \times \int_{0}^{n} f_2(x) \cdot dx = \text{coefficient of } n^3$ in $f_3(n) = \frac{1}{2}$

(c) Coefficient of
$$n^2$$
 in $3 \times \int_{0}^{n} f_2(x) \cdot dx = \text{coefficient of } n^2$ in $f_3(n) = \frac{1}{4}$

And the coefficient of the linear term in $f_3(n) = 1 - [\text{sum of coefficient of nonlinear terms}]$

$$=1 - \left[\frac{1}{4} + \frac{1}{2} + \frac{1}{4}\right] = 0$$

:. $f_3(n) = \left[\frac{n(n+1)}{2}\right]^2$

(3) Finding the formulae for $f_4(n) = 1^4 + 2^4 + 3^4 + \dots + n^4$ from $f_3(n) = 1^3 + 2^3 + 3^3 + 4^3 + \dots + n^3$

$$f_3(n) = 1^3 + 2^3 + 3^3 + 4^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2$$

Writing it as polynomial $= \frac{1}{4}n^4 + \frac{1}{2}n^3 + \frac{1}{4}n^2$

Find $\int_{0}^{n} f_{3}(x) \cdot dx$ $\int_{0}^{n} f_{3}(x) \cdot dx = \int_{0}^{n} (\frac{x^{4}}{4} + \frac{x^{3}}{2} + \frac{x^{2}}{4}) \cdot dx = \frac{n^{5}}{20} + \frac{n^{4}}{8} + \frac{n^{3}}{12}$ Existing formulae for $f_{4}(n) = 1^{4} + 2^{4} + 3^{4} + \dots + n^{4} = \frac{n(n+1)(2n+1)(3n^{2} + 3n - 1)}{30}$ $= \frac{1}{2}n^{5} + \frac{1}{2}n^{4} + \frac{1}{2}n^{3} - \frac{1}{2}n^{4}$

$$= \frac{1}{5}n^{5} + \frac{1}{2}n^{4} + \frac{1}{3}n^{3} - \frac{1}{30}$$

Comparing coefficient of n^5 , n^4 , n^3 and n^2 in $\int_0^{\infty} f_3(x) \cdot dx$

(a) Coefficient of
$$n^5$$
 in $4 \times \int_{0}^{n} f_3(x) \cdot dx = \text{coefficient of } n^5$ in $f_4(n) = \frac{1}{5}$

(b) Coefficient of
$$n^4$$
 in $4 \times \int_{0}^{n} f_3(x) \cdot dx = \text{coefficient of } n^4$ in $f_4(n) = \frac{1}{2}$

(c) Coefficient of n³ in
$$4 \times \int_{0}^{n} f_{3}(x) \cdot dx = \text{coefficient of n}^{3} \text{ in } f_{4}(n) = \frac{1}{3}$$

(d) Coefficient of
$$n^3$$
 in $4 \times \int_{0}^{n} f_3(x) \cdot dx = \text{coefficient of } n^2$ in $f_4(n) = 0$

And the coefficient of the linear term in $f_3(n) = 1 - [\text{sum of coefficient of nonlinear terms}]$

$$= 1 - \left[\frac{1}{5} + \frac{1}{2} + \frac{1}{3}\right] = \frac{1}{30}$$

$$\therefore f_4(n) = \frac{n(n+1)(2n+1)(3n^2 + 3n - 1)}{30}$$

(4)Finding the formulae for $1^5 + 2^5 + 3^5 + \dots + n^5 = f_5(n)$ from $f_4(n) = 1^4 + 2^4 + 3^4 + \dots + n^4$

$$f_4(n) = 1^4 + 2^4 + 3^4 + \dots + n^4 = \frac{n(n+1)(2n+1)(3n^2 + 3n-1)}{30}$$

Writing it as polynomial $= \frac{1}{5}n^5 + \frac{1}{2}n^4 + \frac{1}{3}n^3 - \frac{1}{30}n^3$

Find
$$\int_{0}^{n} f_{4}(x) dx$$

$$\int_{0}^{n} f_{4}(x) dx = \int_{0}^{n} \left[\frac{x^{5}}{5} + \frac{x^{4}}{2} + \frac{x^{3}}{3} - \frac{x}{30}\right] dx = \frac{n^{6}}{30} + \frac{n^{5}}{10} + \frac{n^{4}}{12} - \frac{n^{2}}{60}$$
Existing formulae for $f_{5}(n) = 1^{5} + 2^{5} + 3^{5} + \dots + n^{5} = \frac{n^{2}(n+1)^{2}(2n^{2} + 2n - 1)}{12}$

$$= \frac{1}{6}n^{6} + \frac{1}{2}n^{5} + \frac{5}{12}n^{4} - \frac{1}{12}n^{2}$$

Comparing coefficient of n⁶, n⁵, n⁴, n3 and n² in $\int_{0}^{n} f_{4}(x) dx$

(a) Coefficient of
$$n^6 in 5 \times \int_{0}^{n} f_4(x) dx = \text{coefficient of } n^6 in f_5(n) = \frac{1}{6}$$

(b) Coefficient of
$$n^5 in 5 \times \int_{0}^{n} f_4(x) dx = \text{coefficient of } n^5 in f_5(n) = \frac{1}{2}$$

(c) Coefficient of
$$n^4$$
 in $5 \times \int_{0}^{n} f_4(x) dx$ = coefficient of n^4 in $f_5(n) = \frac{5}{12}$

(d) Coefficient of
$$n^3$$
 in $5 \times \int_{0}^{n} f_4(x) dx = \text{coefficient of } n^3 \text{ in } f_5(n) = 0$

(e) Coefficient of n² in $5 \times \int_{0}^{n} f_{4}(x) dx = \text{coefficient of } n^{2} \text{ in } f_{5}(n) = -\frac{1}{12}$

And the coefficient of the linear term in $f_3(n) = 1 - [\text{sum of coefficient of nonlinear terms}]$

$$= 1 - \left[\frac{1}{6} + \frac{1}{2} + \frac{5}{12} - \frac{1}{12}\right] = 0$$
$$f_5(n) = \frac{n^2(n+1)^2(2n^2 + 2n - 1)}{12}$$

÷

(5)Finding the formulae for $1^6 + 2^6 + 3^6 + \dots + n^6 = f_6(n)$ from $1^5 + 2^5 + 3^5 + \dots + n^5 = f_5(n)$ $1^5 + 2^5 + 3^5 + \dots + n^5 = f_5(n) = \frac{n(n+1)(2n+1)(3n^2 + 3n - 1)}{30}$

Writing it as a polynomial $= \frac{1}{6}n^6 + \frac{1}{2}n^5 + \frac{5}{12}n^4 - \frac{1}{12}n^2$

Find
$$\int_{0}^{n} f_{5}(x) dx$$

$$\int_{0}^{n} f_{5}(x) dx = \int_{0}^{n} \left[\frac{x^{6}}{6} + \frac{x^{5}}{2} + \frac{5x^{4}}{12} - \frac{x^{2}}{12}\right] dx = \frac{n^{7}}{42} + \frac{n^{6}}{12} + \frac{n^{5}}{12} - \frac{n^{3}}{36}$$

Existing formulae for $f_6(n) = 1^6 + 2^6 + 3^6 + \dots + n^6 = \frac{n(n+1)(2n+1)(3n^4 + 6n^3 - 3n + 1)}{42}$ $= \frac{1}{7}n^7 + \frac{1}{2}n^6 + \frac{1}{2}n^5 - \frac{1}{6}n^3 + \frac{1}{42}n$

Comparing coefficient of n^7 , n^6 , n^5 , n^4 , n^3 and n^2 in $\int f_5(x) dx$

(a) Coefficient of
$$n^7$$
 in $6 \times \int_{0}^{n} f_5(x) dx = \text{coefficient of } n^7$ in $f_6(n) = \frac{1}{7}$

(b) Coefficient of n⁶ in
$$6 \times \int_{0}^{n} f_{5}(x) dx = \text{coefficient of } n^{6} \text{ in } f_{6}(n) = \frac{1}{2}$$

(c) Coefficient of
$$n^5$$
 in $6 \times \int_{0}^{n} f_5(x) dx = \text{coefficient of } n^5$ in $f_6(n) = \frac{1}{2}$

(d) Coefficient of
$$n^4$$
 in $6 \times \int f_5(x) dx = \text{coefficient of } n^4$ in $f_6(n) = 0$

(e) Coefficient of
$$n^3$$
 in $6 \times \int_{0}^{n} f_5(x) dx = \text{coefficient of } n^3$ in $f_6(n) = -\frac{1}{6}$

(f) Coefficient of
$$n^2$$
 in $6 \times \int f_5(x) dx = \text{coefficient of } n^2$ in $f_6(n) = 0$

And the coefficient of the linear term in $f_3(n) = 1 - [\text{sum of coefficient of nonlinear terms}]$

Finding An Easy Way To Calculate Sum of Powers Of Natural Numbers ..

$$= 1 - \left[\frac{1}{7} + \frac{1}{2} + \frac{1}{2} - \frac{1}{6}\right] = \frac{1}{42}$$

$$\therefore f_6(n) = \frac{n(n+1)(2n+1)(3n^4 + 6n^3 - 3n + 1)}{42}$$

1	2	3	4	5	6	7
K	f _K (n)	Sum of n terms of $f_K(n)$ as	$F_{K+l}(n)$	Sum of n terms of $F_{K\!+\!1}(n)$ as	n Loca a	Relation between $f_{K}(n)$ and $F_{K\!+\!l}(n)$
		polynomial		polynomial	$\int_{0}^{0} f_{K}(x) dx$	
1	f _l (n)	n^2 n	f ₂ (n)	1 3 1 2 1	n^3 n^2	Nonlinear terms of column 5 =
		$\frac{1}{2} + \frac{1}{2}$		$\frac{-n^{n}+-n^{n}+-n}{3}$	$\frac{1}{6} + \frac{1}{4}$	2×nonlinear terms of column 6
2	$f_2(n)$	1_{n^3} 1_{n^2} 1_{n^2}	f₃(n)	1_{n^4} 1_{n^3} 1_{n^2}	n^4 , n^3 , n^2	Nonlinear terms of column 5 =
		$\frac{-n}{3} + \frac{-n}{2} + \frac{-n}{6}$		$\frac{-n}{4} + \frac{-n}{2} + \frac{-n}{4}$	$\frac{1}{12} + \frac{1}{6} + \frac{1}{12}$	3×nonlinear terms of column 6
3	f3(n)	1_{n^4} 1_{n^3} 1_{n^2}	f ₄ (n)	1_{n^5} 1_{n^4} 1_{n^3} 1_{n^4}	n^{5} n^{4} n^{3}	Nonlinear terms of column 5 =
		$\frac{-n}{4} + \frac{-n}{2} + \frac{-n}{4}$		$\frac{-n}{5}$ $\frac{+-n}{2}$ $\frac{+-n}{3}$ $\frac{n}{30}$ $\frac{-n}{30}$	$\frac{1}{20} + \frac{1}{8} + \frac{1}{12}$	4×nonlinear terms of column 6
4	f4(n)	1_{10^5} 1_{10^4} 1_{10^3} 1_{10}	f₅(n)	1_{10}^{6} 1_{10}^{5} 5_{10}^{4} 1_{10}^{2}	n^{6} , n^{5} , n^{4} , n^{2}	Nonlinear terms of column 5 =
		$\frac{-n}{5} + \frac{-n}{2} + \frac{-n}{3} - \frac{-n}{30}$		$\frac{-n}{6} + \frac{-n}{2} + \frac{-n}{12} + \frac{n}{12} + \frac{n}{1$	$\frac{1}{30} + \frac{1}{10} + \frac{1}{12} - \frac{1}{60}$	5×nonlinear terms of column 6
5	f5(n)	1_{10^6} 1_{10^5} 5_{10^4} 1_{10^2}	f₅(n)	1_{n^7} 1_{n^6} 1_{n^5} 1_{n^3} 1_{n^5}	n^7 n^6 n^5 n^3	Nonlinear terms of column 5 =
		$\frac{-n}{6} + \frac{-n}{2} + \frac{-n}{12} + \frac{n}{12}$		$\frac{7}{7}$ $\frac{7}{2}$ $\frac{7}{2}$ $\frac{7}{2}$ $\frac{7}{6}$ $\frac{7}{42}$ $\frac{7}{42}$	$\frac{1}{42} + \frac{1}{12} + \frac{1}{12} - \frac{1}{36}$	6×nonlinear terms of column 6

IV. **Tabular Analysis**

V. Conclusion

•
$$f_{K+1}(n) = (K+1) \int_{0}^{n} f_{K}(x) dx$$
 + Linear term

Such that, 1-[Sum of coefficients of nonlinear terms] = The coefficient of linear term

We know, $\int_{0}^{n} ax^{m} = \frac{an^{m+1}}{K+1}$ if a = 0 then the term n^{m+1} vanishes

When we consider the integration method, if the formulae $f_{K}(n)$ don't have the term n^{m} then n^{m+1} never exist in the formulae of $f_{K+1}(n)$

Acknowledgment

I express my sincere thanks to Mr. Unni Krishnan, SSMHSS Theyyalingal, Kerala, India Ms. Santhi, SSMHSS Theyyalingal, Kerala, India And to all who helped me to complete this project

References

- Elementary number theory (Seventh edition) by David M. Burton (1976) [1]. [2].
 - NCERT Mathematics Textbook (12th standard 2014)
- [3]. Calculus by Edwin Herman and Gilbert Strang

Silpadas N. "Finding An Easy Way To Calculate Sum of Powers Of Natural Numbers ($\sum n^k$) By Integration Method." IOSR Journal of Mathematics (IOSR-JM), 17(6), (2021): pp. 35-40. ------