Finding an Easy Way to Calculate Sum of Powers of Natural Numbers (Σn^{\star}) By Integration Method

(A Project done in 2014 for the mathematics fair)
Silpadas N
MSc Physics, Pondicherry University, India

Abstract

This particular method is for finding the fastest way to calculate the sum of powers of natural numbers by integration method

Keywords: integration, powers of natural numbers, integration, coefficients, algebraic method
Date of Submission: 01-12-2021
Date of Acceptance: 15-12-2021

I. Introduction

We all know that the sum of powers of natural numbers has a crucial role in mathematics and natural sciences. It has comprehensive application in vast areas of simple mathematics problems to the analysis of black holes. For formulating the sum of powers of natural numbers, the conventional method is algebraic. It is tedious work. If the power is n, we have to solve $n+1$ equations to find the coefficients. This work is the solution for the ridiculous time-consuming algebraic method of formulating.
There will be an accidental understanding behind every invention. Because of that understanding, I have done this research. If $\left\langle f_{k}(n)\right\rangle=1^{K}, 2^{K}, 3^{K}$, \qquad n^{K} then $\left\langle f_{k+1}(n)\right\rangle=1^{K+1}, 2^{K+1}, 3^{K+1}$ \qquad n^{K+1}. When I was Learning calculus, I saw a gripping formula in integration $\int_{0}^{n} x^{\text {th }}$ term of $\left\langle f_{k}(n)\right\rangle d x=\frac{n^{K+1}}{K+1}=\frac{1}{K+1} \times n^{\text {th }}$ term of $\left\langle f_{K+1}(n)\right\rangle$, and this relation tells us that there exists an integral relationship between the $\mathrm{n}^{\text {th }}$ terms of $\left\langle f_{K}(n)\right\rangle$ and $\left\langle f_{K+1}(n)\right\rangle$. That fact forced me to think about the possibility of an interrelation between the sum of n terms of $\left\langle f_{K+1}(n)\right\rangle$ using the sum of n terms of $\left\langle f_{K}(n)\right\rangle$ by integration.
This method itself becomes the proof for the vanishing of some terms of polynomial in the formulae of $\sum n^{k}$

II. Data required

- $\quad f_{1}(n)=\frac{n(n+1)}{2}$
- $\quad f_{2}(n)=\frac{n(n+1)(2 n+1)}{6}$
- $\quad f_{3}(n)=\left[\frac{n(n+1)}{2}\right]^{2}$
- $\quad f_{4}(n)=\frac{n(n+1)(2 n+1)\left(3 n^{2}+3 n-1\right)}{30}$
- $\quad f_{5}(n)=\frac{n^{2}(n+1)^{2}\left(2 n^{2}+2 n-1\right)}{12}$
- $\quad f_{6}(n)=\frac{n(n+1)(2 n+1)\left(3 n^{4}+6 n^{3}-3 n+1\right)}{42}$

III. Learning Activity

(1)Finding the formulae for $1^{2}+2^{2}+3^{2}+4^{2}+$ \qquad $+n^{2}=f_{2}(n)$ from
$1+2+3+4+\ldots \ldots+n=f_{1}(n)$
$f_{1}(n)=1+2+3+4+\ldots \ldots+n=\frac{n}{2}(n+1)$
Writing it as polynomial $=\frac{n^{2}}{2}+\frac{n}{2}$
Find $\int_{0}^{n} f_{1}(x) \cdot d x$

$$
\int_{0}^{n} f_{1}(x) \cdot d x=\int_{0}^{n}\left(\frac{x^{2}}{2}+\frac{x}{2}\right) \cdot d x=\frac{n^{3}}{6}+\frac{n^{2}}{4}
$$

Existing formulae for $f_{2}(n)=1^{2}+2^{2}+3^{2}+4^{2}+\ldots \ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$

$$
=\frac{1}{3} n^{3}+\frac{1}{2} n^{2}+\frac{1}{6} n
$$

Comparing coefficient of n^{3} and n^{2} in $\int_{0}^{n} f_{1}(x) \cdot d x$
(a) Coefficient of n^{3} in $2 \times \int_{0}^{n} f_{1}(x) \cdot d x=$ coefficient of n^{3} in $f_{2}(n)=\frac{1}{3}$
(b) Coefficient of n^{2} in $2 \times \int_{0}^{n} f_{1}(x) \cdot d x=$ coefficient of n^{2} in $f_{2}(n)=\frac{1}{2}$

And linear term in $f_{2}(n)=1-$ [sum of coefficient of nonlinear terms]

$$
=1-\left[\frac{1}{3}+\frac{1}{2}\right]=\frac{1}{6}
$$

$\therefore f_{2}(n)=\frac{n(n+1)(2 n+1)}{6}$
(2) Finding the formulae for $f_{3}(n)=1^{3}+2^{3}+3^{3}+4^{3}+\ldots \ldots+n^{3}$ from
$1^{2}+2^{2}+3^{2}+4^{2}+\ldots \ldots+n^{2}=f_{2}(n)$
$1^{2}+2^{2}+3^{2}+4^{2}+\ldots \ldots+n^{2}=f_{2}(n)=\frac{n(n+1)(2 n+1)}{6}$

Writing it as polynomial $=\frac{1}{3} n^{3}+\frac{1}{2} n^{2}+\frac{1}{6} n$

Find $\int_{0}^{n} f_{2}(x) \cdot d x$

$$
\int_{0}^{n} f_{2}(x) \cdot d x=\int_{0}^{n}\left(\frac{x^{3}}{3}+\frac{x^{2}}{2}+\frac{x}{6}\right) \cdot d x=\frac{n^{4}}{12}+\frac{n^{3}}{6}+\frac{n^{2}}{12}
$$

Existing formulae for $=f_{3}(n)=1^{3}+2^{3}+3^{3}+4^{3}+\ldots \ldots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$

$$
=\frac{1}{4} n^{4}+\frac{1}{2} n^{3}+\frac{1}{4} n^{2}
$$

Comparing coefficients of n^{4}, n^{3}, and n^{2} in
(a) Coefficient of n^{4} in $3 \times \int_{0}^{n} f_{2}(x) \cdot d x=$ coefficient of n^{4} in $f_{3}(n)=\frac{1}{4}$
(b) Coefficient of n^{3} in $3 \times \int_{0}^{n} f_{2}(x) \cdot d x=$ coefficient of n^{3} in $f_{3}(n)=\frac{1}{2}$
(c) Coefficient of n^{2} in $3 \times \int_{0}^{n} f_{2}(x) \cdot d x=$ coefficient of n^{2} in $f_{3}(n)=\frac{1}{4}$

And the coefficient of the linear term in $f_{3}(n)=1-$ [sum of coefficient of nonlinear terms]

$$
=1-\left[\frac{1}{4}+\frac{1}{2}+\frac{1}{4}\right]=0
$$

$\therefore f_{3}(n)=\left[\frac{n(n+1)}{2}\right]^{2}$
(3) Finding the formulae for $f_{4}(n)=1^{4}+2^{4}+3^{4}+\ldots \ldots+n^{4}$ from $f_{3}(n)=1^{3}+2^{3}+3^{3}+4^{3}+\ldots \ldots+n^{3}$
$f_{3}(n)=1^{3}+2^{3}+3^{3}+4^{3}+\ldots \ldots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$
Writing it as polynomial $=\frac{1}{4} n^{4}+\frac{1}{2} n^{3}+\frac{1}{4} n^{2}$

Find $\int_{0}^{n} f_{3}(x) \cdot d x$

$$
\int_{0}^{n} f_{3}(x) \cdot d x=\int_{0}^{n}\left(\frac{x^{4}}{4}+\frac{x^{3}}{2}+\frac{x^{2}}{4}\right) \cdot d x=\frac{n^{5}}{20}+\frac{n^{4}}{8}+\frac{n^{3}}{12}
$$

Existing formulae for $f_{4}(n)=1^{4}+2^{4}+3^{4}+\ldots \ldots+n^{4}=\frac{n(n+1)(2 n+1)\left(3 n^{2}+3 n-1\right)}{30}$

$$
=\frac{1}{5} n^{5}+\frac{1}{2} n^{4}+\frac{1}{3} n^{3}-\frac{1}{30} n
$$

Comparing coefficient of $\mathrm{n}^{5}, \mathrm{n}^{4}, \mathrm{n}^{3}$ and n^{2} in $\int_{0}^{n} f_{3}(x) \cdot d x$
(a) Coefficient of n^{5} in $4 \times \int_{0}^{n} f_{3}(x) \cdot d x=$ coefficient of n^{5} in $f_{4}(n)=\frac{1}{5}$
(b) Coefficient of n^{4} in $4 \times \int_{0}^{n} f_{3}(x) \cdot d x=$ coefficient of n^{4} in $f_{4}(n)=\frac{1}{2}$
(c) Coefficient of n^{3} in $4 \times \int_{0}^{n} f_{3}(x) \cdot d x=$ coefficient of n^{3} in $f_{4}(n)=\frac{1}{3}$
(d) Coefficient of n^{3} in $4 \times \int_{0} f_{3}(x) \cdot d x=$ coefficient of n^{2} in $f_{4}(n)=0$

And the coefficient of the linear term in $f_{3}(n)=1-$ [sum of coefficient of nonlinear terms]

$$
=1-\left[\frac{1}{5}+\frac{1}{2}+\frac{1}{3}\right]=\frac{1}{30}
$$

$\therefore f_{4}(n)=\frac{n(n+1)(2 n+1)\left(3 n^{2}+3 n-1\right)}{30}$
(4)Finding the formulae for $1^{5}+2^{5}+3^{5}+\ldots \ldots .+n^{5}=f_{5}(n)$ from $f_{4}(n)=1^{4}+2^{4}+3^{4}+\ldots \ldots+n^{4}$ $f_{4}(n)=1^{4}+2^{4}+3^{4}+\ldots \ldots+n^{4}=\frac{n(n+1)(2 n+1)\left(3 n^{2}+3 n-1\right)}{30}$

Writing it as polynomial $=\frac{1}{5} n^{5}+\frac{1}{2} n^{4}+\frac{1}{3} n^{3}-\frac{1}{30} n$

Find $\int_{0}^{n} f_{4}(x) \cdot d x$

$$
\int_{0}^{n} f_{4}(x) \cdot d x=\int_{0}^{n}\left[\frac{x^{5}}{5}+\frac{x^{4}}{2}+\frac{x^{3}}{3}-\frac{x}{30}\right] \cdot d x=\frac{n^{6}}{30}+\frac{n^{5}}{10}+\frac{n^{4}}{12}-\frac{n^{2}}{60}
$$

Existing formulae for $f_{5}(n)=1^{5}+2^{5}+3^{5}+\ldots \ldots .+n^{5}=\frac{n^{2}(n+1)^{2}\left(2 n^{2}+2 n-1\right)}{12}$

$$
=\frac{1}{6} n^{6}+\frac{1}{2} n^{5}+\frac{5}{12} n^{4}-\frac{1}{12} n^{2}
$$

Comparing coefficient of $\mathrm{n}^{6}, \mathrm{n}^{5}, \mathrm{n}^{4}, \mathrm{n} 3$ and n^{2} in $\int_{0}^{n} f_{4}(x) \cdot d x$
(a) Coefficient of n^{6} in $5 \times \int_{0}^{n} f_{4}(x) \cdot d x=$ coefficient of n^{6} in $f_{5}(n)=\frac{1}{6}$
(b) Coefficient of n^{5} in $5 \times \int_{0}^{n} f_{4}(x) \cdot d x=$ coefficient of n^{5} in $f_{5}(n)=\frac{1}{2}$
(c) Coefficient of n^{4} in $5 \times \int_{0}^{n} f_{4}(x) \cdot d x=$ coefficient of n^{4} in $f_{5}(n)=\frac{5}{12}$
(d) Coefficient of n^{3} in $5 \times \int_{0} f_{4}(x) \cdot d x=$ coefficient of n^{3} in $f_{5}(n)=0$
(e) Coefficient of n^{2} in $5 \times \int_{0}^{n} f_{4}(x) \cdot d x=$ coefficient of n^{2} in $f_{5}(n)=-\frac{1}{12}$

And the coefficient of the linear term in $f_{3}(n)=1-$ [sum of coefficient of nonlinear terms]

$$
\begin{aligned}
& \quad=1-\left\lfloor\frac{1}{6}+\frac{1}{2}+\frac{5}{12}-\frac{1}{12}\right\rfloor=0 \\
& \therefore f_{5}(n)=\frac{n^{2}(n+1)^{2}\left(2 n^{2}+2 n-1\right)}{12}
\end{aligned}
$$

(5)Finding the formulae for $1^{6}+2^{6}+3^{6}+\ldots \ldots .+n^{6}=f_{6}(n)$ from $1^{5}+2^{5}+3^{5}+\ldots \ldots .+n^{5}=f_{5}(n)$ $1^{5}+2^{5}+3^{5}+\ldots \ldots \ldots+n^{5}=f_{5}(n)=\frac{n(n+1)(2 n+1)\left(3 n^{2}+3 n-1\right)}{30}$

Writing it as a polynomial $=\frac{1}{6} n^{6}+\frac{1}{2} n^{5}+\frac{5}{12} n^{4}-\frac{1}{12} n^{2}$
Find $\int_{0}^{n} f_{5}(x) \cdot d x$

$$
\int_{0}^{n} f_{5}(x) \cdot d x=\int_{0}^{n}\left[\frac{x^{6}}{6}+\frac{x^{5}}{2}+\frac{5 x^{4}}{12}-\frac{x^{2}}{12}\right] \cdot d x=\frac{n^{7}}{42}+\frac{n^{6}}{12}+\frac{n^{5}}{12}-\frac{n^{3}}{36}
$$

Existing formulae for $f_{6}(n)=1^{6}+2^{6}+3^{6}+\ldots \ldots .+n^{6}=\frac{n(n+1)(2 n+1)\left(3 n^{4}+6 n^{3}-3 n+1\right)}{42}$

$$
=\frac{1}{7} n^{7}+\frac{1}{2} n^{6}+\frac{1}{2} n^{5}-\frac{1}{6} n^{3}+\frac{1}{42} n
$$

Comparing coefficient of $\mathrm{n}^{7}, \mathrm{n}^{6}, \mathrm{n}^{5}, \mathrm{n}^{4}, \mathrm{n}^{3}$ and n^{2} in $\int_{0}^{n} f_{5}(x) \cdot d x$
(a) Coefficient of n^{7} in $6 \times \int_{0}^{n} f_{5}(x) \cdot d x=$ coefficient of n^{7} in $f_{6}(n)=\frac{1}{7}$
(b) Coefficient of n^{6} in $6 \times \int_{0}^{n} f_{5}(x) \cdot d x=$ coefficient of n^{6} in $f_{6}(n)=\frac{1}{2}$
(c) Coefficient of n^{5} in $6 \times \int_{0}^{n} f_{5}(x) \cdot d x=$ coefficient of n^{5} in $f_{6}(n)=\frac{1}{2}$
(d) Coefficient of n^{4} in $6 \times \int_{0} f_{5}(x) \cdot d x=$ coefficient of n^{4} in $f_{6}(n)=0$
(e) Coefficient of n^{3} in $6 \times \int_{0}^{n} f_{5}(x) \cdot d x=$ coefficient of n^{3} in $f_{6}(n)=-\frac{1}{6}$
(f) Coefficient of n^{2} in $6 \times \int_{0}^{n} f_{5}(x) \cdot d x=$ coefficient of n^{2} in $f_{6}(n)=0$

And the coefficient of the linear term in $f_{3}(n)=1-$ [sum of coefficient of nonlinear terms]

$$
\begin{aligned}
&=1-\left\lceil\frac{1}{7}+\frac{1}{2}+\frac{1}{2}-\frac{1}{6}\right\rceil \\
& \therefore=\frac{1}{42} \\
& \therefore f_{6}(n)=\frac{n(n+1)(2 n+1)\left(3 n^{4}+6 n^{3}-3 n+1\right)}{42}
\end{aligned}
$$

IV. Tabular Analysis

1	2	3	4	5	6	7
K	$\mathrm{fk}_{\mathrm{K}}(\mathrm{n})$	Sum of n terms of $\mathrm{fg}_{\mathrm{K}}(\mathrm{n})$ as polynomial	$\mathrm{F}_{\mathrm{K}+1}(\mathrm{n})$	Sum of n terms of $\mathrm{F}_{\mathrm{K}+1}(\mathrm{n})$ as polynomial	$\int_{0}^{n} f_{K}(x) \cdot d x$	Relation between $\mathrm{f}_{\mathrm{k}}(\mathrm{n})$ and $\mathrm{F}_{\mathrm{K}+1}(\mathrm{n})$
1	$\mathrm{f}_{1}(\mathrm{n})$	$\frac{n^{2}}{2}+\frac{n}{2}$	$\mathrm{f}_{2}(\mathrm{n})$	$\frac{1}{3} n^{3}+\frac{1}{2} n^{2}+\frac{1}{6} n$	$\frac{n^{3}}{6}+\frac{n^{2}}{4}$	Nonlinear terms of column $5=$ $2 \times$ nonlinear terms of column 6
2	$\mathrm{f}_{2}(\mathrm{n})$	$\frac{1}{3} n^{3}+\frac{1}{2} n^{2}+\frac{1}{6} n$	$\mathrm{f}_{3}(\mathrm{n})$	$\frac{1}{4} n^{4}+\frac{1}{2} n^{3}+\frac{1}{4} n^{2}$	$\frac{n^{4}}{12}+\frac{n^{3}}{6}+\frac{n^{2}}{12}$	Nonlinear terms of column $5=$ $3 \times$ nonlinear terms of column 6
3	$\mathrm{f}_{3}(\mathrm{n})$	$\frac{1}{4} n^{4}+\frac{1}{2} n^{3}+\frac{1}{4} n^{2}$	$\mathrm{f}_{4}(\mathrm{n})$	$\frac{1}{5} n^{5}+\frac{1}{2} n^{4}+\frac{1}{3} n^{3}-\frac{1}{30} n$	$\frac{n^{5}}{20}+\frac{n^{4}}{8}+\frac{n^{3}}{12}$	Nonlinear terms of column $5=$ $4 \times$ nonlinear terms of column 6
4	$\mathrm{ff}_{4}(\mathrm{n})$	$\frac{1}{5} n^{5}+\frac{1}{2} n^{4}+\frac{1}{3} n^{3}-\frac{1}{30} n$	$\mathrm{f}_{5}(\mathrm{n})$	$\frac{1}{6} n^{6}+\frac{1}{2} n^{5}+\frac{5}{12} n^{4}-\frac{1}{12} n^{2}$	$\frac{n^{6}}{30}+\frac{n^{5}}{10}+\frac{n^{4}}{12}-\frac{n^{2}}{60}$	Nonlinear terms of column $5=$ $5 \times$ nonlinear terms of column 6
5	$\mathrm{f}_{5}(\mathrm{n})$	$\frac{1}{6} n^{6}+\frac{1}{2} n^{5}+\frac{5}{12} n^{4}-\frac{1}{12} n^{2}$	$\mathrm{f}_{6}(\mathrm{n})$	$\frac{1}{7} n^{7}+\frac{1}{2} n^{6}+\frac{1}{2} n^{5}-\frac{1}{6} n^{3}+\frac{1}{42} n$	$\frac{n^{7}}{42}+\frac{n^{6}}{12}+\frac{n^{5}}{12}-\frac{n^{3}}{36}$	Nonlinear terms of column $5=$ $6 \times$ nonlinear terms of column 6

V. Conclusion

- $\quad f_{K+1}(n)=(K+1) \int_{0}^{n} f_{K}(x) \cdot d x+$ Linear term

Such that, 1-[Sum of coefficients of nonlinear terms] = The coefficient of linear term

- We know, $\int_{0}^{n} a x^{m}=\frac{a n^{m+1}}{K+1}$ if $a=0$ then the term n^{m+1} vanishes

When we consider the integration method, if the formulae $f_{K}(n)$ don't have the term n^{m} then n^{m+1} never exist in the formulae of $f_{K+1}(n)$

Acknowledgment

I express my sincere thanks to
Mr. Unni Krishnan, SSMHSS Theyyalingal, Kerala, India
Ms. Santhi, SSMHSS Theyyalingal, Kerala, India
And to all who helped me to complete this project

References

[1]. Elementary number theory (Seventh edition) by David M. Burton (1976)
[2]. NCERT Mathematics Textbook (12th standard 2014)
[3]. Calculus by Edwin Herman and Gilbert Strang

Silpadas N. "Finding An Easy Way To Calculate Sum of Powers Of Natural Numbers ($\sum n^{k}$) By Integration Method." IOSR Journal of Mathematics (IOSR-JM), 17(6), (2021): pp. 35-40.

