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Abstract 
An analytical study of energy transfer in flow of four different shapes of copper nanoparticles in ethylene glycol 

and water based fluids through a porous channel was carried out. The governing models which are Navier-

Stokes, energy, concentration and continuity equations were non-dimensionalized and solutions obtained using 

perturbation method. Analysis of graphical and numerical results showed that increase in angular frequency, 

Schmidt term and chemical reaction, enhanced the concentration profile of the fluid while increase in radiation 

term, increases the temperature profile of the copper nanofluid but decreases the velocity profile of the fluid. 

Increase in the heat absorption term and chemical reaction term all depreciates the temperature and velocity 

profiles of the fluid.    
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I. Introduction 
Energy transfer involves both heat transfer and mass transfer.  Energy transfer in form of heat is the 

transport of heat from one point to another.  Similarly, energy transfer in form of mass is the transport of mass 

from one point to another. To enhance the heat transfer of a fluid, changing the flow geometry, boundary 

conditions or thermal conductivity is essential.  Various techniques have been proposed to enhance the heat 
transfer performance of fluids.  Researchers have tried to increase the thermal conductivity of base fluids by 

suspending micro or larger sized solid particles in fluids.  Fluids with nanoparticles suspended in them are 

nanofluids (Choi, 1995).  This nanofluids according to him significantly increases the thermal conductivity of 

the base fluids as well as their convective heat transfer rate. Nanoparticles are mainly metals, oxides and 

carbides while the common base fluids are water, ethylene glycol propylene glycol, kerosene oil and many 

more. Owing to the improved thermal properties, nanofluids are needed for utilization in heat exchangers, 

thermal media and energy systems to improve the heat transfer rate and modify the thermal management of 

devices with high heat flux (Ramezanizadeh et al, 2019). 

The structure of solid particles and fraction of nanostructures are some of the contributory factors of 

nanofluids in heat transfer modification. However, some of the main parameters with an impact on the features 

of nanofluids include but not limited to type of solid phase, pH, temperature, base fluids, synthesis procedure 
and size of nanostructures.  Nanofluid has become a topic of attraction due to its environmentally friendly 

nature, and extraordinary heat transfer performance in various areas including cooling, power generation, 

defense nuclear, space, microelectronics and biomedical appliances. In several practical applications, mainly in 

industries, the primary requirement is heat transfer from source to sink.  Improving heat transfer efficiency is 

vital in telecommunication systems. A rapid and sustained heat removal rate is required in electronic systems 

optical devices, x-rays and laser application (Das et al., 2008). 

Several other definitions and explanations are abounded in literatures such as klemstrever and Fan 

(2011), that described nanofluids as a new class of heat transfer fluids by dispersing nanometer-size particles, 

with typical diameter scales of 1 to 100nm in traditional heat transfer fluids. Wang and Mujundar (2008), 

considered nanofluid to be the next generation heat transfer fluids because they offer exciting new possibilities 

to enhance heat transfer performance compared to pure liquids. Due to the poor heat transfer abilities of 

conventional base fluids and with global need for improvement, to develop advanced heat transfer fluids with 
significantly higher thermal conductivity than those presently available, there is need for nanofluid. 

In today’s science and technology, size does matter, therefore modern fabrication technology provides 

great opportunity to actively process materials at micro and nanometer scales (Ngiangia and Akaezue 2019). 

According to Mukherjee and Paria (2013), nanofluids possess some vital features for scientific and engineering 
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applications than conventional base fluids.  They include, rise in thermal  conductivity beyond exception and 

much higher than theoretical prediction, ultrafast heat transfer ability, better stability than other colloids, 

reduction of corrosion and clogging in micro channels, reduction in pumping power, reduce friction coefficient 
and better lubrication. Nanofluids preparation methods require advanced and sophisticated equipments.  This 

leads to higher production cost of nanofluids, but its characteristics outlined cannot be over emphasized.  The 

choice of non-spherical shape nanoparticle in this research is predicated on the work of Aaiza et al (2015), 

where they mentioned desirable properties in cancer treatment.  Also the choice of copper nanoparticle with 

ethylene glycol and water as based fluids to form copper nanofluid is because it possesses higher thermal 

conductivity and stability than other nanofluids. 

The quality of nanofluid not only depends on the type of nanoparticles but also their shapes and 

temperature. To incorporate temperature into the models of thermal conductivity, require the Brownian motion 

of the nanoparticles but the works of keblinski et al. (2002) and Jang and Choi (2004), postulated that, the effect 

of Brownian motion can be ignored, since the contribution of thermal diffusion is much greater than Brownian 

diffusion. Although, Wang et al (1999), argued that the thermal conductivities of nanofluids should be 
dependent on the Brownian motion and inter-particle forces. As a result of technological development and 

improved methods of practice in almost every industry, the use of nanoscience and nano technology is fast 

gaining momentum.  In 1974 Norio Tanigudi first used the term nanotechnology, since then, nanofluid has grasp 

the attention of many scholars around the world and by the year 2006, more than one thousand research papers 

where the term nanofluid was used has been published. In a study of nanofluids for magnetohydrodynamic 

(MHD),Mansur et al (2015), obtained results for embedded parameters and considered stretching and shrinking 

cases.  Timofeera et al (2009), conducted theoretical and experimental study of alumina of various nanoparticles 

in a base fluid mixture of ethylene glycol and water of equal volumes. Loganathan et al (2013), carried out a 

study where they analyzed radiation effects and concluded that spherical shape nanofluids velocity is less than 

copper. Study of heat transfer of alumina water nanofluid in mixed convection flow inside a square cavity was 

done by Sebdani et al (2012).  Xuan and Li (2000), published an article on heat transfer enhancement of 

nanofluids and introduced the theoretical study of the thermal conductivity of nanofluids. Kleinstreuer and Feng 
(2011), carried out an experimental and theoretical studies of nanofluid and catalogued several classical models 

for effective thermal conductivity of mixtures.  They went further to compare dynamic models with 

experimental data. The integral transform technique was employed by Hajizadeh et al (2019) in the study of free 

convection flow of nanofluids between two vertical plates with damped thermal flux and used graphical 

illustrations to present their findings.  Souayeh et al (2019), scrutinized the consequences of non-linear radiation 

on MHD Casson nanofluid along the thin needle and reported a comparison of fixed needle and moving needle 

was made and illustrated through graphs. According to the work of Makinde and Mutuku (2014), Runge-Kutta-

Fehiberg method with shooting technique gives inspiring results on the interaction between the electrical 

conductivity of the conventional base fluid and that of the nanoparticles under the influence of magnetic field in 

a boundary layer flow with heat transfer. Rashidi et al (2014), examined the effect of buoyancy on MHD flow of 

nanofluid over a stretching sheet in the presence of thermal radiation and magnetic field. The influence of 
visions dissipation and chemical reaction on MHD flow of nanofluids through a porous medium was examined 

by Eshetu and Shankar (2014). 

Abdul-Hakeem et al (2015), published the results of their work on the effect of magnetic field on 

second order slip flow of nanofluid with thermal radiation. 

A very useful and interesting result was obtained by Sheremet et al (2015) on the investigation of 

unsteady free convection heat transfer characteristics of a nanofluid confined within a porous open wavy cavity. 

Gunnasegaran et al (2012), presented quantitative results of the heat transfer enhancement of compact heat 

exchanger with increasing volumetric concentrations of nanofluids at various Reynolds numbers regime. 

Alotaibi et al (2020), in modeling thermal conductivity of ethylene glycol-based nanofluids, they opined that 

augmenting the thermal conductivity of fluids make them more favourable for thermal applications. Owing to 

the vital role played by thermal conductivity in the heat transfer ability of nanofluid, some studies have focused 

on this property.  In a work carried out by Izadkhah et al. (2019), they observed that the existence of the 
nanosheets in the base fluid at a given concentration, led to augmentation in the thermal conductivity.  It has 

also been argued by Kleinstruer and Feng (2011) that of all the physical properties of nanofluids, the thermal 

conductivity is the most complex and for many applications the most important one.  However, findings have 

been controversial and theories are yet to fully explain the mechanisms of elevated thermal conductivity. To be 

specific, several articles examined thermal conductivity enhancement of nanofluids.  They include but not 

limited to Lee et al (1999), Hemmat et al(2014), Gao et al (2019),  Li et al (2015), and Liu et al (2006).  Others 

discussed thermo-physical properties of nanofluids. They are   Michael et al (2019), Omrani et al (2019), 

Ramezanizadeh and Nazari (2019) and Ramezanizadeh et al (2019). The application of nanofluids in 

thermosyphons was also extensively discussed in the work of Ramezanizadeh et al (2018). Warrier and Teja 

(2011) and Zyla (2017) also studied the viscosity of nanofluids but as well added thermal conductivity. A study 
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of the shapes effects of nanosize particles in copper nanofluid on entropy generation was reported by Ellahi et al 

(2015).  The study critically examined different shapes of nanoparticles as it affects the viscosity of the 

nanofluid.  A similar study by Ellahi et al (2014), examined the elliptic inner cylindrical geometry in a nanofluid 
filled enclosure. Sheikholeslami et al (2014), considered heat transfer in flow of nanofluids over a permeable 

stretching wall in a porous medium. A group of scientist led by Sheikholeslamic et al (2014) but different co 

authors from the former, carried out a simulation of copper(II) oxide nanofluid flow and convective heat transfer 

considering lorentz force. Ellahi (2013), examined temperature depended viscosity on flow of MHD non-

Newtonian nanofluid in a pipe. In another study by Ellahi et al. (2013), non-Newtonian nanofluids flow through 

a porous medium between coaxial cylinders with heat transfer and variable viscosity was examined and the 

results shed light, the effect of permeability and variable viscosity. Three dimensional mesoscopic simulation 

study of the effect of magnetic field on natural convection of nanofluid was examined by Sheikholeslami and 

Ellahi (2015) and far reaching deductions were made. Ellahi et al (2015), studied MHD nanofluid by means of 

single and multi-walled carbon nanotubes suspended in a salt water solution and used graphs to explain their 

findings. James et al (2015), tackled nanofluid properties provoked by the effect of chemical reaction and 
thermal radiation in a porous medium and deduced that radiation is an important parameter in the description of 

temperature profile of nanofluid. The magnetic field effect on a steady two-dimensional laminar radiative flow 

of an incompressible viscous water based nanofluid over a stretching/shrinking sheet with second order slip 

boundary condition was investigated by Abdul Hakeem et al.(2015) using Lie symmetry group transformations 

and both analytical and numerical methods of solution. They concluded that unique exact solution exists for 

momentum equation in stretching sheet case and dual solutions are obtained for shrinking sheet case which has 

upper and lower branches.This work incorporate four different shapes of copper nanoparticles namely cylinder, 

platelet, blade and brick. These different shaped nanoparticles shall be investigated analytically through an even 

porous channel. 

 

1.1 Mathematical Formulation of the Physical Problem 

An unsteady two dimensional boundary layer flow of viscous, oscillatory, incompressible, radiating 

nanofluid along an infinite flat channel is considered. The axisx   is taken along the vertical infinite channel 

in the upward direction and the 
axisy 

 normal to the channel. Using the Boussineq’s approximation, the 

partial differential equations of the nanofluid flow are given as  
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Subject to the boundary conditions to flow inside the channel with stationary walls, Aaiza (2015) 

 

            1,1,0,0,1,1,0,0,0,1,0  tCtCtTtTtutu
 

Since the motion of the copper nanofluid is two dimensional and the length of the channel is very large 

compared to the width of the channel, all physical variables are independent of the coordinate (Aruna et al 

2015). Therefore,  
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where u  and v   are velocities in x   and
y 

 directions respectively, t   is time, C   is nanofluid concentration, 

p is pressure, nf


 is density of nanofluid, nf


 is dynamic  viscosity of nanofluid,   is electrical conductivity 

of base fluid, 
2

0
B

 is imposed magnetic induction, g is acceleration due to gravity, nf


 is thermal expansion due 

to temperature, 
nf




 is thermal expansion due to concentration, T is temperature of nanofluid, 0
T

 is free 

stream temperature, 0
C

 is free stream concentration, nf
k

 is thermal conductivity of nanofluid, 
 

nfp
C

 is 

specific heat at constant pressure, r
q

 is radiation term,
2

r
k

 is chemical reaction term, D is chemical molecular 

diffusivity of nanofluid, 
Q 

 is heat  absorption term. 
Several classical models for dynamic viscosity and effective thermal conductivity have been proposed in the 

work of Kleinstreuer and Feng (2011) for various spherical and non-spherical nanoparticles but that of Hamilton 

and Crosser (1962) is most suited due to its validity for both spherical and non-spherical shapes nanoparticles 

and is defined as  
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The n seen in equation (10) is the empirical shape factor given by  


3
n , where   is the sphericity. The 

values of   for different shape particles are shown on Table 2. 

According to the work of Tiwari and Das (2007) and Asma et al (2015), density of nanofluid (
nf

 ), thermal 

expansion due to temperature of nanofluid (
nf

 ),  thermal expansion due to concentration of nanofluid ( nf


 ),  

specific heat at constant pressure of nanofluid  
nfp

C  are respectively 
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where   is the nanoparticles volume fractions,  
f

  and 
s

   are the  densities of the base fluid and solid 

nanoparticles, 
f

  and 
s

  are the thermal expansion due to temperature of base fluid and solid nanoparticles, 

f
  and  

s
   are the thermal expansion due to concentration of base fluid and solid nanoparticles and  

fp
C and 

 
sp

C are the specific heat at constant pressure  due to base fluid and solid nanoparticles. a and b are constants 
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that depend on the particle shape. The thermo physical properties of copper nanoparticles , Ethylene glycol and 

water OH
2

 as base fluids are presented in table 1. 

 

Table 1: Thermo-physical properties of Ethylene glycol, Water and Copper nanoparticles (Aaiza 2015) 

Property                             Ethylene glycol                 water                Copper 

Specific heat (J/kgK)                    0.58                         4179                    765 

 

Density (kg/m
3

)                             1.115                        997.1                 3970 
 

Thermal conductivity ( mkw / )      0.149                         0.6                      40 

 

Viscosity )/(
2

sm                           0.001095                     0.00089             0.00046 

 

Volumetric thermal expansion )10(
15 

kx  6.5                    21                      1.67 

 

 

 

Table 2: Sphericity   and empirical shape factor for different shapes nanoparticles (Aaiza 2015) 

Model                 Platelet                      Blade          Cylinder                Brick 

                           0.52                          0.36               0.62                     0.81 

 

n                             5.76923                   8.33333           4.83871               3.70370 

 

Table 3: Constants a and b  empirical shape factors  (Aaiza 2015) 

Model                 Platelet                      Blade          Cylinder                Brick 

a                          37.1                            14.6              13.5                       1.9 

 

b                           612.6                         123.3           904.4                    471.4 

 

The integral of equation (5) is performed and the suction velocity takes the form 

        
 tn

Aevv


 1
0                            (15) 

where 0
v

 is characteristic velocity of the channel wall  and A are constants. 

 To consider the effect of radiation on an optically thick model in which the thermal layer becomes very thick or 

highly absorbing as described by Rosseland approximation, Cogley et al (1968) stated it as  
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where   is the Stefan-Boltzmann constant and   is the absorption coefficient. If temperature difference 

within the flow of the nanofluid is sufficiently small, we can approximate 
4

T  using Taylor series expansion 

about the point 0 and obtain  
434

34


 TTTT                                                                                                (17) 

 Makinde and Mhone (2005), also stated that both plates temperature of the porous channel be assumed high 

enough and produces the radiative heat transfer. 

 

1.2 Dimensional Analysis 

 The Buckinham-  theorem is used and the various dimensionless parameters are stated as   
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Using the dimensionless variables and equation (15), equations (6) - (8) can be written as  
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The boundary conditions also transform into  

            1,1,0,0,1,1,0,0,0,1,0  tCtCtttutu 
 

where p is dimensionless pressure, 


 is dimensionless porosity term, Gt is Grashof number, Gc is modified 
Grashof number, Re is Reynolds number, Pr is Prandtl number, N is dimensionless radiation term, Q is 

dimensionless absorption term, Sc is Schmidt term, 0
k

 is dimensionless chemical reaction term, u,
,
C,t are 

respectively dimensionless velocity, temperature, concentration of copper nanofluid and time. 

 

1.3 Method of Solution  

Following the methods adopted by Aaiza et al (2015), Ngiangia and Akaezue (2019) and Israel-Cookey et al 

(2003), a regular perturbation of the form 
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where   is a dimensionless free stream frequency of oscillation. Using equations (21)-(23), equations (18)-
(20), transform into  
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Also the boundary conditions take the form 
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The solution of equations (26)-(29), using the method of undetermined coefficients and imposing the boundary 

conditions, the results are stated as  
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Similarly, equations (30)-(31) and equations (32)-(33) are respectively substituted into equations (25) and (24). 

The resulting solutions after imposing the boundary conditions are  
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Special cases 

Case 1: A situation where the upper wall of the channel is set into oscillatory motion while the lower wall is 

stationary, then the boundary conditions modifies into  
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where H(t) is the Heaviside step function. Equation (38) takes the form 
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Case 2: In this situation, the two channel walls are set into oscillatory motions and the boundary conditions 

modifies into  
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Equation (38) is therefore  
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II. Results 
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Figure 1 Dependence of effective viscosity on volume fraction of empirical shape factors of copper 

nanoparticles. 
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Figure 2 Dependence of effective thermal conductivity on volume fraction of copper nanoparticles in water as 

base fluid. 
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Figure 3 Dependence of effective thermal conductivity on volume fraction of copper nanoparticles in EG as 

base fluid. 
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Figure 4: The dependence of concentration on Coordinate with frequency  term varying 
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Figure 5: The dependence of concentration on Coordinate with Schmidt number varying 
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Figure 6: The dependence of concentration on Coordinate with chemical reaction term varying 
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Figure 7: The dependence of Temperature on Coordinate with radiation term varying 
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Figure 8: The dependence of Temperature on Coordinate with Prandtl number varying 
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Figure 9: The dependence of Temperature on Coordinate with heat source term varying 
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Figure 10: The dependence of Temperature on Coordinate with heat sink term varying 
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Figure 11: The dependence of velocity on Coordinate with chemical reaction term varying 
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Figure 12: The dependence of velocity on Coordinate with Schmidt number varying 
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Figure 13: The dependence of velocity on Coordinate with heat source term varying 
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Figure 14: The dependence of velocity on Coordinate with heat sink term (Q<0) varying 

 

N 1.07

N 2.07

N 3.07

N 4.07

0 1 2 3 4 5
0.1

0.0

0.1

0.2

0.3

0.4

0.5

y

u

 
Figure 15: The dependence of velocity on Coordinate with radiation term varying 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 16: The dependence of velocity on Coordinate with Prandtl number varying 

 

Pr 0.71

Pr 0.81

Pr 0.91

Pr 1.01

0 1 2 3 4 5

0.05

0.04

0.03

0.02

0.01

y

u



Heat and Mass Transfer in Flow of Copper Nanofluid Containing Different Shapes of .. 

DOI: 10.9790/5728-1706021634                              www.iosrjournals.org                                               30 | Page 

Gr 0.03

Gr 0.06

Gr 0.09

Gr 0.12

0 1 2 3 4 5

0

1

2

3

4

5

6

7

y

u

 
Figure 17: The dependence of velocity on Coordinate with Grashof number  varying 
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Figure 18: The dependence of velocity on Coordinate with modified Grashof number varying 
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Figure 19: The dependence of velocity on Coordinate with Reynolds number varying 
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Figure 20: The dependence of velocity on Coordinate with porosity term number varying 
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Figure 21: The dependence of velocity on Coordinate with Magnetic field parameter varying 

 

III. Discussion 
In order to get physical insight and numerical validation of the problem, an approximate values of   

1)(,1
2

 ttHP   are chosen. The values of other parameters made use of are  
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Figure 1 and Table 3, showed the model of empirical shape factors for determining parameters of viscosities of 

different shapes of nanoparticles in either in base fluids of ethylene glycol or water, the viscosity of the 

nanoparticle shape followed the order, blade < brick < platelet < cylinder. 

Figure 2 and Figure 3 showed that the thermal conductivity of platelet > blade > cylinder > brick in ethylene 

glycol and water based fluids but variation of the thermal conductivity is more distinct in water based fluid. 

 

Concentration profile 

Increasing the frequency of oscillation as depicted in Figure 4, correspond to increasing concentration 

of the copper nanoparticle in both the ethylene glycol and water based fluids but differ in magnitude.The 

Schmidt number is a ratio of momentum diffusivity to mass diffusivity and relates the relative thickness of the 

hydrodynamic boundary layer. It is illustrated in Figure 5 that an increase in concentration profile of the copper 
nanofluid is observed as result of increase in Schmidt number.The chemical reaction of the copper nanofluid 

lowers the concentration boundary layer and this result in an increase in the concentration profile of the fluid as 

the chemical reaction term increases. This relationship is shown in Figure 6. 
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Temperature profile 

The thermal radiation transfer of copper nanofluid when increased, give rise to the temperature profile 

of the nanofluid as depicted in Figure 7. From astrophysical point of view, the Prandtl number of 0.71 at 

C
0

25 , if increased further as shown in Figure 8, led to a decrease in the thermal boundary thickness hence a 

decrease in the temperature profile of the nanofluid. Increase in heat source Q > 0, decreases the temperature 

profile of the nanofluid as shown on Figure 9 and the reverse which is increase in heat sink Q < 0, increases the 

temperature profile of nanofluid as depicted in Figure 10. In the absence of the heat function term, the results are 

similar to that of Aaiza et al (2015) and Ngiangia and Akaezue (2019). 

 

Velocity profile  

The concentration boundary layer is lowered by chemical reaction and this effect also decreases the 

velocity profile of the nanofluid as shown in Figure 11. Figure 12 illustrates the effect of increasing the Schmidt 
number and observation showed that the velocity profile of the fluid is enhanced by the increase. Figure13 and 

Figure 14 demonstrated the effect of increasing heat source and heat sink term and the graphs clearly showed 

that increase in heat source term (Q > 0) as shown in Figure 13 corresponds to a decrease in the velocity profile 

of the copper nanofluid while a reverse which is increase in velocity profile is observed with heat sink term (Q < 

0) as shown in Figure 14.The effect of radiation on the velocity profile of  copper nanofluid flow as described in 

Figure 15, showed that increase in radiation results in an early increase in velocity and decreases the velocity 

profile of the fluid. Increasing Prandtl number as observed in Figure 16, showed that the velocity profile 

decreases steadily and converge to the free stream velocity. This observation agrees quantitatively with earlier 

results of Israel-Cookey et al (2003).  

Increase in Grashof number (Gr, Gc) > 0 means cooling of the channel plates and increase cooling of 

the plates correspond to a decrease in the velocity profile of the nanofluid and these effect is demonstrated in 

Figures 17 and 18. The Reynolds number describes the behaviour of nanofluid flow from laminar to turbulence 
and its thermal conductivity. It is therefore verified from Figure 19 that its increase brings about a corresponding 

enhancement not only in the velocity profile of the nanofluid but also the  thermal conductivity. The 

permeability term as shown in Figure 20, expresses the fact that its increasing pore spaces led to early decrease 

and later enhanced the velocity profile of the copper nanofluid in both the ethylene glycol and water based fluid. 

Finally, the magnetic Hartmann number is a resistive type of force and its increase in a region will lead to a 

decrease in the velocity profile of the fluid and that is the illustration in Figure 21. 
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