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Abstract. Mainstream (Eurocentric) texts on Complex Analysis, including one of the most popular texts used in 

undergraduate courses on the subject (James Ward Brown and Ruel V. Churchill’s Complex Variables and 

Applications) and one of the most popular texts used in graduate courses on the subject (Dennis Zill and Patrick 

Shanahan’s Complex Analysis: A First Course with Applications) say nothing about the African origins and 

contemporary study of the subject. This paper seeks to fill a part of this gap by providing evidence on Complex 

Geometry gleaned from non-mainstream mathematical works. The thesis that underlies this paper is therefore 

as follows: Any study of Complex Analysis which ignores its African origins and the continuation of its study to 

this day will miss a very significant aspect of the subject. Thus, the essence of this paper hinges upon how 

autonomous evidences from different sources are marshalled into a cohesive whole. 
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I. Introduction 
Mainstream (Eurocentric) texts on Complex Analysis (defined in the next paragraph) begin by tracing 

the origins of the subject to the 16
th

 Century AD when European mathematicians were forced to admit that other 

kinds of numbers existed that were not positive integers. These books then add that no one person ―invented‖ 

Complex Numbers (also defined in the ensuing paragraph), which led to controversies surrounding the use of 

these numbers [1, 6]. Consequently, these texts miss including the origins of the subject in Ancient Kemet/Egypt 

that dates back to 17000 BCE and its study to the present day. Thus, the thesis of this paper is that the study of 

Complex Analysis which ignores its African origins and the continuation of its study to this day will miss a very 

significant aspect of the subject. In this paper, my aim is to fill a part of this gap by providing evidence on 

Complex Geometry culled from non-mainstream mathematical works. The significance of this paper therefore 

lies upon how attestations from independent sources are brought together to provide an interconnected portrait 

of the African roots and contemporary study of Complex Geometry. Before doing all this, however, I will first 

end this section with a definition of Complex Analysis and what it covers for those readers who may not be 

familiar with the subject. 

Complex Analysis is generally defined as the study of Complex Numbers, which are numeral values in 

the following form: ―z = a = ib where a and b are real numbers and i is the imaginary unit‖ [6]. Thus, the 

notations a + ib and a = bi are utilized interchangeably. The real number a in z = a + ib is referred to as the real 

part of z, while the real number b is referred to as the imaginary part of z. The real part of the Complex Number 

is abbreviated Re(z) and the imaginary part is abbreviated lm(z) [1, 6]. 

The major areas of focus of Complex Analysis are the following: (a) Complex Arithmetic which 

involves addition and multiplication operations that are defined on complex numbers; thus, subtraction and 

division must, in some way, be defined in terms of these two operations; (b) Complex Algebra which computes 

a set of complex numbers that can be defined as the set of two-dimensional real vectors (x, y) with one extra 

operation—complex multiplication; (c) Complex Geometry which concerns the properties and relations of 

points, lines, surfaces, solids, and higher dimensional analogs complex manifolds, complex algebraic varieties, 

and functions of several complex variables; included in Complex Geometry are the applications of 

transcendental methods to algebraic geometry, as well as the more geometric aspects of Complex Analysis; (d) 

Elementary Functions which engage functions of single variables (either real or complex) that are denoted as 

taking sums, products, and compositions of finitely many polynomial, rational, trigonometric, hyperbolic, and 

exponential functions, including possibly their inverse functions; and (e) Integrals which deal with functions of 

which given functions are the derivatives, i.e. which yield those functions when differentiated, and which may 

express the areas under the curves of the graphs of the functions [see 1 & 6]. 

 

II. EVIDENCE FROM CHEIKH ANTA DIOP. 



The African Roots and Contemporary Study of Complex Geometry  

DOI: 10.9790/5728-1706024555                              www.iosrjournals.org                                               46 | Page 

In his book titled Civilization or Barbarism (1981), Cheikh Anta Diop addresses several issues. The 

first issue is that Egypt was not a white civilization which was made up by Europeans in the 19
th

 Century to 

reinforce racism and imperialism. Another issue is that Egypt was a black society and Blacks should be heirs to 

Egypt‘s legacy. The other issue is that Greek civilization owes its success and knowledge to Ancient Egyptian 

ideas and accomplishments. In Chapter 16 titled ―Africa‘s Contribution: Sciences,‖ Diop devotes three large 

sections to (1) Egyptian Mathematics: Geometry, (2) Algebra, and (3) Arithmetic, respectively, with the other 

sections dealing with Astronomy, Medicine, Chemistry, and Architecture, all of which are undergirded with 

their mathematics [2]. The following subsections entail evidence pertaining to Complex Geometry in the book. 

  

Problem 10 of the Papyrus of Moscow. This is the first text in the Papyrus of Moscow and the first six lines are 

transcribed from Ancient Egyptian hieroglyphics. The very last line which is line six is controversial because it 

says ges pw n inr, which translates into English as ―half of an egg.‖ The sequence of equations is as follows [2]: 

 

  9 – 1 = 8 

  
8

9
 = 

2

3
 + 

1

6
 + 

1

18
 

  8 - 
8

9
 = 8 -  

2

3
+ 

1

6
+  

1

18
  = 7 + 

1

9
 

   7 + 
1

9
  x  4 +  

1

2
  = 32 = surface 

 

Problem 14 of the Papyrus of Moscow. This exercise deals with the volume of a truncated pyramid which 

shows us that the Ancient Egyptians knew the exact formula. If not for this exercise, there would be a debate to 

this day about whether the Ancient Egyptians knew the volume of a pyramid, despite the materiality of Egypt‘s 

pyramid. This formula is for one of the complex expressions that were vandalized [2]: 

 

V = 
ℎ

3
 (a

2
 + ab + b

2
) 

 

The Ancient Egyptians knew all the more that 

 

V = 
ℎ

3
a

2
  

 

Problems 56 to 60 of the Rhind Papyrus. These are the most complex Ancient Egyptian mathematical 

expression that survived the vandalism of the conquerors. They show us that 2,000 years before the Greeks, the 

Ancient Egyptians studied the mathematics of the cone and used different trigonometric lines. The tangent, sine, 

cosine, and cotangent were used to calculate slopes. The Ancient Egyptian mathematical equation for the pi or 

π, which is the ratio of the circumference of any circle to the diameter of that circle, is as follows [2]: 

 

π = 3.16 

 

Archimedes represented this as π = 3.14. He did not explicitly calculate the value 3.1416; instead, he showed 

that the ratio of the circumference is situated between 3.1/7 and 3.10/71. He also did not credit the Ancient 

Egyptians, unbeknown to him that the ancient papyrus would one day reveal the truth to posterity [2]. 

 

Cylinder tangential to a sphere. This is the only case where there is equality between the height of a cylinder 

and the diameter of the circle at the base. This happens to be that of the inscribed sphere calculated by an 

Ancient Egyptian scribe. This is also the same figure that Archimedes used as an epitaph and as his best 

discovery. The equation derived after the literal notation is as follows [2]: 

 

S
1

𝑠
 sphere = 2 x 

256

81
 x r

2
 = 2πr

2
 

 

Egyptian balance with cursors. The Ancient Egyptians are the inventors of the scale where the manipulator 

acts on slides in an initial position symmetrical to the central support. They used a lever with two unequal arms 

and a counterweight to easily draw water. The ―part of support‖ from Archimedes was already there 2,000 years 

before he was born [2]. The equation to the English literature the phrase ―Egyptian balance with cursors‖ is 

found is the following [5]: 

 

 r = a(i + cos
6
) 
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The watering of a garden using the shadoof. This was already in Ancient Egypt a mechanical application of 

the lever with unequal arms. It was the instrument that would allow Archimedes to ―lift up the Earth, if he had a 

point of support.‖ It was invented by the Ancient Egyptians 1,000 years before he was born. The Ancient 

Egyptians, however, used it to water their gardens [2]. 

The shadoof has been explained in terms of the dotted figures that embody a number of important notions. To 

begin with, the Ancient Egyptian symbol shen means eternity, and it also well known as the Ancient Egyptian 

cartouche. Next, there are two signs of equality: one of these signs is directed from ring of Y Holes to South 

Barrow; the other sign is directed tangentially to a ring of Z Holes. This symbolism is intended to describe the 

same mathematical expression with numerator and denominator, which denotes the name Atum. All this has 

been explained as follows: 

 

The ring of X Holes symbolizes ―big five‖ number and ―big ring‖: 

 

π.Φ = 5.08 

 

The ring of Z Holes symbolizes ―small five‖ number and ―small ring‖: 

 

e
Φ
 = 5.04 

 

The ring of Y Holes symbolizes result of division (―big five‖ over ―small five‖)‖ 

 
𝜋.𝛷

𝑒𝛷
 = j 

where the value j = 1.0079… [7]. 

 

Problem 53 of the Rhind Papyrus. This problem shows a figure derived from the ―Theorem of Thales,‖ albeit 

700 years before Thales. Thales had to have been a pupil of Ancient Egyptian priests. This is because the 

shadow cast by a stick meets at the end of the shadow cast by the Great Pyramid and, therefore, this formula [2]: 

 

0 = (A − B) x (B − C) = (A − B) x (B + A) = |A|2 − |B|2; therefore, |A| = |B| 

 

meaning that A and B are equidistant from the origin: i.e. from the center of M. 

 

Ellipse drawn on a wall of the Temple of Luxor. On the wall of the Temple of Luxor is an ellipse drawn 

which was built under Ramses III, around 1200 BC. While doubt remains as to the problem that the Ancient 

Egyptian technician wanted to solve, it definitely relates to the property of a ellipse. The figure presents itself as 

looking for the surface (S) of an ellipse; thus, the following equation [2]: 

 

S = πab = 1 x 1
1

2
 x π = 4.71 (exact value) 

 

In taking the diameters, which are 2 and 3, instead of the demi-axes, the formula yields the following [2]: 

 

S =  2 − 
2

7
  x  3 − 

2

7
  = 4.65 

 

and the error of the Ancient Egyptian architecture would be 
6

471
 or 

1

8
 

 

Surface of the sphere. Problem 10 of the Papyrus of Moscow deals with the curved surface of a half-sphere. T. 

Eric Peet did not hesitate with dishonesty to propose irrational changes of the text of the problem by confusing a 

half-sphere with a half-cylinder. Richard J. Gillings did not doubt that Problem 10 dealt with the surface of a 

half-sphere and that Ancient Egyptians established the equation by considering that the quantity of bark used to 

make a basket is double that to make a lid, which is a circle whose surface they knew how to calculate using the 

following equation [2]: 

 

S = 4πR
2
 

 

Square root, so-called Pythagoreum Theorem and irrational numbers. The Ancient Egyptians knew how to 

extract the square root. They even knew how to do it for complicated whole or fractional numbers. The term that 

designates the square root also means the right angle of a square, knbt, to extract the square root. The Ancient 
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Egyptians defined a basic unit of length referred to as ―double remen, which is equal to the diagonal of a square 

of little side a = one cubit (royal). Stated differently, if d is the diagonal, then the length itself is the ―double 

remen.‖ The Ancient Egyptians calculated the ―remen‖ as follows and the ―double remen‖ as shown in the 

subsequent subsection [2]: 

 

d = a  2 = ( 2 x 20.6) = 29.1325 inches 

 

The royal cubit = 20.6 inches 

 

The remen =  
𝑑

2
 = 

 2

2
a = 14.6 inches 

 

Royal cubit of May. The Ancient Egyptians defined a fundamental unit of length called ―double remen,‖ which 

is equal to the diagonal of a square of little side a = one cubit (royal). If d is that diagonal, then one has ―double 

remen.‖ The definition of the ―double remen‖ shows that Pythagoras was nether the inventor of irrational 

numbers nor of the theorem with his name. The calculation of the ―double remen‖ is as follows [2]: 

 

S = 
1

2
 a

2
 = 

1

4
 d

2
 → a

2
 = 

1

2
 d

2
 → 2a

2
 = d

2
 

 

where a  2 = d = a double remen. 

 

Quadrature of the circle. The Ancient Egyptians knew the problem of the circle‘s quadrature. They also were 

the first to pose it in the history of mathematics. In Problem 48 of the Rhind Papyrus, it is a matter of comparing 

the surface of a square of a side of nine units to that of an inscribed circle with a diameter of nine units, 

represented by the following formula [2]: 

 

A = πr2 

 

where A is the area of a circle and r is the radius of the circle. 

 

Problem 48 of the Rhind Papyrus. This problem deals with the squaring of the circle. It compares the area of a 

circle with a diameter of nine to a square with a side of nine. It is somewhat exceptional within the papyri 

because it does not contain written instructions that tell the scribe what to do. The formula is presented in the 

explication of the quadrature of the circle [2]. 

 

Problem 50 of the Rhind Papyrus. The problem involves with the area of a circle with a dimeter of nine by 

squaring the circle. The problem asks: ―A circular field has a diameter nine khet. What is the area?‖ A khet is a 

length of measurement of about 50 meters [2]. The following is the procedure for calculating the area of a circle 

with a diameter of nine by squaring the circle: 

 

   A = πr
2
 

   d = 2r 

 

 Solving for A 

 

   A = 
1

4
πd

2
 = 

1

4
 x π x 9

2
 ≈ 63.61725 

 

Problem 51 of the Rhind Papyrus. This problem concerns the area of a triangle with a height of 13 and a base 

of five. The Ancient Egyptians used this to find the area or a triangular piece of land. In Problem 52, discussed 

next, a scribe checks to see if the numbers are correct that seem to be absent. The median AB for the problem is 

derived with the following equation [2]: 

 

The angle a = ABC (with apex B) 

 

Problem 52 of the Rhind Papyrus The problem is about the area of a trapezoid with a large base of six, small 

base of four, and a height of 20. The Ancient Egyptians knew how to find the area of a trapezium by taking ½ 

and multiplying it by the sum of the bases, by the length of a line (meret). The length of a line could be the side 

or a line that represents the altitude. Thus, the calculation for the trapezoid area is as follows [2]: 
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Trapezoid area = ((sum of the bases) ÷ height 

 

Surface of the Circle:  S = πR
2
. The formula for the surface of a circle which was already known by the 

Ancient Egyptians is as follows [2]: 

 

S =  
8

9
𝑑 2

 

 

  which is equivalent to the following formula: 

 

S = π
𝑑2

4
 or πR

2
 

 

Extracted from the Egyptian formula, π (pi) happens to be 3.1605, unlike in Babylonian formulae when π was 3. 

This is because irrational numbers were not perceived or thought of yet in Babylon. 

 

Surface of the rectangle: S = L X l. Two problems that deal with the surface of a rectangle from two different 

viewpoints are Problem 49 of the Rhind Papyrus and Problem 6 of the Papyrus of Moscow. Problem 49 gives 

two different dimensions and asks for the surface. Problem 6 gives the surface, but it also gives the width as a 

fraction of the length. This is expressed as follows [2]: 

 

S = 12, l = 
1

2
 + 

1

4
 of L 

 

When L and l are calculated, one gets L = 4; l = 3. 

 

Surface of the triangle. The Ancient Egyptians knew about the surface of the triangle well before other 

civilizations and that the approximate formula is as follows [2]: 

 

S =  
𝑎+𝑐

2
  

𝑏+𝑑

2
  

 

The Ancient Egyptians used k3w for heights of three-dimensional objects and meryt for heights of plane figures. 

The inscription in the Temple of Edfu, which was constructed by Ptolemy XI, is often used to discredit the 

Egyptians by saying that they did not know the formula for the triangle‘s surface [2]. 

 

 

Surface of the trapezium. The formula for the surface of the trapezium is the following [2]: 

 

S = 
𝐴+𝐵

2
 x h (or the half-sum of the bases times the height) 

 

This formula is used in Problem 52 of the Rhind Papyrus and dimensions given in terms of khets to find the 

surface of the trapezium. The problem gives the length of the parallel sides and the distances or bases between 

them [2]. 

 

 

Volumes of the cylinder, of the parallelepiped, and of the sphere. Three problems (41, 42 & 43) in the Rhind 

Papyrus deal with the volume of a cylinder represented as š,⸵, not ipt. Some Western mathematicians 

deliberately confused dbm, meaning cylinder, and ifd, meaning cube or parallelpiped, depending on the case, to 

discredit Ancient Egyptian Mathematics. Problem 41 shows the volume of a cylinder of a diameter 9 and a 

height of 10 units. 

 Problem 44 of the Rhind Papyrus calculates a cube—i.e. square base, ifd; three equal sides as follows 

[2]: 

 

  š3
⸵

 dbn = cylinder 

  š3
⸵

 ifd = cube or parallelopiped, depending on the case 

 

The following is the formula for the volume of the cylinder: 

 

V = πR
2
h =  

16

9
𝑅 2

 x h =  
16

9
 2

 x R
2
 x h = S x h 
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Volume of the sphere? The problem of Plate VIII of the Kahun Papyrus comes into play when figuring out 

what the problem is the scribe was asked to do. It either asked for the volume of a sphere or the volume of a 

cylindrical silo [2]. The formula for the volume of a sphere is as follows: 

 

V = 
4

3
 πr

3
 

 

 

III. Evidence From Ron EGLASH. 
The book titled African Fractals: Modern Computing and Indigenous Design (1999) by Ron Eglash is 

about fractals and how they can be seen in every part of African culture. This includes the layout of settlements, 

painting, hairstyles, fractal geometry, and many other aspects. It also examines the political and social 

applications of fractals since the existence of Africans. Part II of the book is on ―African fractal mathematics,‖ 

which explores geometric algorithms, scaling, numeric systems, recursion, infinity, and complexity [3]. In the 

subsections that ensue, evidence about Complex Geometry in the book is presented. 

 

The Jola settlement of Mlomp, Senegal. By using a combination of imaginary and repeating processes, you 

get the Mlomp model which shows the layout of the Jola settlement in Senegal from an aerial view. The 

building complexes were not preplanned, but nobody knows the sequence of construction because there are not 

any oral historians. The spiral structures are symbolic of the chief‘s drinking vessel and it was based on the 

maintenance of the sacred forests around each of the neighborhoods [3]. The equation for a spiral is as follows: 

 

r = ae
Ɵ cot b

 

 

where r = the radius of each turn of the spiral; a and b = constants that depend on the specific spiral; Ɵ = the 

angle of rotation as the curve spirals; and e = the base of the natural algorithm. 

 

Neural network model for the Jola funeral ritual. The Jola (in Senegal) funeral starts with a deceased body 

placed on a platform and a post on each corner held by pallbearers. A priest then asks questions based on critical 

knowledge, perhaps murder, and the pallbearers move the platform right for yes, left for no, and forward for 

unknown based on the force of the deceased person. The pallbearers exert force, whether intentionally or 

unintentionally, which is considered to be more effective than a vote. By modeling each force as direction and 

magnitude, the neural network is shown where all four pallbearers and inputs are all connected, which means 

that each of them would have to exert force and sense each other‘s force [3]. The following is the simple 

formula for a neural network model: 

 

y = b + Ɵ + x 

 

where y = the output layer or vector, b = units in the layer, Ɵ = weight, and x = the input layer or vector. 

 

 

Lusaka. The lusaka was developed by the Baluba of the Congo to be used as a visual memory board, but it 

shows fractal scaling. It is mostly based on physical coding like color, but it is also mostly a ―geometry of 

ideas,‖ whereby each structure corresponds to a historical event. In addition, there is coding variation whereby 

single beads are used for individuals, groups of beads for royal courts, and larger bead arrangements for sacred 

forests that have been growing for years [3]. The fractal dimension (D) of geometric objects is calculated as 

follows: 

 

D = log(N) ÷ log(r) 

 

where log(N) = the logarithm of the number of units; log(r) = logarithm of the magnification factor 

 

 

From order to disorder in a Bakuba cloth. The Bakuba of the Congo make cloth designs that are somewhat 

similar up and down, but constantly change from right to left which happens to suggest order-disorder. A 

computer scientist by the name of Clifford Pickover developed a similar pattern to show how order to disorder 

can be seen by taking a variable chosen at random and giving it influence over the equation of the graph. By 

doing this, he noticed that the design typically moved between 1 and 1.5, from periodic to fractal, as opposed to 

going all the way to disorder [3]. A simple equation for fractal order-disorder is the following: 
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Zn+1 = Zn
2
 + C 

 

 where C and Z = complex numbers; n = zero or positive integer (natural number). 

 

 

Block print textile. An African textile that goes from order to full disorder is the block print. Chinua Achebe‘s 

famous novel, Things Fall Apart, is said to be similar to the block pattern [3]. For instance, while examining 

periodicity and fundamental blocks in African print textiles, Paulus Gerdes discovers the existence of Latin 

squares, magic squares, and Arithmetic modulo n. He calculates the Arithmetic modulo n as follows [4]: 

 

(1 + 2 x 3) + (3 + 2 x  −1 ) = 3 (modulo 5) 

or  

   7 + 1 = 3 (modulo 5) 

 

African complexity concepts in religion. Complex Geometry has been shown to exist in African concepts of 

religion. One of these is Nyame‘s power of life turbulent waters of Tanu. The other is Mawu (acts through lower 

gods). Another is Amma (an expanding spiral like a whirlwind). By looking at the central peak of spiritual 

power and computational power in the Crutchfield-Smale complexity measure, the concepts have been 

determined to be equivalent represented as follows [3]: 

 

 

 

 

 

 

 

 

            Order   Fractal   Disorder 

            Source: Self-generated by this author 

 

Geometric design in Mangbetu personal adornment. The decorative end of a Mangbetu ivory hairpin is a 

scaling design (of the Congo), but taking a closer look reveals a geometric process. The Mangbetu hairstyle 

features a disk vertically angled at 45 degrees. Just as the heads on the ivory hairpin are angled at 45 degrees, 

the Mangbetu hair dresses are also at 45 degrees. By taking a look at the geometric relations of the hairpin, one 

can sees the alternate interior angles of a transversal that intersects two parallel lines. The geometric 

construction algorithm of the Mengbetu sculpture is as follows [3]: 

 

  tan Ɵ1 = 

 2

2
3

 2

 

 

  Ɵ1 = arctan 
1

3
 ≈   18

0
 

 

 

IV. EVIDENCE FROM PAULUS GERDES. 
The mathematician Paulus Gerdes in his book, Geometry from Africa: Mathematical and Educational 

Explorations (1999), examines African geometry and patterns and how they can be used to teach mathematics. 

He shows geometry in carving, weaving, and various aspects of art and how they can be used educationally. He 

also shows that one can detect the Pythagorean Theorem and how to find proofs of it by using African 

ornaments and artifacts. The book is cleaved into four major sections that examine the following topics: (1) ―On 

geometrical ideas in Africa south of the Sahara‖; (2) ―from African designs to discovering the Pythagorean 

Theorem‖; (3) Geometrical ideas in crafts and possibilities for their educational exploration‖; and (4) ―The 

‗sona‘ sand drawing tradition and possibilities for its educational use‖ [4]. Presented in the subsections that 

follow is evidence relating to Complex Geometry in the book. 

 

From woven buttons to the Theorem of Pythagoras. In the south of Mozambique in order to attach a cover to 

a basket, two strips that are plaited with loops at the end are attached to the cover, and two cube shaped buttons 
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are fastened to opposite sides. To close the basket, each loop is pulled around each button. By looking at the 

button design, the conclusion reached is the following [4]: 

 

C = A + B 

 

which is the Pythagorean Theorem. By joining the square designs to form a pattern then comparing the areas, 

one may find: 

 

S + T = U 

 

From decorative designs with fourfold symmetry to Pythagoras. Rotational symmetry of 90 degrees, which 

is called a fourfold symmetry, occurs frequently in African decorations. Under a fourfold symmetry, four points 

that correspond to one another always create the vertices of a square. Therefore [4]: 

 

(a + b)
2
 = 2ab + c

2
 

 

Taking into account the equality 

 

(a + b)
2
 = 2ab + a

2
 + b

2
 

  

one may find 

 

a
2
 + b

2
 = c

2
 

 

which happens to be the Pythagorean proposition. 

 

 

From a widespread decorative motif to the discovery of Pythagoras’ and Pappus’ theorems. A decorative 

motif that was well known in ancient Egypt and was on a painted basket in the tomb of Rekhmire has a long 

tradition all over Africa. For example, in such a motif, it is possible to transform a toothed square into a real 

square with the same area. The area of a toothed square (T) is equal to the sum of the area of two smaller 

squares (A and B) and, thus, the following equation [4]: 

 

T = A + B 

 

This leads to the conclusion that the toothed square area (T) is equal to the ―real‖ square area (C). Since C = T, 

the conclusion that is reached is the following: 

 

A + B = C 

 

From mat weaving patterns to Pythagoras, and Latin and magic squares. Weaving patterns are usually 

represented on squared paper by brown and white diagrams. In Chokwe fabric, a white square correlates to 

where the white (horizontal) strand passes over the brown (vertical) strand. Therefore, a brown square correlates 

to where the brown (vertical) strand passes over a white (horizontal) strand. If an oblique grid is composed with 

a brown square at the center, then it is surrounded by four congruent quadrilaterals. Consequently, the area of an 

oblique square (C) is equal to the sum of the areas of a brown square (A) and a white square (B). So, again, A + 

B = C [4]. 

 

 

Rolling up mats. In Mozambique and other parts of Africa, woven mats for sitting or sleeping in the shape of a 

rectangle are rolled up when not in use. Rolling up one of those mats in the shape of a cylinder does not change 

the weight or volume of the map, allowing for the determination of the area of a circle and the volume of a 

cylinder as shown in the following two subsections [4]. 

 

Area of a circle. In the north of Mozambique, Makhuma artisans also produce circular mats in addition to 

rectangular mats. A circular mat is made by braiding a strand of sisal (a type of plant with stiff fibers) which is 

then rolled into a coil. Each circuit of coil is then sewn together and the end is then cut off a little to look like a 

perfect circle. This means that [4]: 
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A ≈  
8𝑑

9
 2

 

 

which is similar to the area of a circle as calculated in Ancient Egypt. 

 

Volume of a cylinder. The volume and area of a cylinder may be decided similarly. By taking the thickness of 

the mat as a linear measurement, one finds that the volume is equal to length (L) times width (W). After the mat 

is rolled up, the top area (A) is equal to L. The volume of a cylinder is derived by the following equation [4]: 

 

V ≈ L x W ≈ A x W ≈ A x h 

 

where h is the height of the cylinder (which is the width of the mat). In essence, the volume of a cylinder by 

advancing with the limit is as follows: π2
2
h. 

 

Exploring rectangle constructions used in traditional house building. Most Africans south of the Sahara 

build houses with a circular or rectangular base. In Mozambique, two methods are used for rectangular bases. 

One from a different cultural environment would be surprised to see that rectangles can be formed without 

constructing right angles one by one. Rectangle constructions are equivalent to the following two Euclidean 

geometry theorems [4]: 

 

Theorem 1: A parallelogram with congruent diagonals is a rectangle. 

 

Theorem 2: A quadrilateral with congruent diagonals that intersect at their midpoints is a rectangle. 

 

The preceding theorems can be linked to rectangle axioms and vector geometry as shown in the following two 

subsections. 

 

Rectangle axioms. When looking for possible alternatives of axiomatic constructions for Euclidean geometry, 

the ―rectangle axiom‖ by Alexandrov of the Soviet Union is a substitute for Euclid‘s fifth postulate. 

Alexandrov‘s ―rectangle axiom‖ says the following [4]: 

 

Rectangle Axiom: If in a quadrilateral ABCD, AD = BC and ∠A and ∠B are right angles, then AB = DC and ∠C 

and ∠D are also right angles. 

 

Therefore, other alternative ―rectangle axioms‖ can be formulated by using the knowledge underlying the 

traditional Mozambican house building techniques. 

 

 

Link with vector geometry. The knowledge involved in the construction methods of the rectangular bases of 

traditional houses can also be translated into the language of vector geometry and linear algebra, which gives a 

sufficient and necessary condition for the perpendicularity of two vectors. For example, in a construction, a 

projective space (P) can be the following [4]: 

 

P: |p + q| = |p – q| ⟺ p ⊥ q 

 

where p and q represent vectors. 

 

Exploring a woven pyramid. Pyramidal baskets are woven in the north of Mozambique, in the south of 

Tanzania, in the Congo region, and in Senegal. The base of the basket is an equilateral triangle and the other 

four sides are isosceles right triangles, which form a triangular pyramid. The form and production process have 

been explored in the context volumes of pyramids and regular polyhedra as shown in the subsection that follows 

[4]. 

 

Volumes of pyramids and regular polyhedra. By showing an eheleo-pyramid (woven basket) as part of a cube 

and letting s be the side length of the cube, it is not necessary to know the formula for the volume of a pyramid 

to determine the volume of an eheleo-pyramid. The volume is equal to one half ABCDH with a similar height 

(DH) and the cube‘s base as base, by comparing the corresponding horizontal layers of both pyramids. Since the 

last pyramid fits into the cube three times, the volume of the eheleo-pyramid (VE) is one sixth the volume of the 

cube and, thus, the following equation [4]: 
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VE = 
𝑠3

6

 

 

Four eheleo-pyramids—ADCH, ABCF, CGHF, and HEAF—surround the regular tetrahedron and together fill 

the cube. The volume (V) of the regular tetrahedron is two times the volume of the eheleo-pyramid or one third 

of the cube‘s volume. Therefore, the following equation holds [4]: 

 

V0 = 
8𝑠3

6
 = 

𝑡3 2

3
 

 

Exploring square mats and circular basket bowls. A type of basket bowl that is used as a sieve or as a dish 

for food is common in Eastern and Southern Africa. In the north of Mozambique, the Makonde call it chelo. A 

weaver makes the bottom by plaiting a square mat. To create the border a wooden board is blended and the two 

sides are fastened together. Then the sides of the mat are fastened to the respective midpoints of the border. 

After that, the basket is wet to make it more flexible and stepped on in the center by the weaver to create a 

basket [4]. The Complex Geometry for this procedure is explained in the subsection that ensues. 

 

Discovering an approximation of the area of a circle. The designs of basket bowls can be used to discover an 

interesting approximation formula for the area of a circle. When the circle radius (r) measures four times the 

half diagonal of the first square, the area of the circle (Ac) will appear almost equal to the area of the square (As) 

of which the half diagonal is five times the half diagonal of the smallest square. This is stated formulaically as 

follows [4]: 

 

Ac ≈ As 

 

Since As is twice the square of the semi diagonal and the semi diagonal is five fourths of the radius of the circle, 

it follows that [4]: 

 

Ac ≈ As = 2 
5

4
𝑟 2

 = 
25

8
r

2
 

 

which is equivalent to the ancient Babylonian formula for the precise determination for the area of a circle: i.e. π 

≈  25/8 = 3 1/8 = 3,125 (relative error is approximately half a percent). 

 

 

Exploring hexagonal weaving. Artisans make hats in Mozambique by knitting several circuits of a spiral 

together. The spiral consists of a woven zigzag band which is made out of two long strips of palm with the same 

width. The same technique is used to make handbags. In Nigeria, the zigzag band is used for making hats and in 

Kenya it is used as a decoration for circular mats. A geometric example of this procedure can be seen in the 

tiling discussed in the subsection that follows [4]. A trigonometric function and a Hexastrip weavable polyhedra 

and Euler‘s theorem are presented thereafter. 

 

 

Tiling. Once one finds the regular hexagonal tiling, other tilings can be discovered by subdivision. By finding a 

tiling with equilateral triangles, one can construct other polygons. One can therefore formulate the following 

three conjectures [4]: 

 

(1) The sum of the measures of the internal angles of an n-gon is equal to 3(n - 2) x 60. 

 

(2) Areas of similar figures are proportional to the squares of their sides, and the sum of the first n odd 

numbers is n
2
. 

 

(3) The sum of the first n odd numbers is n
2
. 

 

A trigonometric function. In African weaving, the angle of 60
0
 (with its supplementary, which is 120

0
) plays an 

essential role. This angle is materially enforced when using two strips of the same width. If one takes the width 

of the strip to be wrapped around the ―horizontal‖ strip as a unit of measurement, and let the ―horizontal‖ strip 

have a width a, the wrapping angle α will depend on a as follows [4]: 

 

α = hex(a) 
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Hexastrip weavable polyhedra and Euler‘s theorem. In the case of isomers of fullerenes Cn for which a hexastrip 

model can be constructed, it is easy to establish that there are always 12 pentagonal rings, which are 

independent of the number of hexagonal rings. By letting N5 be the number of pentagonal holes in the hexastrip 

model, and letting N6 be the number of hexagonal holes, the number of vertices (V), faces (F), and edges (E), 

one gets the following formula [4]: 

 

  V = 5N5 + 6N6 

  F = N5 + N6 + 
𝑉

3
  

  E = 
3𝑉

2
  

 

The implication here is that V + F – E = N√6. Alternatively, V + F – E = 2, which is in agreement with Euler‘s 

theorem. This means that, just like the pentagonal rings, the number of hexagonal holes is equal to 12 [4]. 

 

 

From diagonally woven baskets and bells to a twisted decahedron. A geometrically interesting way of 

weaving baskets comes from the Makonde artisans who weave baskets with standardized sizes used to measure 

the production of maize, sorghum, and beans before taking the harvest to the storage houses. To make the 

likalala basket, an artisan weaves a square mat with visible mid lines. With two sets of six strands, the artisan 

weaves the center of the square called yuyumunu, meaning the mother who bears the whole square mat. A 

geometric example is shown in the ensuing subsection. 

 

Volume of decahedral mini-bamboyo bell. A decahedron may be considered as a truncated pyramid of which 

four congruent wedges have been cut off. Since the bottom square has the same length as the squares of the 

decahedron, the volume is given by the following equation if integral calculus is used. By letting A(y) be the 

area of a semi-rectangular horizontal section, where y is the distance between the section and base of the 

decahedron (d), the volume of the decahedron would be given by [4]: 

 

V =  
2

0
𝐴 𝑦 𝑑𝑦 

 

 

V. SUMMARY AND FINAL REMARKS 
The preceding sections clearly demonstrate that the exploration of Complex Geometry has its genesis in 

Ancient Kemet/Egypt. They also show that the exploration continues in Africa to this day. Thus, the thesis that 

underlies this paper, i.e. any study of Complex Analysis which ignores its African origins and the continuation of 

its study to this day will miss a very significant aspect of the subject, is valid. 

In terms of my final remarks, there should be more studies to show how Complex Analysis in general is 

used as societies emerged and continue to evolve. This would be important because it would reveal the 

continuation or disruption of knowledge and culture. Complex Analysis should be taught with real-world 

examples. This is because not only would students learn the subject matter, they would also learn about its roots. 

With these examples, interest in mathematics would surge and students would know that most of the Greek 

mathematicians they heard about appropriated knowledge from other civilizations and capitalized on it to make 

themselves famous with schools named after them. 
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