Even Sum Property of J_n , B(3, n), TB_n , $P_m(+)$ $\overline{K_n}$ and $(\overline{K_n} \cup P_3) + 2K_1$

P. P. Andharia¹, V. J. Kaneria²

¹(Department of Applied Sciences and Humanity, Shri S. N. Patel Institute of Technology, Bardoli, Gujarat,

India)

²(Department of Mathematics, Saurashtra University, Rajkot, Gujarat, India)

Abstract:

For a graph G = (V, E), an injective vertex labelling function $f: V(G) \to \{0, \pm 2, \pm 4, ..., \pm 2|E(G)|\}$ is said to be an even sum labeling of a graph G if the induced edge labeling map $f^*: E(G) \to \{2, 4, ..., 2|E(G)|\}$ defined by $f^*(u_i u_j) = f(u_i) + f(u_j)$, $\forall u_i u_j \in E(G)$ is bijection. A graph which admits even sum labeling is called an even sum graph. In this article we prove that the Jewel graph J_n , triangular book graph B(3, n), triangular book graph with bookmark TB_n , a graph $P_m(+) \overline{K_n}$ and a graph $(\overline{K_n} \cup P_3) + 2K_1$ are even sum graphs. **Key Word**: Jewel graph; Triangular book graph; Even sum labeling; Even sum graph.

Date of Submission: 08-01-2022

Date of Acceptance: 22-01-2022

I. Introduction

In this article we use a word 'graph' for an undirected simple and finite graph, V(G) for vertex set of a graph G and E(G) for edge set of G. The order of a graph or number of vertices in a graph is denoted by p and the size or number of edges is denoted by q. The terms not defined here are used in the sense of Harary¹. For the bibliographic references on graph labeling we refer to Gallian². The idea of odd sum labeling was first given by Arockiaraj and Mahalakshmi³. The odd sum labeling of various types of graph are found in different investigations^{4,5,6}. Monika and Murugan⁷ introduce the concept of odd-even sum labeling. Some general results on odd-even sum labeling of graphs are presented by Kaneria and Andharia⁸. Andharia and Kaneria⁹ introduce the new concept of labeling called even sum labeling. Kaneria and Andharia^{10,11} have presented the even sum labeling of various graphs. In this article we have presented some more graphs with even sum labeling property. Following is a brief summary of definitions which are useful for the present investigations.

Definition 1: An injection $f: V(G) \rightarrow \{0, \pm 2, \pm 4, ..., \pm 2|E(G)|\}$ is said to be an even sum labeling of a graph G if the induced edge labeling map $f^*: E(G) \rightarrow \{2, 4, ..., 2|E(G)|\}$ defined by $f^*(u_i u_j) = f(u_i) + f(u_j), \forall u_i u_j \in E(G)$ is bijection. A graph which admits even sum labeling is called an even sum graph.

Definition 2: The Jewel graph J_n is a graph with $V(J_n) = \{u_i, v_j : i = 0, 1, 2, 3; j = 1, 2, ..., n\}$ and the edge set $E(J_n) = \{u_0u_1, u_0u_2, u_0u_3, u_1u_3, u_2u_3, u_1v_i, u_2v_i : 1 \le i \le n\}$.

Definition 3: An n copies of cycle C_3 sharing a common edge is known as a triangular Book graph with npages. It is denoted by B(3, n). The common edge is referred as spine of the book.

Definition 4: A triangular book graph with bookmark is a triangular book graph B(3, n) alongwith a pendant edge attached at any one of the end vertices of the spine. It is denoted by TB_n .

II. Main Results

Theorem 1: Every Jewel Graph is even sum graph. **Proof:** Consider а Jewel with $V(J_n) = \{u_0, u_1, u_2, u_3, v_1, v_2, \dots, v_n\}$ graph Jn and $E(J_n) = \{u_0 u_1, u_0 u_2, u_0 u_3, u_1 u_3, u_2 u_3\} \cup \{u_1 v_i, u_2 v_i : i = 1, 2, ..., n\}$ as shown in Figure 1. Clearly the order of a Jewel graph J_n is n + 4 and size is 2n + 5. Define f: $V(J_n) \rightarrow \{0, \pm 2, \pm 4, \dots, \pm (4n + 10)\}$ as follows: $f(u_i) = 2i$, i = 0, 1, 2, 3 and $f(v_i) = 4i + 6, \forall i = 1, 2, ..., n$. Note that f is injective as $f(V(J_n)) = \{0, 2, 4, 6, 10, 14, \dots, 4n + 6\}$ and $|V(J_n)| = n + 4 = |f(V(J_n))|$. Further, its edge induced function $f^*: E(J_n) \rightarrow \{2, 4, \dots, 4n + 10\}$ is bijective.

Figure – 1: Ordinary labeling of a Jewel graph J_n

Because $f^*(E(J_n)) = \{2, 4, ..., 4n + 10\},\ |E(J_n)| = 2n + 5 = |f^*(E(J_n))|$ and $f^*(u_0u_i) = f(u_0) + f(u_i) = f(u_i) = 0 + 2i = 2i, i = 1, 2, 3;$ $f^*(u_iu_3) = f(u_i) + f(u_3) = f(u_i) + 6 = 2i + 6, i = 1, 2;$ $f^*(u_1v_i) = f(u_1) + f(v_i) = 2 + 4i + 6 = 4i + 8, i = 1, 2, ..., n;$ $f^*(u_2v_i) = f(u_2) + f(v_i) = 4 + 4i + 6 = 4i + 10, i = 1, 2, ..., n.$ Hence the Jewel graph J_n is even sum graph.

Illustration 1: Even sum labeling of J₅ is shown in Figure 2.

Figure – 2: Jewel graph J_5 with its even sum labeling

Theorem 2: Every triangular book graph is even sum graph. **Proof:** Consider a triangular book graph B(3, n) with its ordinary vertex labeling as shown in Figure 3. Here, $V(B(3, n)) = \{u_{0,}u_{1}, v_{i} : 1 \le i \le n\}$ and $E(B(3, n)) = \{e_{i} : 1 \le i \le 2n + 1\}$, where $e_{1} = u_{0}u_{1}$, $e_{2i} = u_{0}v_{i}$ and $e_{2i+1} = u_{1}v_{i}$, $\forall i = 1, 2, \cdots, n$. Clearly, the order and size of any triangular book graph B(3, n) is p = n + 2 and q = 2n + 1 respectively. Now define f: $V(B(3, n)) \rightarrow \{0, \pm 2, \pm 4, \dots, \pm (4n + 2)\}$ as below:

 $f(u_0) = 0$; $f(u_1) = 2$ and $f(v_i) = 4i$, $\forall i = 1, 2, ..., n$.

Figure – 3: B(3, n) and its ordinary labeling

Note that f is an injective map as $f(V(B(3,n))) = \{0, 2, 4, 8, 12, \dots, 4n\}$ and |V(B(3,n))| = n + 2 = |f(V(B(3,n)))|. Further, its edge induced function $f^*: E(B(3,n)) \rightarrow \{2, 4, \dots, 4n + 2\}$ is bijective. Because $f^*(E(B(3,n))) = \{2, 4, 6, \dots, 4n + 2\}$, $|E(B(3,n))| = 2n + 1 = |f^*(E(B(3,n)))|$ and $f^*(e_1) = f^*(u_0u_1) = f(u_0) + f(u_1) = 0 + 2 = 2;$ $f^*(e_{2i}) = f^*(u_0v_i) = f(u_0) + f(v_i) = f(v_i) = 4i;$ $f^*(e_{2i+1}) = f^*(u_1v_i) = f(u_1) + f(v_i) = 2 + f(v_i) = 4i + 2, \forall i = 1, 2, \dots, n.$ Thus, f is even sum labeling for the triangular book graph B(3, n) and hence every triangular book graph is even sum graph.

Illustration 2: Even sum labeling of a triangular book graph B(3, 5) is shown in Figure 4.

Figure – 4: Even sum labeling of B(3, 5)

Theorem 3: The triangular book graph with bookmark TB_n is even sum graph. **Proof:** Consider a triangular book graph with bookmark TB_n with its vertex labeling as shown in Figure 5.

Figure – 5: Ordinary labeling of TB_n

Here, $V(TB_n) = \{u_{0,}u_1, u_2, v_1, v_2, ..., v_n\}$ and $E(TB_n) = \{e_0, e_1, \cdots, e_{2n+1}\}$, where $e_0 = u_1u_2$, $e_1 = u_0u_1$, $e_{2i} = u_1u_2$, $e_1 = u_1u_2$, $e_2 = u_1u_2$, $e_2 = u_1u_2$, $e_2 = u_1u_2$, $e_1 = u_1u_2$, $e_2 = u_1u_2$, $e_2 = u_1u_2$, $e_1 = u_1u_2$, $e_2 = u_1u_2$, $e_1 = u_1u_2$, $e_2 = u_1u_2$, $e_1 = u_1u_2$, $e_2 = u_1u_2$, $e_2 = u_1u_2$, $e_2 = u_1u_2$, $e_2 = u_1u_2$, $e_1 = u_1u_2$, $e_2 = u_1u_2$, $e_2 = u_1u_2$, $e_1 = u_1u_2$, $e_2 = u_1u_2$, $e_1 = u_1u_2$, $e_2 = u_1u_2$, $e_1 = u_1u_2$, $e_2 = u_1u_2$, $e_2 = u_1u_2$, $e_1 = u_1u_2$, $e_2 = u_1u_2$, $e_2 = u_1u_2$, $e_1 = u_1u_2$, $e_2 = u_1u_2$, $e_2 = u_1u_2$, $e_1 = u_1u_2$, $e_1 = u_1u_2$, $e_2 = u_1u_2$, $e_1 = u_1u_2$, e_1 u_0v_i and $e_{2i+1} = u_1v_i$, $\forall i = 1, 2, \dots, n$. It is clear that, $|V(TB_n)| = n + 3$ and $|E(TB_n)| = 2n + 2$. Now define f: $V(TB_n) \rightarrow \{0, \pm 2, \pm 4, \dots, \pm (4n + 2)\}$ as $f(u_0) = 0$, $f(u_1) = 2$, $f(u_2) = 4n + 2$ and $f(v_i) = 4i$, $\forall i = 1, 2, ..., n$. Note that f is an injective map as $f(V(TB_n)) = \{0, 2, 4, 8, 12, \dots, 4n, 4n + 2\}$ and $|V(TB_n)| = n + 3 = |\{0, 2, 4, 8, 12, \dots, 4n, 4n + 2\}| = |f(V(TB_n))|.$ Further, its edge induced function $f^*: E(TB_n) \to \{2, 4, 6, 8, ..., 4n + 4\}$ is bijective. Because $f^*(E(TB_n)) = \{2, 4, 6, 8, \dots, 4n + 4\},\$ $|E(TB_n)| = 2n + 2 = |f^*(E(TB_n))|$ and $f^*(e_0) = f^*(u_1u_2) = f(u_1) + f(u_2) = 2 + 4n + 2 = 4n + 4;$ $f^*(e_1) = f^*(u_0u_1) = f(u_0) + f(u_1) = 0 + 2 = 2;$ $f^*(e_{2i}) = f^*(u_0v_i) = f(u_0) + f(v_i) = 0 + 4i = 4i;$ $f^*(e_{2i+1}) = f^*(u_1v_i) = f(u_1) + f(v_i) = 2 + 4i = 4i + 2, \forall i = 1, 2, \dots, n.$ Thus, f is even sum labeling for the triangular book with book mark graph TB_n and hence TB_n is even sum graph.

Illustration 3: Even sum labeling of a triangular book graph with book mark TB_4 is shown in Figure 6.

Figure – 6: TB_4 with its even sum labeling

Theorem 4: The graph $P_m(+) \overline{K_n}$ is even sum graph when m is odd and $n = \frac{m-1}{2}$. **Proof:** Let $G = P_m(+) \overline{K_n}$ where m is odd and $n = \frac{m-1}{2}$. As shown in Figure 7, the vertices of G are u_i ; $1 \le i \le m$ and v_j ; $1 \le j \le n$ and edges are $u_i u_{i+1}$, $u_1 v_j$, $u_m v_j$ where $1 \le i \le m - 1$, $1 \le j \le n$.

Figure – 7: Vertex labeling of $P_m(+) \overline{K_n}$

 $\begin{array}{l} Clearly, G \text{ has order } m+n \text{ and size } 4n. \\ We define f: V(G) \rightarrow \{0, \pm 2, \pm 4, \ldots, \pm 2q\} \text{ as} \\ f(u_i) = \begin{cases} 1-i, & \text{if } i \text{ is odd} \\ 8n-i+2, \text{ if } i \text{ is even} \end{cases} \\ f(v_j) = 2(n+j), \ \forall j = 1,2,\ldots,n \ . \end{array}$

The above labeling pattern give rise even sum labeling to the graph G. Hence the graph $P_m(+)\overline{K_n}$ is even sum graph when m is odd and $n = \frac{m-1}{2}$.

Illustration 4: Even sum labeling of a graph $P_7(+)\overline{K_3}$ is shown in Figure 8.

Theorem 5: The graph $(\overline{K_n} \cup P_3) + 2K_1$ admits even sum labeling. **Proof:** Let $G = (\overline{K_n} \cup P_3) + 2K_1$.

Figure – 9: Ordinary labeling of $(\overline{K_n} \cup P_3) + 2K_1$

As shown in Figure 9, the vertices of G are $u_i, v_1, v_2, v_3, u'_0, u'_1$ where i = 1, 2, ..., n and edges are $u'_{0}u_{i}, u'_{1}u_{i}, u'_{0}v_{i}, u'_{1}v_{i}, v_{1}v_{2}, v_{2}v_{3}$ where i - 1, 2, ..., n; j = 1, 2, 3. Clearly, G has order n + 5 and size 2n + 8. Now, define a map f: V(G) $\rightarrow \{0, \pm 2, \pm 4, \dots, \pm (4n + 16)\}$ as $f(u_i) = -2i, \forall i = 1, 2, ..., n;$ $f(v_1) = 4; f(v_2) = 0; f(v_3) = 2;$ $f(u'_0) = 4(n+3); f(u'_1) = 2(n+3).$ Note that f is an injective map as $f(V(G)) = \{-2n, -2(n-1), \dots, -4, -2, 0, 2, 4, 2n+6, 4n+12\}$ and $|V(G)| = n + 5 = |\{-2n, -2(n - 1), \dots, -4, -2, 0, 2, 4, 2n + 6, 4n + 12\}| = |f(V(G))|.$ Further, its edge induced function $f^*: E(G) \rightarrow \{2, 4, 6, 8, \dots, 4n + 16\}$ is bijective. Because $f^*(E(G)) = \{2, 4, 6, 8, ..., 4n + 16\},\$ $|E(G)| = 2n + 8 = |f^*(E(G))|$ and $f^*(u'_0u_i) = f(u'_0) + f(u_i) = 4(n+3) - 2i = 4n + 12 - 2i, \ \forall i = 1, 2, \cdots, n$ $= \{4n + 10, 4n + 8, \dots, 2n + 14, 2n + 12\};$ $f^*(u'_1u_i) = f(u'_1) + f(u_i) = 2(n+3) - 2i = 2n + 6 - 2i, \forall i = 1, 2, \dots, n$ $= \{2n + 4, 2n + 2, \dots, 8, 6\};$ $f^*(u'_0v_1) = f(u'_0) + f(v_1) = 4(n+3) + 4 = 4n + 16;$ $f^*(u'_0v_2) = f(u'_0) + f(v_2) = 4(n+3) + 0 = 4n + 12;$ $f^*(u'_0v_3) = f(u'_0) + f(v_3) = 4(n+3) + 2 = 4n + 14;$ $f^*(u'_1v_1) = f(u'_1) + f(v_1) = 2(n+3) + 4 = 2n + 10;$ $f^*(u'_1v_2) = f(u'_1) + f(v_2) = 2(n+3) + 0 = 2n + 6;$ $f^*(u'_1v_3) = f(u'_1) + f(v_3) = 2(n+3) + 2 = 2n + 8;$ $f^*(v_1v_2) = f(v_1) + f(v_2) = 4 + 0 = 4$ and $f^*(v_2v_3) = f(v_2) + f(v_3) = 0 + 2 = 2.$ Thus, f is even sum labelling for the graph $G = (\overline{K_n} \cup P_3) + 2K_1$ and hence $(\overline{K_n} \cup P_3) + 2K_1$ is an even sum graph.

Illustration 5: Even sum labeling of a graph $(\overline{K_5} \cup P_3) + 2K_1$ is shown in Figure 10.

Figure – 10: Even sum labeling of $(\overline{K_5} \cup P_3) + 2K_1$

III. Conclusion

In this paper, we have discussed even sum labeling property of Jewel graph, triangular book graph, triangular book graph triangular book graph $P_m(+) \overline{K_n}$ and the graph $(\overline{K_n} \cup P_3) + 2K_1$.

References

- [1]. Haray F. Graph theory. Narosa Publishing House, New Delhi. 2001.
- [2]. Gallian JA. A dynamic survey of graph labeling. The Electronic Journal of Combinatorics. 2021; 16: # DS6.
- [3]. Arockiaraj S, Mahalakshmi P. On odd sum graphs. International Journal of Mathematical Combinatorics. 2013; 4: 58–77.
 [4]. Arockiaraj S, Mahalakshmi P, Namasivayam P. Odd sum labeling of some subdivision graphs. Kragujevac Journal of Mathematics.
- Arockiaraj S, Manalaksimi P, Namasivayam P. Odd sum labeling of some subdivision graphs. Kragujevac Journal of Mathematics. 2014; 38(1): 203–222.
 Cori P, Ludaya Mary A. Odd sum labeling of some more graphs. International Journal of Engineering Science. Advanced
- [5]. Gopi R, Irudaya Mary A. Odd sum labeling of some more graphs. International Journal of Engineering Science, Advanced Computing and Bio-Technology. 2016; 7(4): 95–103.
- [6]. Gopi R. Odd sum labeling of tree related graphs. International Journal of Mathematics and its Applications. 2016; 4(4): 11–16.
- [7]. Monika K, Murugan K. Odd-even sum labeling of some graphs. International Journal of Mathematics and Soft Computing. 2017; 7(1): 57–63.
- [8]. Kaneria VJ, Andharia PP. General results on odd-even sum labeling of graphs. International Journal of Mathematics And its Applications. 2017; 3–B: 185–187.
- [9]. Andharia PP, Kaneria VJ. Even sum labeling of some graphs. International Journal of Computer & Mathematical Sciences. 2018; 7(5): 199–202.
- [10]. Kaneria VJ, Andharia PP. Some results on even sum labeling of graphs. Journal of the Calcutta Mathematical Society. 2019; 15(2): 129–138.
- [11]. Kaneria VJ, Andharia PP. Further results on even sum labeling of graphs. Global Journal of Pure and Applied Mathematics. 2020; 16(2): 155–166.

P. P. Andharia, et. al. "Even Sum Property of J_n , B(3, n), TB_n, P_m(+) $\overline{K_n}$ and $(\overline{K_n} \cup P_3) + 2K_1$." *IOSR Journal of Mathematics (IOSR-JM)*, 18(1), (2022): pp. 24-30.

. *TOSK Journal of Mainematics (TOSK-JM)*, 16(1), (2022). pp. 24-30.