# On Support Highly Irregular Interval-Valued Fuzzy Graphs 

K. Priyadharshini ${ }^{1}$ and N.R. Santhi Maheswari ${ }^{2}$<br>${ }^{1}$ Research Scholar, Reg no. 19212052092007<br>PG and Research Department of Mathematics, G.Venkataswamy Naidu College,<br>Kovilpatti - 628 502, Tamil Nadu, India.<br>${ }^{2}$ Associate Professor and Head, PG and Research Department of Mathematics, G.Venkataswamy Naidu College, Kovilpatti - 628 502, Tamil Nadu, India.


#### Abstract

In this paper, support highly irregular interval-valued fuzzy graphs and support totally highly irregular interval-valued fuzzy graphs are defined. A necessary and sufficient condition under which they are equivalent is provided.


Keywords: support(2-degree) of a vertex in fuzzy graph, support neighbourly irregular fuzzy graph, support neighbourly totally regular fuzzy graph, support highly irregular fuzzy graph, support highly totally irregular fuzzy graph.
AMSsubjectclassification: 05C12, 03E72, 05C72.
Date of Submission: 25-02-2022
Date of Acceptance: 06-03-2022

## I. Introduction

In this paper, we consider only finite, simple, connected graphs. We denote the vertex set and the edge set of a graph $G$ by $V(G)$ and $E(G)$ respectively. The degree of a vertex $v$ is the number of edges incident at $v$, and it is denoted by $\mathrm{d}(\mathrm{v})$. A graph G is regular if all its vertices have the same degree. The notion of fuzzy sets was introduced by Zadeh as a way of representing uncertainity and vagueness [26]. The first definition of fuzzy graph was introduced by Haufmann in 1973. In 1975, A. Rosenfeld introduced the concept of fuzzy graphs [8]. The theory of graph is an extremely useful tool for solving combinatorial problems in different areas. Irregular fuzzy graphs play a central role in combinatorics and theoretical computer science.In 1975, Zadeh introduced the notion of interval-valued fuzzy sets as an extension of fuzzy set[27] in which the values of the membership degree are intervals of numbers instead of the numbers. In 2011, Akram and Dudek[1] defined interval-valued fuzzy graphs and give some operations on them.

## II. Review Of Literature

Nagoorgani and Radha introduced the concept of degree, total degree, regular fuzzy graphs in 2008 [5]. Nagoorgani and Latha introduced the concept of irregular fuzzy graphs, neighbourly irregular fuzzy graphs and highly irregular fuzzy graphs in 2012 [6]. N.R.Santhi Maheswari and C.Sekar introduced (2, k)-regular fuzzy graphs and totally ( $2, \mathrm{k}$ )-regular fuzzy graphs, ( $\mathrm{r}, 2, \mathrm{k}$ )-regular fuzzy graphs, $(\mathrm{m}, \mathrm{k})$-regular fuzzy graphs and ( $\mathrm{r}, \mathrm{m}$, k)-regular fuzzy graphs [9,13,14,15]. N.R.Santhi Maheswari and C. Sekar introduced 2-neighbourly irregular fuzzy graphs and m-neighbourly irregular fuzzy graphs [20,12]. N.R.Santhi Maheswari and C.Sekar introduced an edge irregular fuzzy graphs, neighbourly edge irregular fuzzy graphs and strongly edge irregular fuzzy graph [16,10,17]. D.S.Cao, introduced 2-degree of vertex $v$ is the the sum of the degrees of the vertices adjacent to $v$ and it is denoted by $\mathrm{t}(\mathrm{v})$ [3]. A. Yu, M.Lu and F.Tian, introduced pseudo degree (average degree) of a vertex v is ( $\mathrm{t}(\mathrm{v})$ ) $/ \mathrm{d}(\mathrm{v})$, where $\mathrm{d}(\mathrm{v})$, is the number of edges incident at the vertex v [2]. N.R.Santhi Maheswari and C.Sekar introduced 2-degree of a vertex in fuzzy graphs, pseudo degree of a vertex in fuzzy graph and pseudo regular fuzzy graphs[11]. N.R Santhi Maheswari and M.Sutha introduced concept of pseudo irregular fuzzy graphs and highly pseudo irregular fuzzy graphs[18]. N.R.Santhi Maheswari and M.Rajeswari introduced the concept of strongly pseudo irregular fuzzy graphs [19]. N.R.Santhi Maheswari and V.Jeyapratha introduced the concept of neighbourly pseudo irregular fuzzy graphs[21]. N.R.Santhi Maheswari and K.Amutha introduced support neighbourly edge irregular graphs and 1-neighbourly edge irregular graphs, Pseudo Edge Regular and Pseudo

Neighbourly edge irregular graphs [22,23,24]. J.Krishnaveni and N.R.Santhi Maheswari introduced support and total support of a vertex in fuzzy graphs, support neighbourly irregular fuzzy graphs and support neighbourly totally irregular fuzzy graphs[4]. K.Priyadharshini and N.R.Santhi Maheswari introduced support highly irregular graphs[7].N.R.Santhi Maheswari and K.Priyadharshini introduced support highly irregular fuzzy graphs[25]. These ideas motivate us to introduce support highly irregular interval-valued fuzzy graphs and support totally highly irregular interval-valued fuzzy graphs and discussed some of its properties.

## III. Preliminaries

We present some known definitions and results for ready reference to go through the work presented in this paper. By graph, we mean a pair $G^{*}=(V, E)$, where $V$ is the set and $E$ is a relation on $V$. The elements of $V$ are vertices of $G^{*}$ and the elements of $E$ are edges of $G^{*}$.

Definition 3.1 2-degree (support) of $v$ is defined as the sum of the degrees of the vertices adjacent to $v$ and it is denoted by $t(v)[3]$.

Definition 3.2 Average (pseudo) degree of $v$ is defined as $(t(v)) /(d(v))$, where $t(v)$ is the 2-degree of $v$ and $d(v)$ is the degree of $v$ and it is denoted by $d a(v)[2]$.

Definition 3.3 A graph is called pseudo-regular if every vertex of $G$ has equal (pseudo) average-degree [2] .
Definition 3.4 A fuzzy graph $G:(\sigma, \mu)$ is a pair of functions $(\sigma, \mu)$, where $\sigma: V \rightarrow[0,1]$ is a fuzzy subset of a non-empty set $V$ and $\mu: V X V \rightarrow[0,1]$ is a symmetric fuzzy relation on $\sigma$ such that for all $u, v$ in $V$, the relation $\sigma(u v) \leq \sigma(u) \Lambda \sigma(v)$ is satisfied. A fuzzy graph $G$ is called complete fuzzy graph if the relation $\sigma(u v)=$ $\sigma(u) \Lambda \sigma(v)$ is satisfied [5].

Definition 3.5 Let $G$ : $(\sigma, \mu)$ be a fuzzy graph on $G^{*}(V, E)$. The degree of a vertex $u$ in $G$ is denoted by $d(u)$ and is defined as $d(u)=\sum \mu(u v)$, for all $u v \in E[5]$.

Definition 3.6 Let $G:(\sigma, \mu)$ be a fuzzy graph on $G^{*}(V, E)$. The total degree of a vertex $u$ in $G$ is denoted by $t d(u)$ and is defined as $\operatorname{td}(u)=d(u)+\sigma(u)$, for all $u \in V[5]$.

Definition 3.7 Let $G:(\sigma, \mu)$ be a fuzzy graph on $G^{*}(V, E)$. Then $G$ is said to be an irregular fuzzy graph, if there is a vertex which is adjacent to the vertices with distinct degrees[6].

Definition 3.8 Let $G:(\sigma, \mu)$ be a fuzzy graph on $G^{*}(V, E)$. Then $G$ is said to be a totally irregular fuzzy graph if there is a vertex which is adjacent to the vertices with distinct total degrees[6].

Definition 3.9 Let $G$ : $(\sigma, \mu)$ be a fuzzy graph on $G^{*}(V, E)$. Then $G$ is said to be a neighbourly irregular fuzzy graph if every two adjacent vertices of $G$ have distinct degrees[6].

Definition 3.10 Let $G$ : $(\sigma, \mu)$ be a fuzzy graph on $G^{*}(V, E)$. Then $G$ is said to be a neighbourly totally irregular fuzzy graph if every two adjacent vertices have distinct total degrees[6].

Definition 3.11 Let $G$ : $(\sigma, \mu)$ be a fuzzy graph on $G^{*}(V, E)$. Then $G$ is said to be a highly irregular fuzzy graph if every vertex of $G$ is adjacent to vertices with distinct degrees[6].

Definition 3.12 Let $G$ : $(\sigma, \mu)$ be a fuzzy graph on $G^{*}(V, E)$. Then $G$ is said to be a highly totally irregular fuzzy graph if every vertex of $G$ is adjacent to vertices with distinct total degrees[6].

Definition 3.13 Let $G$ : $(\sigma, \mu)$ be a fuzzy graph on $G^{*}(V, E)$. Then $G$ is said to be a regular fuzzy graph if all the vertices of $G$ have same degree[5].

Definition 3.14 Let $G:(\sigma, \mu)$ be a fuzzy graph on $G^{*}(V, E)$. Then $G$ is said to be a totally regular fuzzy graph if all the vertices of $G$ have same total degree[5].

Definition 3.15 Let $G:(\sigma, \mu)$ be a fuzzy graph on $G^{*}:(V, E)$. The support (2-degree) of a vertex $v$ in $G$ is defined as the sum of degrees of the vertices adjacent to $v$ and is denoted by $s(v)$. That is, $s(v)=\sum d G(u)$, where $d G(u)$ is the degree of the vertex $u$ which is adjacent with the vertex $v[4]$.

Definition 3.16 Let $G$ : $(\sigma, \mu)$ be a fuzzy graph on $G^{*}(V, E)$. The total support of a vertex $v$ in $G$ is denoted by $t s(v)$ and is defined as $t s(v)=s(v)+\sigma(v)$, for all $v \in V[4]$.

Definition 3.17 A graph $G$ is said to be a support highly irregular fuzzy graph if every vertex of $G$ is adjacent to the vertices having distinct supports[4].

Definition 3.18 A graph $G$ is said to be a support highly totally irregular graph if every vertex of $G$ is adjacent to the vertices having distinct total supports[25].

Definition 3.19 An interval-valued fuzzy graph with an underlying set $V$ is defined to be the pair $(A, B)$, where $A=\left(\mu_{A}^{-}, \mu_{A}^{+}\right)$is an interval-valued fuzzy set on $V$ such that $\mu_{A}^{-}(x) \leq \mu_{A}^{+}(x)$, for all $x \in V$ and $B=\left(\mu_{B}^{-}, \mu_{B}^{+}\right)$is an interval-valued fuzzy set on $E$ such that $\mu_{B}^{-}(x, y) \leq \min \left(\left(\mu_{A}^{-}(x), \mu_{A}^{-}(y)\right)\right)$ and
$\mu_{B}^{+}(x, y) \leq \min \left(\left(\mu_{A}^{+}(x), \mu_{A}^{+}(y)\right)\right)$, for all edge $x y \in E$. Hence $A$ is called an interval-valued fuzzy vertex set on $V$ and $B$ is called an interval-valued fuzzy edge set on $E$.

Definition 3.20 Let $G:(A, B)$ be an interval-valued fuzzy graph. The negative degree of a vertex $u \in G$ is defined as $d_{-G}(u)=\sum \mu_{B}^{-}(u, v)$, for $u v \in E$. The positive degree of a vertex $u \in G$ is defined as $d_{G}^{+}(u)=$ $\sum \mu_{B}^{+}(u, v)$, for $u v \in E$ and $\mu_{B}^{+}(u v)=\mu_{B}^{-}(u v)=0$ if $u v$ not in $E$. The degree of a vertex $u$ is defined as $d_{G}(u)=\left(d_{G}^{-}(u), d_{G}^{+}(u)\right)$.

Definition 3.21 Let $G$ : $(A, B)$ be an interval-valued fuzzy graph on $G^{*}(V, E)$. The total degree of a vertex $u \in V$ is denoted by $t d_{G}(u)$ and is defined as $t d_{G}(u)=\left(t d_{G}^{-}(u), t d_{G}^{+}(u)\right)$, where $t d_{G}^{-}(u)=\sum \mu_{B}^{-}(u, v)+$ $\left(\mu_{A}^{-}(u)\right)$ and $t d_{G}^{+}(u)=\sum \mu_{B}^{+}(u, v)+\left(\mu_{A}^{+}(u)\right)$.

## IV. Support Highly Irregular Interval-Valued Fuzzy Graphs

In this section, we define support highly irregular interval-valued fuzzy graph and totally support highly irregular interval-valued fuzzy graph and discussed about its properties.
Definition 4.1 Let $G:(A, B)$ be an interval-valued fuzzy graph on $G^{*}:(V, E)$. Then $G$ is said to be support highly irregular interval-valued fuzzy graph if every vertex of $G$ is adjacent only to the vertices with distinct support.

Definition 4.2 Let $G:(A, B)$ be an interval-valued fuzzy graph on $G^{*}:(V, E)$. Then $G$ is said to be support neighbourly totally irregular interval-valued fuzzy graph if every vertex of $G$ is adjacent only to the vertices with distinct total support..

Remark 4.3 A support highly irregular interval-valued fuzzy graph need not be support highly totally irregular interval-valued fuzzy graph.

Example 4.4 Consider a fuzzy graph on graph on $G^{\wedge *}(V, E)$.


Here, $\quad s_{G}(t)=s_{G}(y)=(0.7,0.9), s_{G}(u)=(1.1,1.5), s_{G}(v)=(1.1,1.4), s_{G}(w)=(1.8,2.4), s_{G}(z)=$ $(1,1.3), s_{G}(x)=(0.6,0.8) \quad$ Also, $t s_{G}(t)=(1.2,1.6), t s_{G}(u)=(1.6,2.3)=t s_{G}(v), t s_{G}(w)=(2.4,3.1), t s_{G}(y)=(1.2,1.6)=t s_{G}(z), t s_{G}(x)=$ $(1.3,1.6)$. Here, every vertex is adjacent to the vertices with distinct support. Therefore, $G$ is support highly irregular interval-valued fuzzy graph. Also, the neighbours of $w, u$ and $v$ have same total support. Therefore $G$ is not totally support highly irregular interval-valued fuzzy graph.

Remark 4.5 A totally support highly irregular interval-valued fuzzy graph need not be support highly irregular interval-valued fuzzy graph.

Example 4.6 Consider an interval-valued fuzzy graph $G:(A, B)$ on graph $G^{*}(V, E)$.


Here, $s_{G}(a)=s_{G}(b)=(1.2,2), s_{G}(c)=(1.9,2.4), s_{G}(d)=(1.4,2.2), s_{G}(f)=(1.3,2.1), s_{G}(e)=s_{G}(g)=$ $(0.5,0.6)$. And $t s_{G}(a)=(1.9,1.1), t s_{G}(b)=(1.7,2.8), t s_{G}(c)=(2.7,3.3), t s_{G}(d)=(2.1,3.1), t s_{G}(f)=$ $(2,2.9), t s_{G}(e)=t s_{G}(g)=(1.3,1.5)$.Here, the neighbours of $c, a$ and $b$ have same support and therefore $G$ is not a support highly irregular interval-valued fuzzy graph. Also every vertex of $G$ is adjacent only to the vertices with distinct total support. Therefore $G$ is totally support highly irregular interval-valued fuzzy graph.

Theorem 4.7 Let $G:(A, B)$ be an interval-valued fuzzy graph on $G^{*}(V, E)$. Then $A(u)=\left(\mu_{A}^{-}(u), \mu_{A}^{+}(u)\right)$, for all $u \in V$ is a constant function then the following are equivalent.

- G is a support highly irregular interval-valued fuzzy graph.
- G is a totally support highly irregular interval-valued fuzzy graph.

Proof. Assume that $A(u)=\left(\mu_{A}^{-}(u), \mu_{A}^{+}(u)\right)=\left(c_{1}, c_{2}\right)$, for all $u \in V$, where $c_{1}$ and $c_{2}$ are constant. Suppose $G$ is a support highly irregular interval-valued fuzzy graph. Then, every vertex of G is adjacent to the vertices with distinct support. Let $v_{1}$ and $v_{2}$ be any two adjacent vertices of $v_{3}$ with distinct supports $\left(l_{1}, l_{1}\right)$ and ( $m_{1}, m_{2}$ ) respectively. Then $\left(l_{1}, l_{1}\right) \neq\left(m_{1}, m_{2}\right)$. Suppose $G$ is not a totally support highly irregular interval-valued fuzzy graph. Then, at least one vertex of $G$ is adjacent to the vertices with distinct total support $\Rightarrow t s_{G}\left(v_{1}\right)=t s_{G}\left(v_{2}\right)$ $\Rightarrow d_{G}\left(v_{1}\right)+A\left(v_{1}\right)=d_{G}\left(v_{2}\right)+A\left(v_{2}\right) \quad \Rightarrow\left(l_{1}, l_{2}\right)+\left(c_{1}, c_{2}\right)=\left(m_{1}, m_{2}\right)+\left(c_{1}, c_{2}\right) \quad \Rightarrow\left(l_{1}, l_{2}\right)=\left(m_{1}, m_{2}\right)$, which is a contradiction to $\left(l_{1}, l_{2}\right) \neq\left(m_{1}, m_{2}\right)$. Hence $G$ is totally support highly irregular interval-valued fuzzy graph. Thus (ii) $\Rightarrow$ (i) is proved. Hence (i) and (ii) are equivalent.
Now, suppose $G$ is a support highly irregular interval-valued fuzzy graph. Then, every vertex of $G$ is adjacent to the vertices with distinct total support. Let $u_{1}$ and $u_{2}$ be any two adjacent vertices of $v_{3}$ with distinct total support $\left(g_{1}, g_{2}\right)$ and $\left(h_{1}, h_{2}\right)$ respectively. Now, $\left(g_{1}, g_{2}\right) \neq\left(h_{1}, h_{2}\right) . \Rightarrow t_{G}\left(u_{1}\right) \neq t_{G}\left(u_{2}\right) \Rightarrow d_{G}\left(u_{1}\right)+$ $A\left(u_{1}\right) \neq d_{G}\left(u_{2}\right)+A\left(u_{2}\right) \Rightarrow d_{G}\left(u_{1}\right)+\left(c_{1}, c_{2}\right) \neq d_{G}\left(u_{2}\right)+\left(c_{1}, c_{2}\right) \Rightarrow d_{G}\left(u_{1}\right) \neq d_{G}\left(u_{2}\right)$. Hence $G$ is support highly irregular interval-valued fuzzy graph. Thus (ii) $\Rightarrow$ (i) is proved. Hence (i) and (ii) are equivalent.

Remark 4.8 Converse of above theorem need not be true.
Example 4.9 Consider an interval-valued fuzzy graph $G:(A, B)$ on graph $G^{*}(V, E)$.


Here,

$$
s_{G}(u)=s_{G}(z)=(0.7,1), s_{G}(v)=(0.9,1.5), d_{G}(w)=(0.4,0.5), s_{G}(x)=(1,1.5), s_{G}(y)=
$$

$(1.5,2.1), t s_{G}(y)=(1.6,2.2)$.Here, every vertex is adjacent only to the vertices with distinct support and total support.Therefore $G$ is both support highly edge irregular interval-valued fuzzy graph and totally support highly edge irregular interval-valued fuzzy graph and $A$ is not constant.

Theorem 4.10 Every support highly irregular interval-valued fuzzy graph is support irregular interval-valued fuzzy graph.

Proof. Let $G$ be a support highly irregular interval-valued fuzzy graph. Then every vertex of $G$ is adjacent to the vertices with distinct support $\Rightarrow$ There is a vertex which is adjacent to the vertices with distinct supports. Hence the graph $G$ is support irregular interval-valued fuzzy graph.

Theorem 4.11 Consider an interval-valued fuzzy graph $G:(A, B)$ on $G^{*}:(V, E)$, if the support of all the vertices of $G$ are distinct, then $G$ is support neighbourly irregular and support highly irregular interval-valued fuzzy graph.
Proof. Assume that the support of all vertices of $G$ are distinct. Then any two adjacent vertices of $G$ have distinct support and every vertex is adjacent to the vertices with distinct supports. Hence $G$ is support neighbourly irregular fuzzy graph and support highly irregular interval-valued fuzzy graph.

Remark 4.12 Converse of above theorem need not be true.
Example 4.13 In example 4.9, the graph $G$ is both support neighbourly irregular and support highly irregular interval-valued fuzzy graph but the support of all vertices are not distinct.

Theorem 4.14 Consider an interval-valued fuzzy graph $G:(A, B)$ on $G^{*}:(V, E)$. If the support of all vertices are distinct and $A$ is a constant function, then $G$ is totally support highly irregular interval-valued fuzzy graph. Proof. Assume that the support of all the vertices of $G$ are distinct. Then by above theorem 4.11, $G$ is support highly irregular interval-valued fuzzy graph. Since $A$ is constant, by theorem 4.7, $G$ is totally support highly irregular interval-valued fuzzy graph.

Theorem 4.15 Consider an interval-valued fuzzy graph $G:(A, B)$ on $G^{*}:(V, E)$, if the support of all the vertices of $G$ are distinct, then $G$ is totally support neighbourly irregular and totally support highly irregular interval-valued fuzzy graph.
Proof. Proof is similar to theorem 4.11.

## References

[1]. Akram, M. and W.A.Dudek Interval-valued fuzzy graphs, Computers Math Appl.,61(2011) 289-299.
[2]. A.Yu, M.Lu and F.Tian, On the spectral radius of graphs, Linear Algebra and Its Applications, 387 (2004) 41-49.
[3]. Dasong Cao, Bounds on eigen values and chromatic numbers, Linear algebra and its applications,270,1-13(1998).
[4]. J.Krishnaveni and N.R.Santhi Maheswari, Support neighbourly Irregular fuzzy Graphs,International Journal of advanced Research in Engineering and technology, Vol.11, Issue 1,January 2020,pp 147-154.
[5]. A.Nagoor Gani and K.Radha, On regular fuzzy graphs, Journal of Physical Sciences, 12 (2008) 33-40.
[6]. A.Nagoor Gani and S.R.Latha, On Irregular Fuzzy graphs, Applied Mathematical Sciences, 6 (2012) 517-523.
[7]. K.Priyadharshini and N.R.Santhi Maheswari, A study on Support highly Irregular graphs,South East Asian Journal of Mathematics ,(Communicated).
[8]. A.Rosenfeld, Fuzzy graphs, In: L.A.Zadeh,K.S.Fu, M.Shimura, eds., Fuzzy sets and Their Applications, Academic Press (1975) 77-95.
[9]. N.R.Santhi Maheswari and C.Sekar, On (2, k)-regular fuzzy graph and totally ( $2, k)$-regular fuzzy graph, International Journal of Mathematics and Soft Computing, 4(2),(2014) 59-69.
[10]. N.R.Santhi Maheswari and C.Sekar,On neighbourly edge irregular fuzzy graphs,International Journal of Mathematical Archive, 6(10) (2015) 224-231.
[11]. N.R.Santhi Maheswari and C.Sekar,On pseudo regular fuzzy graphs,Annals of Pure and Applied Mathematics, 11(1) (2016), 105-113.
[12]. N.R.Santhi Maheswari and C.Sekar,On m-neighbourly Irregular fuzzy graphs, International Journal of Mathematics and Soft Computing, 5(2) (2015) 145-153.
[13]. N. R. Santhi Maheswari and C. Sekar,On ( $r, 2, k$ ) - regular fuzzy graphs,Journal of Combinatorial Mathematics and Combinatorial Computing, 97(2016), 11-21, April 2016.
[14]. N. R. Santhi Maheswari and C. Sekar,On ( $m, k$ ) -Regular fuzzy graphs, International Journal of Mathematical Archieve, 7(1), 2016, 1-7.
[15]. N. R. Santhi Maheswari and C. Sekar,On ( $r, m, k$ ) - Regular Fuzzy Graphs,International J.Math.Combin. Vol.1, (2016), 18-26.
[16]. N. R. Santhi Maheswari and C. Sekar,On Edge Irregular Fuzzy Graphs ,International Journal of Mathematics and Soft computing ,Vol.6, No.2(2016),131-143
[17]. N. R. SanthiMaheswari and C. Sekar,On Strongly Edge Irregular fuzzy graphs,Kragujevac Journal of Mathematics, Volume 40(1) (2016), Pages 125-135.
[18]. N. R. SanthiMaheswari and M.Sudha,Pseudo Irregular fuzzy Graphs and Highly Pseudo Irregular Fuzzy Graphs, International Journal of Mathematical Archieve, 7(4), 2016, 99-106.
[19]. N.R.SanthiMaheswari and M.Rajeswari, On Strongly Pseudo Irregular Fuzzy Graphs, International Journal of Mathemaical Archive, 7(6),(2016),145-151.
[20]. N.R.SanthiMaheswari and C.Sekar,On 2-neighbourly Irregular Fuzzy Graphs, Utilitas Mathematica, June 2018.
[21]. N.R.Santhi Maheswari and V.Jeyapratha,On Neighbourly Pseudo Irregular fuzzy graphs, International Journal of Mathematical Combinatorics,Vol.4(2018),45-52.
[22]. N. R. Santhi Maheswari and K. Amutha,Support Neighbourly Edge Irregular graphs,International Journal of Recent Technology and Engineering(IJRTE). Vol 8, Issue 3,(2019),pp. 5329-5332..
[23]. N.R.Santhi Maheswari and K.Amutha 1- Neighbourly Edge Irregular Graphs, Advances in Mathematics:Scientific Journal,Special issueno.3, (2019), pp. 200-207.
[24]. N.R.Santhi Maheswari and K.Amutha, Pseudo Edge Regular and Neighbourly Pseudo Edge Irregular Graphs, Advances and applications in mathematical sciences(Communicated).
[25]. N.R.Santhi Maheswari and K.Priyadharshini, Support Highly Irregular fuzzy Graphs, Advances and Applications in Mathematical Sciences(Communicated).
[26]. L.A. Zadeh, Fuzzy Sets, Information and Control, 8 (1965), 338-353.
[27]. L.A. Zadeh, The concept of a linguistic and application to approximate reasoning., Information Science, 8 (1975), 199-249.

[^0]
[^0]:    K. Priyadharshini, et. al. "On Support Highly Irregular Interval-Valued Fuzzy Graphs." IOSR Journal of Mathematics (IOSR-JM), 18(2), (2022): pp. 23-28.

