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Proof of Generalized Continuum Hypothesis 
 

Michael Oser Rabin and Duggirala Ravi  
 

Abstract:   
Background: The continuum hypothesis was originally proposed by Georg Cantor. The continuum hypothesis 

has remained a prominent conjecture, mainly because the mathematical tools of truth and provability have been 

developed much later.  The continuum hypothesis has been shown to be independent of the axiom of choice. 

 Materials and Methods: Besides proof and truth, the objects to which the mathematical statements apply need 

to be well-formulated. Inductive or recursive constructibility of the mathematical objects is a well-

acknowledged prerequisite, for a mathematical theory to be consistent and verifiable. By recursion, only well-

founded recursion is intended to be of opportuneness, in the construction of proofs and the mathematical objects 

to which the theorems refer. 
Results: For inductively constructible sets, the continuum hypothesis as well as its generalization can be 
proved. 

Conclusion: Well-founded recursion and inductive constructability are prerequisites for a mathematical theory 

to become free from paradoxes. 
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I. Introduction  
The continuum hypothesis was originally formulated by Georg Cantor. Since the time of Cantor’s 

publication of set theory, the continuum hypothesis has remained a prominent mathematical conjecture, mainly 

because the mathematical tools of truth and provability have been developed much later.  The continuum 

hypothesis has been shown to be independent of the axiom of choice. 

Besides proof and truth, the objects to which the mathematical statements apply need to be well-

formulated. Inductive or recursive constructability of the mathematical objects is a well-acknowledged 

prerequisite, for a mathematical theory to be consistent and verifiable. By recursion, only well-founded 

recursion is intended to be of opportuneness, in the construction of proofs and the mathematical objects to which 

the theorems refer. 
Cantor’s set theory lays out the basic operations on sets. There are a few basic sets, including the empty 

set, using which more complex can be constructed. However, there is no provision in Cantor’s set theory, to 

conclude that any set is constructible only using these operations. This extra provision must be supplemented in 

the proofs about any general set that may occur as a properly constructible set. Though it is assumed to be so, it 

is not always explicitly stated, meaning that it is taken for granted that a set is somehow properly constructed, 

when one is referring to a set, in general. Otherwise, the prover may run into numerous paradoxes.  

In formal logic, such a clause as being discussed in the preceding paragraph may appear like the 

phrase, “… the smallest collection, closed under the operations …”. The danger here is the immediate self-

referential question, as to whether the class of sets is a set by itself. It is also possible that this was the intuition 

behind the formulation of Zorn’s maximality principle. 

In this paper, inductive constructibility of sets is emphasized.  Well-founded recursion can be converted 

into inductive construction. 
For inductively constructible sets, the continuum hypothesis as well as its generalization can be proved. 

Well-founded recursion and inductive constructability are prerequisites for a mathematical theory to become 

free from paradoxes. 

 

II. Material And Methods  
Let   be the set of positive integers, and let   the set of real numbers. Any reference to recursion must 

be understood to be well-founded. For constructible sets, the following set operations are defined:  

(1)     Union     : for an inductively or recursively constructible index set    , and  inductively or 

recursively constructible sets,     ,       , the set union is            , 
(2)     Intersection     : for an inductively or recursively constructible index set    , and  inductively 

or recursively constructible sets,     ,       , the set intersection is            , 
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(3)     Cartesian Product     or     : for an inductively or recursively constructible index set    , and  

inductively or recursively constructible sets,     ,       , the set intersection is              ,  
(4)     Power Set     : for an inductively or recursively constructible set    , the set of all its subsets, 

denoted  by      , is the power set of  ,    and     
(5)     Set Difference      and Symmetric Difference          : for two inductively or recursively 

defined sets   and  ,       is the collection of elements in    that are not in  , and       is the union 

of the two sets     and      ,  i.e.,                   . 
 

The set complementation by itself is undefined. In item (4), the subsets of a set are not attempted to be 

defined further.  If a single subset is required, it may have to be constructible appropriately. But, since the power 

set is taken as a whole, when referring to the subsets of a set,   no further constructability conditions are implied 

in (4).  The power set      is also written as    , as a subset can be identified with its binary valued indicator 

function defined on the set  .  

The complementation of a set is undefined, unless a constructible superset is explicitly or implicitly 

specified, owing to the discovery of paradoxes originating from the notion of the set of all sets. Instead, for two 

inductively or recursively defined sets   and   , the set differences,       and       , as well as the 

symmetric difference,                  ,   are defined.   

In view of the fact that unbounded recursion is mainly responsible for the unreasonableness of the 

paradoxes discovered, recursive or inductive constructability is specifically included as a prerequisite. In this 

paper, whenever a reference to a set is made, it is implicitly assumed that the set is inductively or recursively 

constructible. From the standpoint of formal logic, except for some few sets that are taken to be basic and 
subject to no further definability conditions,  each set may need to be definable recursively or inductively, by 

means of functions, that are recursively or inductively constructible.  

Two sets   and   may be compared with respect to a partial order   , defined as follows:  if there 

exists a one-to-one mapping from   into   or there exists a surjective mapping from   onto   , then       . 
If      , then the cardinality of   is no larger than the cardinality of   . 

 

Proposition 1 There is no surjective mapping from a finite set   onto the set of natural numbers    , and 

there is no one-to-one mapping from the set of natural numbers    into a finite set   , i.e., the partial 

relation       never holds, for a finite set  . 
Proof Both statements can be proved by induction the number of elements of  .                        
  
       

 For an infinite set   , for some strictly proper subset    , it may hold that      . 
 

Proposition 2 (Cantor) For any set   , there is no surjective mapping from   onto its power set       , and 

there is no one-to-one mapping from the power set         into    , i.e., the partial relation           never 

holds, for any set  . 
Proof Cantor introduced the diagonal argument in the proof this proposition.                         

  

Assumption 1  There is no set   of cardinality strictly larger than that of every finite set, but strictly smaller 

than that of the set of natural numbers    , i.e., if the partial relation      holds, for every finite set  , then the 

partial relation      holds, too. 
 
Proposition 2                and     ,   for every      . 
Proof Known to be standard results.                             
  
 
Proposition  3  Among the sets inductively constructed so far, at any point of inductive construction, let   be 

an infinite set such that the cardinality of    is at least that of every other set constructed so far. Then, the set of 

strictly larger cardinality constructible in the next induction step is    . 
Proof The set            , where      , for      , can be identified with       , whenever    . 

If     and   is infinite, then     . Now, after constructing sets of cardinality equal to that of  , by a finite 

number of steps of induction, starting from the basic sets, any larger set can be constructed only by taking   , 

which completes the proof. It is also true that        , and so              . 

Otherwise, if      and      , for a constructible infinite set   , then             . 

If     and    is infinite, then      , and if   is of a larger cardinality, it must be inductively proved that 

the partial relation        holds. Therefore, the set           cannot be of larger cardinality, for an infinite 
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set  , with      , for      , and also    . Since                     , where    is a copy of   , for 

every      , the contention becomes obvious for the recursion to be well-founded.                     
                     

 
Inductively, it can be shown that         , for every infinite set  .   

  

III. Result  
The main results of the paper are summarized in this section. 

 

Theorem 1 (Special Continuum Hypothesis)   For an inductively constructible set   , if the partial 

relation     holds, but the partial relation       cannot hold, then    . 

Proof Since      , but it is not true that     , it may be assumed that, for any    , it is not true 

that      . The least cardinality of any inductively constructible set by rising     to an exponent set  , i.e., by 

taking    , for some inductively constructible set  , is when    , by Assumption 1 of the preceding section. 

But since      , the contention follows.                     
 

Theorem 2 (Generalized Continuum Hypothesis)  For two inductively constructible sets     and   , such that 

  is infinite, if the partial relation     holds, but the partial relation      cannot hold, then       . 
Proof Inductive proof is constructed, with the proof of preceding theorem as the induction basis step.    
                                                                                                                                           

IV. Discussion 
  Well-foundedness of recursion is an indispensable prerequisite for constructability. Well-founded 

recursion can be shown to be some form of induction.  For inductive constructability, the number of basic 

operations starting from basic sets is required to be finite. 

 

V. Conclusion 
The continuum hypothesis and its generalization can be proved for inductively constructible sets.       
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