Odd Sum Labeling of Some Grid Graphs

M. M. Trivedi ${ }^{1}$, Venus Chaudhary ${ }^{1}$
${ }^{1}$ (Department of Mathematics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat, India)

Abstract

: In this paper we have discussed the odd sum labeling of grid graph, path union of grid graphs with different size, graph obtained by joining vertex of a grid graph and a complete bipartite graph $K_{2, t}$ by a path, step grid graph and the graph obtained by joining step grid graphs of different size by arbitrary paths.

Key Word: Odd sum labeling, odd sum graph, grid graph, step grid graph, path union.
Date of Submission: 12-05-2022
Date of Acceptance: 27-05-2022

I. Introduction

Throughout this paper by a graph we mean a finite, simple undirected graph. We use the notation p for number of vertices and q for number of edges in a graph. Graph labeling was initiated by Rosa ${ }^{1}$. Since then many researchers have contributed in the field of graph labeling. A detailed survey on graph labeling is updated every year by Gallian ${ }^{2}$. The concept of odd sum labeling was given by Arockiaraj and Mahalakshmi ${ }^{3}$ with odd sum labeling of path, cycle, balloon graph, ladder graph, quadrilateral snake graph, bistar graph and cyclic ladder graph. Arockiaraj et al. ${ }^{4,5}$ discussed the odd sum property of some subdivision graphs and graphs obtained by duplicating any edge of some graphs. Gopi ${ }^{6}$ investigated odd sum labeling of some tree related graphs such as the H graph of path, twig graph, the graph $P(m, n)$ and the graph $\left(P_{m}, S_{n}\right)$. Gopi and Iraudaya Mary ${ }^{7}$ studied the odd sum labeling of slanting ladder graph, the shadow graph of a star graph and bistar graph, the mirror graph of a path and the graph obtained by duplicating a vertex in a path. Odd sum labeling and odd sum graph is defined ${ }^{3}$ as, "An injective function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, \ldots \ldots,|\mathrm{E}(\mathrm{G})|\}$ is said to be an odd sum labeling if the induced edge labeling f^{*} defined by $\mathrm{f}^{*}(\mathrm{uv})=\mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v}), \forall \mathrm{uv} \in \mathrm{E}(\mathrm{G})$ is a bijective and $f^{*}: E(G) \rightarrow\{1,3,5, \ldots \ldots, 2|E(G)|-1\}$. A graph is said to be an odd sum graph if it admits an odd sum labeling".

This paper deals with odd sum labeling of grid graph $P_{n} \times P_{m}$, path union of grid graphs $P_{n_{1}} \times$ $P_{m_{1}}, P_{n_{2}} \times P_{m_{2}}, \ldots \ldots, P_{n_{t}} \times P_{m_{t}}$, graph obtained by joining vertex of a grid graph $P_{n} \times P_{m}$ and a complete bipartite graph $K_{2, t}$ by a path P_{r}, step grid graph St_{n} and the graph obtained by joining step grid graphs $\mathrm{St}_{\mathrm{n}_{1}}, \mathrm{St}_{\mathrm{n}_{2}}, \ldots \ldots \ldots, \mathrm{St}_{\mathrm{n}_{\mathrm{t}}}$ by paths $\mathrm{P}_{\mathrm{r}_{1}}, \mathrm{P}_{\mathrm{r}_{2}}, \ldots \ldots \ldots, \mathrm{P}_{\mathrm{r}_{\mathrm{t}-1}}$.
Definition 1: The Cartesian product of two paths P_{n} and P_{m} is known as a grid graph and it is denoted by $\mathrm{P}_{\mathrm{n}} \times \mathrm{P}_{\mathrm{m}}$. It is obvious that $\left|\mathrm{V}\left(\mathrm{P}_{\mathrm{n}} \times \mathrm{P}_{\mathrm{m}}\right)\right|=\mathrm{nm}$ and $\left|\mathrm{E}\left(\mathrm{P}_{\mathrm{n}} \times \mathrm{P}_{\mathrm{m}}\right)\right|=2 \mathrm{~nm}-(\mathrm{n}+\mathrm{m})$.
Definition 2: For a graph G, if $G_{1}, G_{2}, \ldots \ldots, G_{t}(t \geq 2)$ are t copies of G then a graph obtained by adding an edge from G_{i} to $G_{i+1}(1 \leq i \leq t-1)$ is said to be a path union of graph G which is denoted by $P(t \cdot G)$.
Let $G_{1}, G_{2}, \ldots \ldots, G_{t}(t \geq 2)$ be connected graphs. Consider paths $P_{n_{1}}, P_{n_{2}}, \ldots \ldots, P_{n_{t-1}}$. Then the graph obtained by joining each pair of graphs $\left(G_{i}, G_{i+1}\right)$ by the path $P_{n_{i}}(1 \leq i \leq t-1)$ is denoted by $\left\langle\mathrm{G}_{1}, \mathrm{P}_{\mathrm{n}_{1}}, \mathrm{G}_{2}, \mathrm{P}_{\mathrm{n}_{2}}, \mathrm{G}_{3}, \ldots \ldots, \mathrm{G}_{\mathrm{t}-1}, \mathrm{P}_{\mathrm{n}_{\mathrm{t}-1}}, \mathrm{G}_{\mathrm{t}}\right\rangle$. If $\mathrm{P}_{\mathrm{n}_{1}}=\mathrm{P}_{\mathrm{n}_{2}}=\ldots \ldots,=\mathrm{P}_{\mathrm{n}_{\mathrm{t}-1}}=\mathrm{P}_{\mathrm{n}}$ then such a path union is denoted by $P_{n}\left(G_{1}, G_{2}, \ldots \ldots, G_{t}\right)$. A graph $P_{2}\left(G_{1}, G_{2}, \ldots \ldots, G_{t}\right)$ can also be simply denoted as $P\left(G_{1}, G_{2}, \ldots, G_{t}\right)$.
Definition 3: Consider paths $P_{n}, P_{n}, P_{n-1}, \ldots \ldots, P_{3}, P_{2}$ on $n, n, n-1, n-2, \ldots \ldots, 3,2$ vertices and arrange them vertically. A graph obtained by joining horizontal vertices of given successive paths is known as a step grid graph 8 of size n, where $n \geq 3$. It is denoted by $S t_{n}$. Clearly, $\left|V\left(S t_{n}\right)\right|=\frac{n^{2}+3 n-2}{2}$ and $\left|E\left(S t_{n}\right)\right|=n^{2}+n-2$.

II. Main Results

Theorem 1: Every grid graph $P_{n} \times P_{m}$ admits odd sum labeling.
Proof: Consider a grid graph $P_{n} \times P_{m}$ as shown in Figure 1.
The vertex set $V\left(P_{n} \times P_{m}\right)=\left\{v_{i, j}: i=1,2, \ldots, n ; j=1,2, \ldots, m\right\}$ and the edge set $E\left(P_{n} \times P_{m}\right)=\left\{v_{i, j} v_{i+1, j}: i=1,2, \ldots, n-1 ; j=1,2, \ldots, m\right\}$

$$
\cup\left\{v_{i, j} v_{i, j+1} \mid i=1,2, \ldots, n ; j=1,2, \ldots, m-1\right\} .
$$

Figure - 1: Ordinary labeling of $P_{n} \times P_{m}$
Clearly, $\mathrm{q}=\left|\mathrm{E}\left(\mathrm{P}_{\mathrm{n}} \times \mathrm{P}_{\mathrm{m}}\right)\right|=2 \mathrm{mn}-(\mathrm{m}+\mathrm{n})$.
Now, define $f: V\left(P_{n} \times P_{m}\right) \rightarrow\{0,1,2, \ldots, q\}$ as
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}, 1}\right)=(\mathrm{i}-1)(2 \mathrm{~m}-1), \forall \mathrm{i}=1,2, \ldots, \mathrm{n}$;
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}, \mathrm{j}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{i}, \mathrm{j}-1}\right)+1, \forall \mathrm{i}=1,2, \ldots, \mathrm{n}, \forall \mathrm{j}=2,3, \ldots, \mathrm{~m}$.
The induced edge labeling function $f^{*}: E\left(P_{n} \times P_{m}\right) \rightarrow\{1,3,5, \ldots, 2 q-1\}$ is given by $\mathrm{f}^{*}(\mathrm{uv})=\mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v}), \forall \mathrm{uv} \in \mathrm{E}\left(\mathrm{P}_{\mathrm{n}} \times \mathrm{P}_{\mathrm{m}}\right)$.
The above labeling pattern yields odd sum labeling of $P_{n} \times P_{m}$. Hence, $P_{n} \times P_{m}$ admits odd sum labeling.
Illustration 1: Odd sum labeling of grid graph $P_{4} \times P_{3}$ is shown in Figure 2.

Figure - 2: Odd sum labeling of a grid graph $P_{4} \times P_{3}$
Theorem 2: A graph $\mathrm{P}\left(\mathrm{P}_{\mathrm{n}_{1}} \times \mathrm{P}_{\mathrm{m}_{1}}, \mathrm{P}_{\mathrm{n}_{2}} \times \mathrm{P}_{\mathrm{m}_{2}}, \ldots \ldots, \mathrm{P}_{\mathrm{n}_{\mathrm{t}}} \times \mathrm{P}_{\mathrm{m}_{\mathrm{t}}}\right)$ is an odd sum graph.
Proof: Let G be a graph $P\left(P_{n_{1}} \times P_{m_{1}}, P_{n_{2}} \times P_{m_{2}}, \ldots \ldots \ldots, P_{n_{t}} \times P_{m_{t}}\right)$ in which the vertex of $i^{t h}$ column and $j^{\text {th }}$ row of $P_{n_{k}} \times P_{m_{k}}$ is denoted by $v_{k, i, j}$ and the vertex $v_{k, 1,1}$ be joined with $v_{k-1, n_{k-1}, m_{k-1}}$ by an edge for each $k=2,3, \ldots \ldots, t$ as shown in Figure 3.
Clearly, the number of edges in $\mathrm{P}_{\mathrm{n}_{\mathrm{k}}} \times \mathrm{P}_{\mathrm{m}_{\mathrm{k}}}$ is $\mathrm{q}_{\mathrm{k}}=2 \mathrm{~m}_{\mathrm{k}} \mathrm{n}_{\mathrm{k}}-\left(\mathrm{m}_{\mathrm{k}}+\mathrm{n}_{\mathrm{k}}\right), \forall \mathrm{k}=1,2, \ldots \ldots, \mathrm{t}$.
Hence the number of edges in G is

$$
\mathrm{q}=(\mathrm{t}-1)+\sum_{\mathrm{k}=1}^{\mathrm{t}} \mathrm{q}_{\mathrm{k}} .
$$

Figure - 3: Ordinary vertex labeling of path union of grid graphs
We define vertex labeling function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, \ldots \ldots, \mathrm{q}\}$ as follow:
$\mathrm{f}\left(\mathrm{v}_{1, \mathrm{i}, 1}\right)=(\mathrm{i}-1)\left(2 \mathrm{~m}_{1}-1\right), \forall \mathrm{i}=1,2, \ldots \ldots, \mathrm{n}_{1}$;
$\mathrm{f}\left(\mathrm{v}_{\mathrm{k}, \mathrm{i}, 1}\right)=(\mathrm{i}-1)\left(2 \mathrm{~m}_{\mathrm{k}}-1\right)+\mathrm{k}-1+\sum_{\mathrm{j}=1}^{\mathrm{k}-1} \mathrm{q}_{\mathrm{j}}, \quad \forall \mathrm{i}=1,2, \ldots \ldots, \mathrm{n}_{\mathrm{k}}, \forall \mathrm{k}=2,3, \ldots \ldots, \mathrm{t}$;
$\mathrm{f}\left(\mathrm{v}_{\mathrm{k}, \mathrm{i}, \mathrm{j}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{k}, \mathrm{i}, \mathrm{j}-1}\right)+1, \forall \mathrm{i}=1,2, \ldots \ldots, \mathrm{n}_{\mathrm{k}}, \forall \mathrm{j}=2,3, \ldots \ldots, \mathrm{~m}_{\mathrm{k}}, \forall \mathrm{k}=1,2, \ldots \ldots, \mathrm{t}$.
The induced edge labeling function $\mathrm{f}^{*}: \mathrm{E}(\mathrm{G}) \rightarrow\{1,3,5, \ldots, 2 \mathrm{q}-1\}$ is given by

$$
\mathrm{f}^{*}(\mathrm{uv})=\mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v}), \quad \forall \mathrm{uv} \in \mathrm{E}(\mathrm{G}) .
$$

The above labeling pattern shows the odd sum labeling of the graph G .
Hence, the graph $\mathrm{P}\left(\mathrm{P}_{\mathrm{n}_{1}} \times \mathrm{P}_{\mathrm{m}_{1}}, \mathrm{P}_{\mathrm{n}_{2}} \times \mathrm{P}_{\mathrm{m}_{2}}, \ldots \ldots, . . \mathrm{P}_{\mathrm{n}_{\mathrm{t}}} \times \mathrm{P}_{\mathrm{m}_{\mathrm{t}}}\right)$ is an odd sum graph.
Illustration 2: The graph $P\left(P_{4} \times P_{3}, P_{3} \times P_{4}, P_{3} \times P_{3}\right)$ is an odd sum graph as shown in Figure 4 .

Figure - 4: Odd sum labeling of the graph $P\left(P_{4} \times P_{3}, P_{3} \times P_{4}, P_{3} \times P_{3}\right)$
Theorem 3: A graph obtained by joining vertex of a grid graph $P_{n} \times P_{m}$ and a complete bipartite graph $K_{2, t}$ by a path P_{r} i.e. a graph $\left\langle P_{n} \times P_{m}, P_{r}, K_{2, t}\right\rangle$ is an odd sum graph.
Proof: Let G be a graph obtained by joining vertex $v_{n, m}$ of a grid graph $P_{n} \times P_{m}$ and a vertex u_{1} of a complete bipartite graph $K_{2, t}$ by a path P_{r} as shown in Figure 5. Thus, $G=\left\langle P_{n} \times P_{m}, P_{r}, K_{2, t}\right\rangle$.
Here, $V(G)=\left\{\mathrm{v}_{\mathrm{i}, \mathrm{j}}: \mathrm{i}=1,2, \ldots, \mathrm{n} ; \mathrm{j}=1,2, \ldots, \mathrm{~m}\right\} \cup\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{1}^{\prime}, \mathrm{u}_{2}^{\prime}, \ldots, \mathrm{u}_{\mathrm{t}}^{\prime}\right\} \cup\left\{\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{r}}\right\}$ and

$$
\begin{gathered}
E(G)=\left\{v_{i, j} v_{i+1, j}: i=1,2, \ldots, n-1 ; j=1,2, \ldots, m\right\} \cup\left\{v_{i, j} v_{i, j+1}: i=1,2, \ldots n ; j=1,2, \ldots, m-1\right\} \\
\cup\left\{w_{i} w_{i+1}: i=1,2, \ldots, r-1\right\} \cup\left\{u_{1} u_{i}^{\prime}: i=1,2, \ldots, t\right\} \cup\left\{u_{2} u_{i}^{\prime}: i=1,2, \ldots, t\right\}
\end{gathered}
$$

where $\mathrm{w}_{1}=\mathrm{v}_{\mathrm{n}, \mathrm{m}}$ and $\mathrm{u}_{1}=\mathrm{w}_{\mathrm{r}}$.

Figure - 5: Ordinary labeling of the graph $\left\langle P_{n} \times P_{m}, P_{r}, K_{2, t}\right\rangle$
Clearly, $|\mathrm{E}(\mathrm{G})|=\mathrm{q}=2 \mathrm{mn}-(\mathrm{m}+\mathrm{n})+2 \mathrm{t}+\mathrm{r}-1$.
Now, define $f: V(G) \rightarrow\{0,1,2,3, \ldots, q\}$ as follow:
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}, 1}\right)=(\mathrm{i}-1)(2 \mathrm{~m}-1), \forall \mathrm{i}=1,2, \ldots, \mathrm{n}$;
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}, \mathrm{j}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{i}, \mathrm{j}-1}\right)+1, \forall \mathrm{i}=1,2, \ldots, \mathrm{n}, \forall \mathrm{j}=2,3, \ldots, \mathrm{~m}$;
$\mathrm{f}\left(\mathrm{w}_{1}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}, \mathrm{m}}\right)$;
$\mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}, \mathrm{m}}\right)+\mathrm{i}-1, \forall \mathrm{i}=1,2, \ldots, \mathrm{r} ;$
$\mathrm{f}\left(\mathrm{u}_{1}\right)=\mathrm{f}\left(\mathrm{w}_{\mathrm{r}}\right)$;
$\mathrm{f}\left(\mathrm{u}_{2}\right)=\mathrm{q}$;
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}^{\prime}\right)=\mathrm{f}\left(\mathrm{u}_{1}\right)+2 \mathrm{i}-1, \forall \mathrm{i}=1,2, \ldots, \mathrm{t}$.
The induced edge labeling function $f^{*}: E(G) \rightarrow\{1,3,5, \ldots, 2 q-1\}$ is given by $\mathrm{f}^{*}(\mathrm{uv})=\mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v}), \forall \mathrm{uv} \in \mathrm{E}(\mathrm{G})$.
The above labeling pattern tends to give odd sum labeling pattern of a graph G. Hence, the graph $\left\langle P_{n} \times P_{m}, P_{r}\right.$, $\mathrm{K} 2, \mathrm{t}$ is an odd sum graph.

Illustration 3: Odd sum labeling of a graph $\left\langle\mathrm{P}_{4} \times \mathrm{P}_{3}, \mathrm{P}_{4}, \mathrm{~K}_{2,5}\right\rangle$ is shown in Figure 6.

Figure - 6: Odd sum labeling of a graph $\left\langle\mathrm{P}_{4} \times \mathrm{P}_{3}, \mathrm{P}_{4}, \mathrm{~K}_{2,5}\right\rangle$
Theorem 4: Every step grid graph $S t_{n}(n \geq 3)$ is an odd sum graph.
Proof: Consider a step grid graph St_{n} of size n which is a graph obtained by joining horizontal vertices of successive paths $P_{n}, P_{n}, P_{n-1}, P_{n-2}, \ldots \ldots \ldots, P_{2}$ as shown in Figure 7.
Here, $\mathrm{V}\left(\mathrm{St}_{\mathrm{n}}\right)=\left\{\mathrm{u}_{1, \mathrm{j}}: 1 \leq \mathrm{j} \leq \mathrm{n}\right\} \cup\left\{\mathrm{u}_{\mathrm{i}, \mathrm{j}}: 2 \leq \mathrm{i} \leq \mathrm{n} ; 1 \leq \mathrm{j} \leq \mathrm{n}+2-\mathrm{i}\right\}$ and
$\mathrm{E}\left(\mathrm{St}_{\mathrm{n}}\right)=\left\{\mathrm{u}_{1, \mathrm{j}} \mathrm{u}_{1, \mathrm{j}+1}: 1 \leq \mathrm{j} \leq \mathrm{n}-1\right\} \cup\left\{\mathrm{u}_{\mathrm{i}, \mathrm{j}} \mathrm{u}_{\mathrm{i}, \mathrm{j}+1}: 2 \leq \mathrm{i} \leq \mathrm{n} ; 1 \leq \mathrm{j} \leq \mathrm{n}+1-\mathrm{i}\right\} \cup$

$$
\left\{u_{1, j} u_{2, j}: 1 \leq j \leq n\right\} \cup\left\{u_{i, j} u_{i+1, j-1}: 2 \leq i \leq n-1 ; 2 \leq j \leq n+2-i\right\} .
$$

Clearly, $\mathrm{q}=\left|\mathrm{E}\left(\mathrm{St}_{\mathrm{n}}\right)\right|=\mathrm{n}^{2}+\mathrm{n}-2$.
We define vertex labeling function $\mathrm{f}: \mathrm{V}\left(\mathrm{St}_{\mathrm{n}}\right) \rightarrow\{0,1,2, \ldots, \mathrm{q}\}$ as follow:
$f\left(u_{1,1}\right)=0$;
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}, 1}\right)=(\mathrm{i}-1)(2 \mathrm{n}+2-\mathrm{i})-1, \forall \mathrm{i}=2,3, \ldots, \mathrm{n} ;$
$\mathrm{f}\left(\mathrm{u}_{1, \mathrm{j}}\right)=\mathrm{f}\left(\mathrm{u}_{1, \mathrm{j}-1}\right)+1, \forall \mathrm{j}=2,3, \ldots, \mathrm{n}$;
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}, \mathrm{j}}\right)=\mathrm{f}\left(\mathrm{u}_{\mathrm{i}, \mathrm{j}-1}\right)+1, \forall \mathrm{i}=1,2, \ldots, \mathrm{n}, \forall \mathrm{j}=2,3, \ldots, \mathrm{n}+2-\mathrm{i}$.

Figure - 7: Ordinary labeling of a step grid graph St_{n}
The induced edge labeling function $\mathrm{f}^{*}: \mathrm{E}\left(\mathrm{St}_{\mathrm{n}}\right) \rightarrow\{1,3,5, \ldots, 2 \mathrm{q}-1\}$ given by $\mathrm{f}^{*}(\mathrm{uv})=\mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v}), \forall \mathrm{uv} \in$ $\mathrm{E}\left(\mathrm{St}_{\mathrm{n}}\right)$ with the above vertex labeling pattern shows that the graph St_{n} is an odd sum graph.

Illustration 4: Odd sum labeling of step grid graph St_{5} is shown in Figure 8.

Figure - 8: Odd sum labeling of a step grid graph St_{5}
Theorem 5: A graph $\left\langle\mathrm{St}_{\mathrm{n}_{1}}, \mathrm{P}_{\mathrm{r}_{1}}, \mathrm{St}_{\mathrm{n}_{2}}, \mathrm{P}_{\mathrm{r}_{2}}, \mathrm{St}_{\mathrm{n}_{3}}, \ldots \ldots, \mathrm{St}_{\mathrm{n}_{\mathrm{t}-1}}, \mathrm{P}_{\mathrm{r}_{\mathrm{t}-1}}, \mathrm{St}_{\mathrm{n}_{\mathrm{t}}}\right\rangle$ is an odd sum graph.
Proof: Consider step grid graphs $\mathrm{St}_{\mathrm{n}_{1}}, \mathrm{St}_{\mathrm{n}_{2}}, \ldots \ldots \ldots, \mathrm{St}_{\mathrm{n}_{t}}$ of size $\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots \ldots \ldots, \mathrm{n}_{\mathrm{t}}$ respectively.
For $\mathrm{k}=1,2, \ldots \ldots \ldots, \mathrm{t}$, we have $\mathrm{V}\left(\mathrm{St}_{\mathrm{n}_{\mathrm{k}}}\right)=\left\{\mathrm{v}_{\mathrm{k}, 1, \mathrm{j}}: 1 \leq \mathrm{j} \leq \mathrm{n}_{\mathrm{k}}\right\} \cup\left\{\mathrm{v}_{\mathrm{k}, \mathrm{i}, \mathrm{j}}: 2 \leq \mathrm{i} \leq \mathrm{n}_{\mathrm{k}} ; 1 \leq \mathrm{j} \leq \mathrm{n}_{\mathrm{k}}+2-\mathrm{i}\right\}$ and $E\left(\operatorname{St}_{\mathrm{n}_{\mathrm{k}}}\right)=\left\{\mathrm{v}_{\mathrm{k}, 1, \mathrm{j}} \mathrm{V}_{\mathrm{k}, 1, \mathrm{j}+1}: 1 \leq \mathrm{j} \leq \mathrm{n}_{\mathrm{k}}-1\right\} \cup\left\{\mathrm{v}_{\mathrm{k}, \mathrm{i}, \mathrm{j}} \mathrm{V}_{\mathrm{k}, \mathrm{i}, \mathrm{j}+1}: 2 \leq \mathrm{i} \leq \mathrm{n}_{\mathrm{k}} ; 1 \leq \mathrm{j} \leq \mathrm{n}_{\mathrm{k}}+1-\mathrm{i}\right\}$
$\cup\left\{\mathrm{v}_{\mathrm{k}, 1, \mathrm{j}} \mathrm{v}_{\mathrm{k}, 2, \mathrm{j}}: 1 \leq \mathrm{j} \leq \mathrm{n}_{\mathrm{k}}\right\} \cup\left\{\mathrm{v}_{\mathrm{k}, \mathrm{i}, \mathrm{j}} \mathrm{v}_{\mathrm{k}, \mathrm{i}+1, \mathrm{j}-1}: 2 \leq \mathrm{i} \leq \mathrm{n}_{\mathrm{k}}-1 ; 2 \leq \mathrm{j} \leq \mathrm{n}_{\mathrm{k}}+2-\mathrm{i}\right\}$.
Clearly, $\mathrm{p}_{\mathrm{k}}=\left|\mathrm{V}\left(\mathrm{St}_{\mathrm{n}_{\mathrm{k}}}\right)\right|=\frac{\mathrm{n}_{\mathrm{k}}^{2}+3 \mathrm{n}_{\mathrm{k}}-2}{2}$ and $\mathrm{q}_{\mathrm{k}}=\left|\mathrm{E}\left(\mathrm{St}_{\mathrm{n}_{\mathrm{k}}}\right)\right|=\mathrm{n}_{\mathrm{k}}{ }^{2}+\mathrm{n}_{\mathrm{k}}-2, \forall \mathrm{k}=1,2, \ldots \ldots \ldots, \mathrm{t}$.
Let G be a graph as shown in Figure 9 which is obtained by joining each vertex $v_{k, n_{k}, 2}$ of $S t_{n_{k}}$ and a vertex $\mathrm{v}_{\mathrm{k}+1,1,1}$ of $\mathrm{St}_{\mathrm{n}_{\mathrm{k}+1}}$ by a path $\mathrm{P}_{\mathrm{r}_{\mathrm{k}}}$ of arbitrary size r_{k} with $\mathrm{V}\left(\mathrm{P}_{\mathrm{r}_{\mathrm{k}}}\right)=\left\{\mathrm{w}_{\mathrm{k}, 1}, \mathrm{w}_{\mathrm{k}, 2}, \ldots \ldots \ldots, \mathrm{w}_{\mathrm{k}, \mathrm{r}_{\mathrm{k}}}\right\}$ and $\mathrm{E}\left(\mathrm{P}_{\mathrm{r}_{\mathrm{k}}}\right)=$ $\left\{\mathrm{w}_{\mathrm{k}, \mathrm{i}} \mathrm{w}_{\mathrm{k}, \mathrm{i}+1}: 1 \leq \mathrm{i} \leq \mathrm{r}_{\mathrm{k}}-1\right\} \quad$ where $\mathrm{k}=1,2, \ldots \ldots \ldots, \mathrm{t}-1$. Thus,
$\mathrm{G}=\left\langle\mathrm{St}_{\mathrm{n}_{1}}, \mathrm{P}_{\mathrm{r}_{1}}, \mathrm{St}_{\mathrm{n}_{2}}, \mathrm{P}_{\mathrm{r}_{2}}, \mathrm{St}_{\mathrm{n}_{3}}, \ldots \ldots, \mathrm{St}_{\mathrm{n}_{\mathrm{t}-1}}, \mathrm{P}_{\mathrm{r}_{\mathrm{t}-1}}, \mathrm{St}_{\mathrm{n}_{\mathrm{t}}}\right\rangle$ where each $\mathrm{n}_{\mathrm{k}} \geq 3$ and each $\mathrm{r}_{\mathrm{k}} \geq 2$. Note that $\mathrm{v}_{\mathrm{k}, \mathrm{n}_{\mathrm{k}}, 2}=$ $\mathrm{w}_{\mathrm{k}, 1}$ and $\mathrm{w}_{\mathrm{k}, \mathrm{r}_{\mathrm{k}}}=\mathrm{v}_{\mathrm{k}+1,1,1}, \forall \mathrm{k}=1,2, \ldots \ldots, \mathrm{t}-1$.

Figure - 9: Ordinary labeling of the graph $\left\langle\mathrm{St}_{\mathrm{n}_{1}}, \mathrm{P}_{\mathrm{r}_{1}}, \mathrm{St}_{\mathrm{n}_{2}}, \mathrm{P}_{\mathrm{r}_{2}}, \mathrm{St}_{\mathrm{n}_{3}}, \ldots \ldots, \mathrm{St}_{\mathrm{n}_{\mathrm{t}-1}}, \mathrm{P}_{\mathrm{r}_{\mathrm{t}-1}}, \mathrm{St}_{\mathrm{n}_{\mathrm{t}}}\right\rangle$
Thus, we have $V(G)=\left(\bigcup_{k=1}^{t} V\left(S t_{n_{k}}\right)\right) U\left(\bigcup_{k=1}^{t-1} V\left(P_{r_{k}}\right)\right), E(G)=\left(\bigcup_{k=1}^{t} E\left(\operatorname{St}_{n_{k}}\right)\right) U\left(\bigcup_{k=1}^{t-1} E\left(P_{r_{k}}\right)\right)$,
$\mathrm{p}=|\mathrm{V}(\mathrm{G})|=2(1-\mathrm{t})+\sum_{\mathrm{k}=1}^{\mathrm{t}} \mathrm{p}_{\mathrm{k}}+\sum_{\mathrm{k}=1}^{\mathrm{t}-1} \mathrm{r}_{\mathrm{k}}$ and $\mathrm{q}=|\mathrm{E}(\mathrm{G})|=(1-\mathrm{t})+\sum_{\mathrm{k}=1}^{\mathrm{t}} \mathrm{q}_{\mathrm{k}}+\sum_{\mathrm{k}=1}^{\mathrm{t}-1} \mathrm{r}_{\mathrm{k}}$.
Now, we define the vertex labeling function $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, \ldots, \mathrm{q}\}$ as follow:
$\mathrm{f}\left(\mathrm{v}_{1,1,1}\right)=0$;
$\mathrm{f}\left(\mathrm{v}_{1, \mathrm{i}, 1}\right)=(\mathrm{i}-1)\left(2 \mathrm{n}_{1}+2-\mathrm{i}\right)-1, \forall \mathrm{i}=2,3, \ldots \ldots, \mathrm{n}_{1}$;
$f\left(v_{k, 1,1}\right)=(1-k)+\sum_{j=1}^{k-1} q_{j}+\sum_{j=1}^{k-1} r_{j}, \forall k=2,3, \ldots \ldots, t ;$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{k}, \mathrm{i}, 1}\right)=(\mathrm{i}-1)\left(2 \mathrm{n}_{\mathrm{k}}+2-\mathrm{i}\right)-\mathrm{k}+\sum_{\mathrm{j}=1}^{\mathrm{k}-1} \mathrm{q}_{\mathrm{j}}+\sum_{\mathrm{j}=1}^{\mathrm{k}-1} \mathrm{r}_{\mathrm{j}}, \forall \mathrm{k}=2,3, \ldots \ldots, \mathrm{t}, \forall \mathrm{i}=2,3, \ldots \ldots, \mathrm{n}_{\mathrm{k}} ;$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{k}, 1, \mathrm{j}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{k}, 1, \mathrm{j}-1}\right)+1, \forall \mathrm{k}=1,2, \ldots \ldots, \mathrm{t}, \forall \mathrm{j}=2,3, \ldots \ldots, \mathrm{n}_{\mathrm{k}}$;
$\mathrm{f}\left(\mathrm{v}_{\mathrm{k}, \mathrm{i}, \mathrm{j}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{k}, \mathrm{i}, \mathrm{j}-1}\right)+1, \forall \mathrm{k}=1,2, \ldots \ldots, \mathrm{t}, \forall \mathrm{i}=1,2, \ldots \ldots, \mathrm{n}_{\mathrm{k}}$ and $\forall \mathrm{j}=2,3, \ldots \ldots, \mathrm{n}_{\mathrm{k}}+2-\mathrm{I}$;
$\mathrm{f}\left(\mathrm{w}_{\mathrm{k}, \mathrm{i}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{k}, \mathrm{n}_{\mathrm{k}}, 2}\right)+(\mathrm{i}-1), \forall \mathrm{k}=1,2, \ldots, \mathrm{t}-1, \forall \mathrm{i}=2,3, \ldots \ldots, \mathrm{r}_{\mathrm{k}}-1$.
The induced edge labeling function $f^{*}: E(G) \rightarrow\{1,3,5, \ldots, 2 q-1\}$ is given by $f^{*}(u v)=f(u)+f(v), \forall u v \in$ E(G).
The above labeling pattern shows the odd sum labeling of the graph G . Thus, G is an odd sum graph. Hence, the graph $\left\langle\mathrm{St}_{\mathrm{n}_{1}}, \mathrm{P}_{\mathrm{r}_{1}}, \mathrm{St}_{\mathrm{n}_{2}}, \mathrm{P}_{\mathrm{r}_{2}}, \mathrm{St}_{\mathrm{n}_{3}}, \ldots \ldots, \mathrm{St}_{\mathrm{n}_{\mathrm{t}-1}}, \mathrm{P}_{\mathrm{r}_{\mathrm{t}-1}}, \mathrm{St}_{\mathrm{n}_{\mathrm{t}}}\right\rangle$ is an odd sum graph.

Illustration 5: A graph $\left\langle\mathrm{St}_{5}, \mathrm{P}_{4}, \mathrm{St}_{4}, \mathrm{P}_{6}, \mathrm{St}_{5}, \mathrm{P}_{3}, \mathrm{St}_{6}\right\rangle$ with its odd sum labeling is shown in Figure 10.

Figure - 10: Odd sum labeling of a graph $\left\langle\mathrm{St}_{5}, \mathrm{P}_{4}, \mathrm{St}_{4}, \mathrm{P}_{6}, \mathrm{St}_{5}, \mathrm{P}_{3}, \mathrm{St}_{6}\right\rangle$

III. Conclusion

In this paper, we have discussed odd sum labeling of grid graph, path union of grid graphs with different size, graph obtained by joining vertex of a grid graph and a complete bipartite graph $\mathrm{K}_{2, \mathrm{t}}$ by a path, step grid graph and the graph obtained by joining step grid graphs of different size by arbitrary paths.

References

[1]. Rosa A. On certain valuation of the vertices of a graph. Theory of Graphs (Rome, July 1966), Gordon and Beach. N.Y. and Paris. 1967; 349-355.
[2]. Gallian JA. A dynamic survey of graph labeling. The Electronic Journal of Combinatorics. 2021; 24: \# DS6.
[3]. Arockiaraj S, Mahalakshmi P. On odd sum graphs. International Journal of Mathematical Combinatorics. 2013; 4: 58-77.
[4]. Arockiaraj S, Mahalakshmi P, Namasivayam P. Odd sum labeling of some subdivision graphs. Kragujevac Journal of Mathematics. 2014; 38(1): 203-222.
[5]. Arockiaraj S, Mahalakshmi P, Namasivayam P. Odd sum labeling of graphs obtained by duplicating any edge of some graphs. Electronic Journal of Graph Theory and Applications. 2015; 3(2): 197-215
[6]. Gopi R. Odd sum labeling of tree related graphs. International Journal of Mathematics and its Applications. 2016; 4(4): 11-16.
[7]. Gopi R, Irudaya Mary A. Odd sum labeling of some more graphs. International Journal of Engineering Science, Advanced Computing and Bio-Technology. 2016; 7(4): 95-103.
[8]. Kaneria VJ, Makadia HM. Graceful labeling for step grid graph. Journal of Advances in Mathematics. 2014; 9(5): 2647-2654.

[^0]
[^0]: M. M. Trivedi. "Odd Sum Labeling of Some Grid Graphs." IOSR Journal of Mathematics (IOSR-JM), 18(3), (2022): pp. 25-33.

