Odd Sum Labeling of Some Grid Graphs

M. M. Trivedi¹, Venus Chaudhary¹

¹(Department of Mathematics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat, India)

Abstract:

In this paper we have discussed the odd sum labeling of grid graph, path union of grid graphs with different size, graph obtained by joining vertex of a grid graph and a complete bipartite graph $K_{2,t}$ by a path, step grid graph and the graph obtained by joining step grid graphs of different size by arbitrary paths. *Key Word:* Odd sum labeling, odd sum graph, grid graph, step grid graph, path union.

Date of Submission: 12-05-2022

Date of Acceptance: 27-05-2022

I. Introduction

Throughout this paper by a graph we mean a finite, simple undirected graph. We use the notation p for number of vertices and q for number of edges in a graph. Graph labeling was initiated by Rosa¹. Since then many researchers have contributed in the field of graph labeling. A detailed survey on graph labeling is updated every year by Gallian². The concept of odd sum labeling was given by Arockiaraj and Mahalakshmi³ with odd sum labeling of path, cycle, balloon graph, ladder graph, quadrilateral snake graph, bistar graph and cyclic ladder graph. Arockiaraj et al.^{4,5} discussed the odd sum property of some subdivision graphs and graphs obtained by duplicating any edge of some graphs. Gopi⁶ investigated odd sum labeling of some tree related graphs such as the H graph of path, twig graph, the graph P(m, n) and the graph (P_m, S_n). Gopi and Iraudaya Mary⁷ studied the odd sum labeling of slanting ladder graph, the shadow graph of a star graph and bistar graph, the mirror graph of a path and the graph obtained by duplicating a vertex in a path. Odd sum labeling and odd sum graph is defined³ as, "An injective function f: V(G) \rightarrow {0, 1, 2, ..., |E(G)|} is said to be an odd sum labeling if the induced edge labeling f* defined by f*(uv) = f(u) + f(v), $\forall uv \in E(G)$ is a bijective and f*: E(G) \rightarrow {1, 3, 5, ..., 2|E(G)| - 1}. A graph is said to be an odd sum graph if it admits an odd sum labeling".

This paper deals with odd sum labeling of grid graph $P_n \times P_m$, path union of grid graphs $P_{n_1} \times P_{m_1}$, $P_{n_2} \times P_{m_2}$, ..., $P_{n_t} \times P_{m_t}$, graph obtained by joining vertex of a grid graph $P_n \times P_m$ and a complete bipartite graph $K_{2,t}$ by a path P_r , step grid graph S_n and the graph obtained by joining step grid graphs $S_{t_{n_1}}$, $S_{t_{n_2}}$, ..., S_{t_n} , S_{t_n} , P_{r_2} , ..., P_{r_t} , P_{r_2} , ..., P_{r_t} , P_{r_t}

Definition 1: The Cartesian product of two paths P_n and P_m is known as a grid graph and it is denoted by $P_n \times P_m$. It is obvious that $|V(P_n \times P_m)| = nm$ and $|E(P_n \times P_m)| = 2nm - (n + m)$.

Definition 2: For a graph G, if $G_1, G_2, ..., G_t$ ($t \ge 2$) are t copies of G then a graph obtained by adding an edge from G_i to G_{i+1} ($1 \le i \le t-1$) is said to be a path union of graph G which is denoted by P($t \cdot G$).

Let G_1, G_2, \dots, G_t $(t \ge 2)$ be connected graphs. Consider paths $P_{n_1}, P_{n_2}, \dots, P_{n_{t-1}}$. Then the graph obtained by joining each pair of graphs (G_i, G_{i+1}) by the path P_{n_i} $(1 \le i \le t-1)$ is denoted by $\langle G_1, P_{n_1}, G_2, P_{n_2}, G_3, \dots, G_{t-1}, P_{n_{t-1}}, G_t \rangle$. If $P_{n_1} = P_{n_2} = \dots, P_{n_{t-1}} = P_n$ then such a path union is denoted by $P_n(G_1, G_2, \dots, G_t)$. A graph $P_2(G_1, G_2, \dots, G_t)$ can also be simply denoted as $P(G_1, G_2, \dots, G_t)$.

Definition 3: Consider paths P_n , P_n , P_{n-1} , ..., P_3 , P_2 on n, n, n – 1, n – 2, ..., 3, 2 vertices and arrange them vertically. A graph obtained by joining horizontal vertices of given successive paths is known as a step grid graph⁸ of size n, where n \ge 3. It is denoted by St_n. Clearly, $|V(St_n)| = \frac{n^2+3n-2}{2}$ and $|E(St_n)| = n^2 + n - 2$.

II. Main Results

Theorem 1: Every grid graph $P_n \times P_m$ admits odd sum labeling. **Proof:** Consider a grid graph $P_n \times P_m$ as shown in Figure 1. The vertex set $V(P_n \times P_m) = \{v_{i,j} : i = 1, 2, ..., n; j = 1, 2, ..., m\}$ and the edge set $E(P_n \times P_m) = \{v_{i,j} v_{i+1,j} : i = 1, 2, ..., n - 1; j = 1, 2, ..., m\}$ $\cup \{v_{i,j} v_{i,j+1} \mid i = 1, 2, ..., n; j = 1, 2, ..., m - 1\}.$

Figure – 1: Ordinary labeling of $P_n \times P_m$

Clearly, $q = |E(P_n \times P_m)| = 2mn - (m + n)$. Now, define f: $V(P_n \times P_m) \rightarrow \{0, 1, 2, ..., q\}$ as $f(v_{i,1}) = (i - 1)(2m - 1), \forall i = 1, 2, ..., n;$ $f(v_{i,j}) = f(v_{i,j-1}) + 1, \forall i = 1, 2, ..., n, \forall j = 2, 3, ..., m.$ The induced edge labeling function $f^*: E(P_n \times P_m) \rightarrow \{1, 3, 5, ..., 2q - 1\}$ is given by $f^*(uv) = f(u) + f(v), \forall uv \in E(P_n \times P_m).$

The above labeling pattern yields odd sum labeling of $P_n \times P_m$. Hence, $P_n \times P_m$ admits odd sum labeling.

Illustration 1: Odd sum labeling of grid graph $P_4 \times P_3$ is shown in Figure 2.

Figure – 2: Odd sum labeling of a grid graph $P_4 \times P_3$

Theorem 2: A graph $P(P_{n_1} \times P_{m_1}, P_{n_2} \times P_{m_2}, \dots, P_{n_t} \times P_{m_t})$ is an odd sum graph. **Proof:** Let *G* be a graph $P(P_{n_1} \times P_{m_1}, P_{n_2} \times P_{m_2}, \dots, P_{n_t} \times P_{m_t})$ in which the vertex of i^{th} column and j^{th} row of $P_{n_k} \times P_{m_k}$ is denoted by $v_{k,i,j}$ and the vertex $v_{k,1,1}$ be joined with $v_{k-1,n_{k-1},m_{k-1}}$ by an edge for each $k = 2,3, \dots, t$ as shown in Figure 3.

Clearly, the number of edges in $P_{n_k} \times P_{m_k}$ is $q_k = 2m_k n_k - (m_k + n_k)$, $\forall k = 1, 2, ..., t$. Hence the number of edges in G is

$$q = (t-1) + \sum_{k=1}^{t} q_k.$$

Figure – 3: Ordinary vertex labeling of path union of grid graphs

We define vertex labeling function f: V(G) \rightarrow {0,1,2, ..., q} as follow: f(v_{1,i,1}) = (i - 1)(2m₁ - 1), \forall i = 1,2, ..., n₁; f(v_{k,i,1}) = (i - 1)(2m_k - 1) + k - 1 + $\sum_{j=1}^{k-1}$ q_j, \forall i = 1,2, ..., n_k, \forall k = 2,3, ..., t; f(v_{k,i,j}) = f(v_{k,i,j-1}) + 1, \forall i = 1,2, ..., n_k, \forall j = 2,3, ..., m_k, \forall k = 1,2, ..., t. The induced edge labeling function f*: E(G) \rightarrow {1, 3, 5, ..., 2q - 1} is given by f*(uv) = f(u) + f(v), \forall uv \in E(G). The above labeling pattern shows the odd sum labeling of the graph G. Hence, the graph P(P_{n1} × P_{m1}, P_{n2} × P_{m2}, ..., P_{nt} × P_{mt}) is an odd sum graph.

Illustration 2: The graph $P(P_4 \times P_3, P_3 \times P_4, P_3 \times P_3)$ is an odd sum graph as shown in Figure 4.

Figure – 4: Odd sum labeling of the graph $P(P_4 \times P_3, P_3 \times P_4, P_3 \times P_3)$

Theorem 3: A graph obtained by joining vertex of a grid graph $P_n \times P_m$ and a complete bipartite graph $K_{2,t}$ by a path P_r i.e. a graph $\langle P_n \times P_m, P_r, K_{2,t} \rangle$ is an odd sum graph.

Proof: Let G be a graph obtained by joining vertex $v_{n,m}$ of a grid graph $P_n \times P_m$ and a vertex u_1 of a complete bipartite graph $K_{2,t}$ by a path P_r as shown in Figure 5. Thus, $G = \langle P_n \times P_m, P_r, K_{2,t} \rangle$.

Here, V(G) = { $v_{i,j}$: i = 1,2,..., n; j = 1,2,..., m} \cup { u_1 , u_2 , u'_1 , u'_2 , ..., u'_t } \cup { w_1 , w_2 , ..., w_r } and E(G) = { $v_{i,j}$, $v_{i+1,j}$: i = 1,2,..., n - 1; j = 1,2,..., m} \cup { $v_{i,j}$, $v_{i,j+1}$: i = 1,2,..., n; j = 1,2,..., m - 1} \cup { w_i , w_{i+1} : i = 1,2,..., r - 1} \cup { u_1 , u'_i : i = 1,2,..., t} \cup { u_2 , u'_i : i = 1,2,..., t}

where $w_1 = v_{n,m}$ and $u_1 = w_r$.

Figure – 5: Ordinary labeling of the graph $\langle P_n \times P_m, P_r, K_{2,t} \rangle$

Clearly, |E(G)| = q = 2mn - (m + n) + 2t + r - 1. Now, define f: V(G) \rightarrow {0,1,2,3, ..., q} as follow: $f(v_{i,1}) = (i - 1)(2m - 1), \forall i = 1, 2, ..., n;$ $f(v_{i,j}) = f(v_{i,j-1}) + 1, \forall i = 1, 2, ..., n, \forall j = 2, 3, ..., m;$ $f(w_1) = f(v_{n,m});$ $f(w_i) = f(v_{n,m}) + i - 1, \forall i = 1, 2, ..., r;$ $f(u_1) = f(w_r);$ $f(u_2) = q;$ $f(u_i) = f(u_1) + 2i - 1, \forall i = 1, 2, ..., t.$ The induced edge labeling $f^*: E(G) \rightarrow \{1, 3, 5, \dots, 2q - 1\}$ function is given by $f^*(uv) = f(u) + f(v), \forall uv \in E(G).$

The above labeling pattern tends to give odd sum labeling pattern of a graph G. Hence, the graph $\langle P_n \times P_m, P_r, K2, t$ is an odd sum graph.

Illustration 3: Odd sum labeling of a graph $(P_4 \times P_3, P_4, K_{2,5})$ is shown in Figure 6.

Figure – 6: Odd sum labeling of a graph $\langle P_4 \times P_3, P_4, K_{2,5} \rangle$

 $\begin{array}{l} \text{Theorem 4: Every step grid graph St_n (n \geq 3) is an odd sum graph.} \\ \text{Proof: Consider a step grid graph St_n of size n which is a graph obtained by joining horizontal vertices of successive paths $P_n, P_{n-1}, P_{n-2}, \ldots, \ldots, P_2$ as shown in Figure 7. \\ \text{Here, $V(St_n) = {u_{1,j} : 1 \leq j \leq n} \cup {u_{i,j} : 2 \leq i \leq n; 1 \leq j \leq n + 2 - i}$ and \\ \text{E(St_n) = {u_{1,j}u_{1,j+1} : 1 \leq j \leq n - 1} \cup {u_{i,j}u_{i,j+1} : 2 \leq i \leq n; 1 \leq j \leq n + 1 - i} \cup {u_{1,j}u_{2,j} : 1 \leq j \leq n} \cup {u_{i,j}u_{i+1,j-1} : 2 \leq i \leq n - 1; 2 \leq j \leq n + 2 - i}. \\ \text{Clearly, $q = |E(St_n)| = n^2 + n - 2$.} \\ \text{We define vertex labeling function $f: V(St_n) \rightarrow {0, 1, 2, ..., q}$ as follow: $f(u_{1,1}) = 0$; $f(u_{1,j}) = (i - 1)(2n + 2 - i) - 1, \forall i = 2, 3, ..., n; $f(u_{1,j}) = f(u_{1,j-1}) + 1, \forall j = 2, 3, ..., n; $f(u_{1,j}) = f(u_{1,j-1}) + 1, \forall i = 1, 2, ..., n, \forall j = 2, 3, ..., n + 2 - i. \\ \end{array}$

Figure – 7: Ordinary labeling of a step grid graph St_n

The induced edge labeling function $f^*: E(St_n) \to \{1, 3, 5, ..., 2q - 1\}$ given by $f^*(uv) = f(u) + f(v)$, $\forall uv \in E(St_n)$ with the above vertex labeling pattern shows that the graph St_n is an odd sum graph.

Illustration 4: Odd sum labeling of step grid graph St₅ is shown in Figure 8.

Figure – 8: Odd sum labeling of a step grid graph St₅

$$\begin{split} & \textbf{Theorem 5:} \ A \ graph \ \langle St_{n_1}, P_{r_1}, St_{n_2}, P_{r_2}, St_{n_3}, \dots, St_{n_{t-1}}, P_{r_{t-1}}, St_{n_t} \rangle \ \text{is an odd sum graph.} \\ & \textbf{Proof:} \ \text{Consider step grid graphs } St_{n_1}, St_{n_2}, \dots, \dots, St_{n_t} \ \text{of size } n_1, n_2, \dots, \dots, n_t \ \text{respectively.} \\ & \text{For } k = 1, 2, \dots, \dots, t, \ \text{we have } V(St_{n_k}) = \{v_{k,1,j} : 1 \le j \le n_k\} \cup \{v_{k,i,j} : 2 \le i \le n_k; \ 1 \le j \le n_k + 2 - i\} \ \text{and} \\ & \text{E}(St_{n_k}) = \{v_{k,1,j}v_{k,1,j+1} : 1 \le j \le n_k - 1\} \cup \{v_{k,i,j}v_{k,i,j+1} : 2 \le i \le n_k; \ 1 \le j \le n_k + 1 - i\} \\ & \cup \{v_{k,1,j}v_{k,2,j} : 1 \le j \le n_k\} \cup \{v_{k,i,j}v_{k,i+1,j-1} : 2 \le i \le n_k - 1; \ 2 \le j \le n_k + 2 - i\}. \\ & \text{Clearly, } p_k = |V(St_{n_k})| = \frac{n_k^{2+3n_k-2}}{2} \ \text{and} \ q_k = |E(St_{n_k})| = n_k^{2} + n_k - 2, \ \forall \ k = 1, 2, \dots, \dots, t. \end{split}$$

Let G be a graph as shown in Figure 9 which is obtained by joining each vertex $v_{k,n_k,2}$ of St_{n_k} and a vertex $v_{k+1,1,1}$ of $St_{n_{k+1}}$ by a path P_{r_k} of arbitrary size r_k with $V(P_{r_k}) = \{w_{k,1}, w_{k,2}, \dots, w_{k,r_k}\}$ and $E(P_{r_k}) = \{w_{k,2}, \dots, w_{k,r_k}\}$

$$\begin{split} & G = \langle St_{n_1}, P_{r_1}, St_{n_2}, P_{r_2}, St_{n_3}, \dots, St_{n_{t-1}}, P_{r_{t-1}}, St_{n_t} \rangle \ \text{where each} \ n_k \geq 3 \ \text{and each} \ r_k \geq 2. \ \text{Note that} \ v_{k,n_k,2} = w_{k,1} \ \text{and} \ w_{k,r_k} = v_{k+1,1,1}, \ \forall \ k = 1,2, \dots, t-1. \end{split}$$

 $\textbf{Figure} - \textbf{9:} \text{ Ordinary labeling of the graph } \langle \text{St}_{n_1}, \text{P}_{r_1}, \text{St}_{n_2}, \text{P}_{r_2}, \text{St}_{n_3}, \dots, \text{St}_{n_{t-1}}, \text{P}_{r_{t-1}}, \text{St}_{n_t} \rangle$

Thus, we have
$$V(G) = \left(\bigcup_{k=1}^{t} V(St_{n_k}) \right) \cup \left(\bigcup_{k=1}^{t-1} V(P_{r_k}) \right)$$
, $E(G) = \left(\bigcup_{k=1}^{t} E(St_{n_k}) \right) \cup \left(\bigcup_{k=1}^{t-1} E(P_{r_k}) \right)$,
 $p = |V(G)| = 2(1-t) + \sum_{k=1}^{t} p_k + \sum_{k=1}^{t-1} r_k$ and $q = |E(G)| = (1-t) + \sum_{k=1}^{t} q_k + \sum_{k=1}^{t-1} r_k$.
Now, we define the vertex labeling function f: $V(G) \to \{0, 1, 2, ..., q\}$ as follow:
 $f(v_{1,1,1}) = 0$;
 $f(v_{1,1,1}) = (i-1)(2n_1 + 2 - i) - 1$, $\forall i = 2, 3, ..., n_1$;
 $f(v_{k,1,1}) = (1-k) + \sum_{j=1}^{k-1} q_j + \sum_{j=1}^{k-1} r_j$, $\forall k = 2, 3, ..., t$;
 $f(v_{k,1,1}) = (i-1)(2n_k + 2 - i) - k + \sum_{j=1}^{k-1} q_j + \sum_{j=1}^{k-1} r_j$, $\forall k = 2, 3, ..., t$;
 $f(v_{k,1,j}) = (i-1)(2n_k + 2 - i) - k + \sum_{j=1}^{k-1} q_j + \sum_{j=1}^{k-1} r_j$, $\forall k = 2, 3, ..., t$;
 $f(v_{k,1,j}) = f(v_{k,1,j-1}) + 1$, $\forall k = 1, 2, ..., t$, $\forall j = 2, 3, ..., n_k$;

$$\begin{split} f\big(v_{k,i,j}\big) &= f\big(v_{k,i,j-1}\big) + 1, \forall \ k = 1, 2, \dots, t \ , \forall \ i = 1, 2, \dots, n_k \ \text{and} \ \forall \ j = 2, 3, \dots, n_k + 2 - I \ ; \\ f\big(w_{k,i}\big) &= f\big(v_{k,n_k,2}\big) + (i-1), \forall \ k = 1, 2, \dots, t-1, \ \forall \ i = 2, 3, \dots, n_k - 1. \\ \text{The induced edge labeling function} \ f^*: E(G) \to \{1, 3, 5, \dots, 2q - 1\} \ \text{is given by} \ f^*(uv) = f(u) + f(v), \ \forall \ uv \in I_k \}$$

E(G).

The above labeling pattern shows the odd sum labeling of the graph G. Thus, G is an odd sum graph. Hence, the graph $(St_{n_1}, P_{r_1}, St_{n_2}, P_{r_2}, St_{n_3}, \dots, St_{n_{t-1}}, P_{r_{t-1}}, St_{n_t})$ is an odd sum graph.

Illustration 5: A graph (St₅, P₄, St₄, P₆, St₅, P₃, St₆) with its odd sum labeling is shown in Figure 10.

Figure – 10: Odd sum labeling of a graph $(St_5, P_4, St_4, P_6, St_5, P_3, St_6)$

III. Conclusion

In this paper, we have discussed odd sum labeling of grid graph, path union of grid graphs with different size, graph obtained by joining vertex of a grid graph and a complete bipartite graph K_{2,t} by a path, step grid graph and the graph obtained by joining step grid graphs of different size by arbitrary paths.

References

- [1]. Rosa A. On certain valuation of the vertices of a graph. Theory of Graphs (Rome, July 1966), Gordon and Beach. N.Y. and Paris. 1967: 349-355.
- Gallian JA. A dynamic survey of graph labeling. The Electronic Journal of Combinatorics. 2021; 24: # DS6. [2].
- [3]. Arockiaraj S, Mahalakshmi P. On odd sum graphs. International Journal of Mathematical Combinatorics. 2013; 4: 58-77.
- [4]. Arockiaraj S, Mahalakshmi P, Namasivayam P. Odd sum labeling of some subdivision graphs. Kragujevac Journal of Mathematics. 2014; 38(1): 203-222.

- [5]. Arockiaraj S, Mahalakshmi P, Namasivayam P. Odd sum labeling of graphs obtained by duplicating any edge of some graphs. Electronic Journal of Graph Theory and Applications. 2015; 3(2): 197–215.
- [6]. Gopi R. Odd sum labeling of tree related graphs. International Journal of Mathematics and its Applications. 2016; 4(4): 11–16.
- [7]. Gopi R, Irudaya Mary A. Odd sum labeling of some more graphs. International Journal of Engineering Science, Advanced Computing and Bio-Technology. 2016; 7(4): 95–103.
- [8]. Kaneria VJ, Makadia HM. Graceful labeling for step grid graph. Journal of Advances in Mathematics. 2014; 9(5): 2647–2654.

M. M. Trivedi. "Odd Sum Labeling of Some Grid Graphs." *IOSR Journal of Mathematics* (*IOSR-JM*), 18(3), (2022): pp. 25-33.