On Hardy's Inequality for Several variables: SkewSymmetric Functions

Esameldin Abdalla Sidahmed Yahiya ${ }^{1}$, Zakieldeen Aboabuda Mohamed Alhassn Ali 2 and Mutaz Mohammed Elbagir Eltigani Abdelsalam ${ }^{3}$.
${ }^{1}$ Deanship of the Preparatory Year, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia.
${ }^{2}$ Deanship of the Preparatory Year, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia.
${ }^{3}$ Deanship of the Preparatory Year, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia.

Abstract

In this paper we assume that Hardy's inequality on a Skew-symmetric function. In general, it has much better constants. This enables us they depend on the lowest degree of spherical harmonics Skew-symmetric polynomial. We prove the existence of Hardy inequalities on the class of a Skew-symmetric function. In addition, we find some conditions for specific Schrödinger operators in Skew-symmetric functions that do not have nonpositive eigenvalues. Then we discuss some cases of Caffarelli-Kohn-Nirenberg inequalities and apply our results to spectral properties of Schrödinger operators.

Key Words: Skew-symmetric function, Holder's inequality, Hardy inequality, Caffarelli-Kohn-Nirenberg inequality.

I. Introduction

We consider the different forms of Hardy's inequality and their applications are extensive, which cannot be covered in this paper. We only review paper [4] and Books [8], [9], [10] and [11].

In [14] and [15], Hardy's inequalities and their applications are studied in the spectral theory of Schrödinger's operators when $N=2$.

The inferred inequality in (proposition (2.4) and Corollary (2.7) for $N=2$ are finite cases of Caffarelli-Kohn-Nirenberg inequalities [1], which cannot be adopted without Skew-symmetric conditions.

Additional applications of Hardy's inequalities for Skew-symmetric functions are used to prove the spectral properties of the Schrödinger's operators with decay strength and corresponding estimates are given in [2].

There is a nontrivial inequality [3] because the zero point of the spectrum is not a resonant state of the Schrödinger magnetic operator with the Aharonoff-Bohm magnetic field in the 2-Dimention state in [5]. Also in [5],[6] some spectral inequality of parameters of voltage functions in $L^{1}\left(\mathbb{R}_{+}, L^{\infty}(S), r d r\right)$.

In this paper, we use 2-Dimention Hardy's inequality for Skew-symmetric functions, which allows us to show nonpositve eigenvalues for Schrödinger's operators in [Theorem 3. 2]. These classes were taken to prove the Lieb-Thirring inequality for Schrödinger's operators on Hardy in [23]. In [7; Proposition 4.1] the constant $C_{A}(N)$ depends on the lowest Dirichlet eigenvalue of the Laplace-Beltrami operator, and then we calculated this eigenvalue directly due to the special structure of the Skew-symmetric functions.

Finally, in [12],[13] we show the absence of bound cases in the triplet S-sector for Schrödinger's operators and Some properties of fermionic wave functions.
(1.1) Definition (classical Hardy inequality)

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}|\nabla v|^{2} d x \geq \frac{(N-2)^{2}}{4} \int_{\mathbb{R}^{N}} \frac{|v|^{2}}{|x|^{2}} d x . \tag{1}
\end{equation*}
$$

Where $v \in H^{1}\left(\mathbb{R}^{N}\right)$ and $N \geq 3$.
We consider Definition (1.1) on the class of Skew-symmetric functions $H^{1}\left(\mathbb{R}^{N}\right)$, which we denote by $H_{A}^{1}\left(\mathbb{R}^{N}\right)$. These functions are supposed satisfy the following Skew-symmetric conditions:

$$
\begin{equation*}
v\left(\ldots, x_{i}, \ldots, x_{j}, \ldots\right)=-v\left(\ldots, x_{j}, \ldots, x_{i}, \ldots\right) \tag{2}
\end{equation*}
$$

Where $x=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{N}$.

Obviously $H_{A}^{1}\left(\mathbb{R}^{N}\right) \subset H^{1}\left(\mathbb{R}^{N}\right)$, the constant in (1.1) is expected to be much larger. To show that, for $v \in$ $H_{A}\left(\mathbb{R}^{N}\right)$, we have

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}|\nabla v|^{2} d x \geq C_{A}(N) \int_{\mathbb{R}^{N}} \frac{|v|^{2}}{|x|^{2}} d x, \quad N \geq 2 \tag{3}
\end{equation*}
$$

Where

$$
C_{A}(N)=\frac{(N-2)^{2}}{4}
$$

In [16] and [17] some sharp inequalities were obtained, and it was proved that for $v(x)=-v(-x) \in H^{1}\left(\mathbb{R}^{N}\right)$

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}|\nabla v|^{2} d x \geq \frac{N^{2}}{4} \int_{\mathbb{R}^{N}} \frac{|v|^{2}}{|x|^{2}} d x \tag{4}
\end{equation*}
$$

If $N=2$, the constant corresponds with $C_{A}(N)=1$.
(1.2) Definition (Laplace-Beltrami operator Δ_{θ} on S^{N-1})

The Laplacian in polar coordinates (r, θ) is

$$
-\Delta=-\frac{\partial^{2}}{\partial r^{2}}-\frac{N-1}{r} \frac{\partial}{\partial r}-\frac{1}{r^{2}} \Delta_{\theta}
$$

where $S^{N-1}=\left\{x \in \mathbb{R}^{N}:|x|=1\right\}, \theta=\frac{x}{r}, r=|x|$, and $x \in \mathbb{R}^{N}$.
$P_{M}(x)$ The harmonic homogeneous polynomial of degree M, and its spherical harmonic $Y_{M}=P_{M} / r^{M}$. The Y_{M} spherical harmonics are eigenfunctions of the $-\Delta_{\theta}$:

$$
-\Delta_{\theta} Y_{M}=M(M+N-2) Y_{M}=\lambda_{M, N} Y_{M}
$$

And the polymorphism of the eigenvalue $\lambda_{M, N}$ is

$$
h(M, N)=\binom{N+M-1}{N-1}-\binom{N+M-3}{N-1} .
$$

(1.3) proposition

Assume Ψ be an analytic Skew-symmetric function on \mathbb{R}^{N} and \mathcal{V}_{N} is Vandermonde determinant

$$
\mathcal{V}_{N}=\left|\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \tag{5}\\
x_{1} & x_{2} & x_{3} & \cdots & x_{N} \\
x_{1}^{2} & x_{2}^{2} & x_{3}^{2} & \cdots & x_{N}^{2} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
x_{1}^{N-1} & x_{2}^{N-1} & x_{3}^{N-1} & \cdots & x_{N}^{N-1}
\end{array}\right|
$$

Satisfying condition (1.2), Then ϕ the a symmetric analytic function such that $\Psi=\phi \mathcal{V}_{N}$.

Proof

Since Ψ is Skew-symmetric for $x_{k}=x_{j}$. We have $\Psi(x)=0$. Hence Ψ has the factors $x_{k}-x_{j}$ for all $k=j$. From Properties of analytic Skew-symmetric functions we conclude $\phi(x)$ is symmetric and analytic, Such that:

$$
\phi(x)=\frac{\Psi(x)}{\Pi_{k<j}\left(x_{k}-x_{j}\right)}=\Psi(x)\left(\mathcal{V}_{N}\right)^{-1} .
$$

(1.4) Definition

Let $P_{M(N)} \neq 0$ of degree $M(N)$ such that there is a Skew-symmetric harmonic homogeneous polynomial by $M(N)$ and $N>1$.The \mathcal{V}_{N} defined in (1.5) is such a harmonic polynomial, then

$$
\begin{equation*}
M(N)=\frac{N(N-1)}{2} \tag{6}
\end{equation*}
$$

(1.5)Corollary

The Δ_{θ} defined on Skew-symmetric functions in $L^{2}\left(S^{N-1}\right)$ satisfies the inequality in the quadratic form

$$
-\Delta_{\theta} \geq M(N)=N(N-1) / 2
$$

II. Main results

(2.1)Theorem

Let $N \geq 2$ and $v \in H_{A}^{1}\left(\mathbb{R}^{N}\right)$. Then

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}|\nabla v|^{2} d x \geq C_{A}(N) \int_{\mathbb{R}^{N}} \frac{|v|^{2}}{|x|^{2}} d x \tag{7}
\end{equation*}
$$

Where

$$
\begin{equation*}
C_{A}(N)=\frac{\left(N^{2}-2\right)^{2}}{4} \tag{8}
\end{equation*}
$$

Proof

Let $x=(r, \theta), r \in(0, \infty)$, and $\theta \in S^{N-1}$.Then

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}|\nabla v|^{2} d x=\int_{0}^{\infty} \int_{s^{N-1}}\left(\left|\frac{\partial v}{\partial r}\right|^{2}+\frac{1}{r^{2}}\left|\Delta_{\theta} v\right|^{2}\right) r^{N-1} d \theta d r \tag{9}
\end{equation*}
$$

Suppose $\mathfrak{U} \equiv$ orthogonal of spherical harmonic functions and $\mathfrak{U}_{A} \subset \mathfrak{U}$, for any $v \in H_{A}^{1}\left(\mathbb{R}^{N}\right)$, then

$$
\begin{equation*}
v(r, \theta)=\sum_{k: Y_{k} \in \mathfrak{U}_{A}} v_{k}(r) Y_{k}(\theta) . \tag{10}
\end{equation*}
$$

Where
\mathfrak{U}_{A} be the orthogonal subset of \mathfrak{U} skew-symmetric functions. We use $M(N)=\min \left\{k: Y_{k} \in \mathfrak{U}_{A}\right\}$ and

$$
\lambda_{M, N}=M(N)(M(N)+N-2)=\frac{N(N-1)\left(N^{2}+N-4\right)}{4}
$$

Then

$$
\begin{align*}
& \int_{s^{N-1}}\left|\nabla_{\theta} v(r, \theta)\right|^{2} d \theta=\sum_{k=M(N)}^{\infty} \lambda_{k}\left|v_{k}(r)\right|^{2} \\
& \geq \lambda_{M, N} \sum_{k=M(N)}^{\infty}\left|v_{k}(r)\right|^{2}=\lambda_{M, N} \int_{S^{N-1}}|v(r, \theta)|^{2} d \theta \tag{11}
\end{align*}
$$

From the inequality (1) we find:

$$
\begin{equation*}
\int_{0}^{\infty}\left(\left|\frac{\partial v}{\partial r}\right|^{2}\right) r^{N-1} d r \geq \frac{(N-2)^{2}}{4} \int_{0}^{\infty} \frac{|v|^{2}}{r^{2}} r^{N-1} d r \tag{12}
\end{equation*}
$$

Substituting (11) and (12) into (9), finally we get

$$
\begin{gathered}
\int_{\mathbb{R}^{N}}|\nabla v|^{2} d x \geq \int_{0}^{\infty} \int_{S^{N-1}}\left(\left|\frac{\partial v}{\partial r}\right|^{2}+\frac{\lambda_{M, N}}{r^{2}}\left|\Delta_{\theta} v\right|^{2}\right) r^{N-1} d \theta d r \\
\geq C_{A}(N) \int_{\mathbb{R}^{N}} \frac{|v|^{2}}{|x|^{2}} d x .
\end{gathered}
$$

(2.2)Proposition

The Inequality

$$
\int_{\mathbb{R}^{N}}|\nabla v|^{2} d x \geq C_{A}(N) \int_{\mathbb{R}^{N}} \frac{|v|^{2}}{|x|^{2}} d x
$$

is sharp.

Proof

Let $v_{0}(x)=\phi(r) Y_{M(N)}(\theta)$.
Replacing this function with formula (10), we get

$$
\int_{\mathbb{R}^{N}}\left|\nabla v_{0}\right|^{2} d x \geq \int_{0}^{\infty} \int_{S^{N-1}}\left(\left|\frac{\partial \phi}{\partial r}\right|^{2}\left|Y_{M(N)}\right|^{2}+\frac{1}{r^{2}}|\phi|^{2}\left|\Delta_{\theta} Y_{M(N)}\right|^{2}\right) r^{N-1} d \theta d r
$$

It is known that inequality

$$
\begin{equation*}
\int_{0}^{\infty}\left(\left|\frac{\partial \phi}{\partial r}\right|^{2}\right) r^{N-1} d r \geq \frac{(N-2)^{2}}{4} \int_{0}^{\infty} \frac{|\phi|^{2}}{r^{2}} r^{N-1} d r \tag{13}
\end{equation*}
$$

is sharp. Then

$$
\begin{equation*}
\int_{S^{N-1}} \frac{1}{r^{2}}\left|\Delta_{\theta} Y_{M(N)}\right|^{2}=\lambda_{M, N} \int_{S^{N-1}} \frac{1}{r^{2}}\left|\Delta_{\theta} Y_{M(N)}\right|^{2} \tag{14}
\end{equation*}
$$

Combining (13) and (14), we complete the proof.
(2.3) Definition (classical Sobolev inequality)

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{N}}|v|^{2 \mathrm{~N} /(\mathrm{N}-2)} d x\right)^{(\mathrm{N}-2) / \mathrm{N}} \leq S_{N} \int_{\mathbb{R}^{N}}|\nabla v|^{2} d x \tag{15}
\end{equation*}
$$

Where $N \geq 3$ and S_{N} is sharp in [18] ,[19].

$$
\begin{equation*}
S_{N}=\frac{N(N-2)}{4}\left|S_{N}\right|^{2 / N}=\frac{N(N-2)}{4} 2^{2 / N} \pi^{1+1 / N} \Gamma\left(\frac{N+1}{2}\right)^{-2 / N} \tag{16}
\end{equation*}
$$

(2.4)Proposition (Caffarelli-Kohn-Nirenberg inequalities)

Case 1: $N \geq 3$, we let

$$
\alpha=\frac{2 N}{N-2 \vartheta}, \quad \beta=2 N \frac{\vartheta-1}{N-2 \vartheta}, \quad 0 \leq \vartheta \leq 1,
$$

Then

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{N}}|x|^{\beta}|v|^{\alpha} d x\right)^{2 / \alpha} \leq C_{N, \vartheta}\left(\int_{\mathbb{R}^{N}}|\nabla v|^{2} d x\right)^{\vartheta}\left(\int_{\mathbb{R}^{N}} \frac{|v|^{2}}{|x|^{2}} d x\right)^{1-\vartheta} \tag{17}
\end{equation*}
$$

For any skew-symmetric function $v \in H^{1}\left(\mathbb{R}^{N}\right)$, where

$$
\begin{equation*}
C_{N, \vartheta} \leq S_{N}^{\vartheta} . \tag{18}
\end{equation*}
$$

Proof

Applying (15) and Hölder's inequalities, we get

$$
\begin{aligned}
\left(\int_{\mathbb{R}^{N}}|x|^{\beta}|v|^{\alpha} d x\right)^{2 / \alpha} & =\left(\int_{\mathbb{R}^{N}}|v|^{\alpha \vartheta}\left(\frac{|v|^{2}}{|x|^{2}}\right)^{\alpha(1-\vartheta)} d x\right)^{2 / \alpha} \\
& \leq\left(\int_{\mathbb{R}^{N}}|v|^{\frac{2 \mathrm{~N}}{\mathrm{~N}-2}} d x\right)^{\frac{\vartheta(\mathrm{N}-2)}{\mathrm{N}}}\left(\int_{\mathbb{R}^{N}} \frac{|v|^{2}}{|x|^{2}} d x\right)^{1-\vartheta} \\
& \leq S_{N}^{\vartheta}\left(\int_{\mathbb{R}^{N}}|\nabla v|^{2} d x\right)^{\vartheta}\left(\int_{\mathbb{R}^{N}} \frac{|v|^{2}}{|x|^{2}} d x\right)^{1-\vartheta}
\end{aligned}
$$

We complete the proof.

(2.5)Proposition (Caffarelli-Kohn- Nirenberg inequalities)

Case 2: $N=2$
Then there exists $C_{2, \vartheta}>0$, for any $0 \leq \vartheta<1$ and $v \in H_{A}^{1}\left(\mathbb{R}^{2}\right)$,

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{2}} \frac{|v|^{2 /(1-\vartheta)}}{|x|^{2}} d x\right)^{1-\vartheta} \leq C_{N, \vartheta}\left(\int_{\mathbb{R}^{2}}|\nabla v|^{2} d x\right)^{\vartheta}\left(\int_{\mathbb{R}^{2}} \frac{|v|^{2}}{|x|^{2}} d x\right)^{1-\vartheta} \tag{19}
\end{equation*}
$$

Proof

Let

$$
\bar{v}=\int_{B_{\rho}} v d x
$$

Where $B_{\rho}=\{0 \leq|x| \leq \rho, \rho>0\}$, For any skew-symmetric function $v \in H_{A}^{1}\left(\mathbb{R}^{2}\right)$, then by using the inequality in ([20], [22], [21], [11]) with $\alpha=\frac{2}{1-\vartheta}$, we get

$$
\begin{array}{r}
\int_{B_{\rho}}|v|^{\alpha} d x C_{N, \vartheta} \leq C\left(\int_{B_{\rho}}|\nabla v|^{2} d x\right)^{\vartheta \alpha / 2}\left(\int_{B_{\rho}}|v|^{2} d x\right)^{(1-\vartheta) \alpha / 2} \\
\leq C\left(\int_{\mathbb{R}^{2}}|\nabla v|^{2} d x\right)^{\vartheta \alpha / 2} \int_{B_{\rho}}|v|^{2} d x \tag{20}
\end{array}
$$

Multiply (20) by ρ^{-3}, since (20) is independent of the disc B_{ρ} with radius ρ, and using the identities

$$
\begin{aligned}
& \int_{0}^{\infty} \rho^{-3} \int_{|x| \leq \rho}|v|^{\alpha} d x d \rho=\frac{1}{2} \int_{\mathbb{R}^{2}} \frac{|v|^{\rho}}{|x|^{2}} d x, \\
& \int_{0}^{\infty} \rho^{-3} \int_{|x| \leq \rho}|v|^{2} d x d \rho=\frac{1}{2} \int_{\mathbb{R}^{2}} \frac{|v|^{2}}{|x|^{2}} d x,
\end{aligned}
$$

Finally we integrate with respect to ρ over $(0, \infty)$. We get

$$
\int_{\mathbb{R}^{2}} \frac{|v|^{\rho}}{|x|^{2}} d x \leq C \leq C\left(\int_{\mathbb{R}^{2}}|\nabla v|^{2} d x\right)^{\vartheta \alpha / 2} \int_{\mathbb{R}^{2}} \frac{|v|^{2}}{|x|^{2}} d x
$$

Combining (2.4) and (2.1), we obtain the following corollary
(2.6) Corollary

$$
\text { If } \alpha=\frac{2 N}{N-2 \vartheta}, \quad \beta=2 N \frac{\vartheta-1}{N-2 \vartheta}, \quad 0 \leq \vartheta \leq 1 \text { and } N \geq 3
$$

For any skew-symmetric function $v \in H_{A}^{1}\left(\mathbb{R}^{N}\right)$, Then

$$
\begin{equation*}
\frac{C_{A}(N)^{1-\vartheta}}{C_{N, \vartheta}}\left(\int_{\mathbb{R}^{N}}|x|^{\beta}|v|^{\alpha} d x\right)^{2 / \alpha} \leq C_{N, \vartheta}\left(\int_{\mathbb{R}^{N}}|\nabla v|^{2} d x\right)^{\vartheta}\left(\int_{\mathbb{R}^{N}} \frac{|v|^{2}}{|x|^{2}} d x\right)^{1-\vartheta} \tag{21}
\end{equation*}
$$

(2.7) Corollary

If $C_{A}(2)=1, \alpha=\frac{2}{1-\vartheta}, 0 \leq \vartheta<1$, and applying Proposition(2.5), we obtain

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{2}} \frac{|v|^{2 /(1-\vartheta)}}{|x|^{2}} d x\right)^{1-\vartheta} \leq C_{2, \vartheta} \int_{\mathbb{R}^{2}}|\nabla v|^{2} d x \tag{22}
\end{equation*}
$$

For any skew-symmetric function $v \in H_{A}^{1}\left(\mathbb{R}^{2}\right)$.

III. Applications to Spectral Properties of Schrödinger's Operators

(3.1) Definition (Schrödinger's Operator)

$$
H=-\Delta-V, \quad V \geq 0,
$$

On $L^{2}\left(\mathbb{R}^{N}\right)$ and its quadratic form

$$
\begin{equation*}
(H v, v)=\int_{\mathbb{R}^{N}}\left(|\nabla v|^{2}-V|v|^{2}\right) d x . \tag{23}
\end{equation*}
$$

(3.2) Theorem

Assume that α and ϑ satisfy the assumptions of Corollaries (2.6) and (2.7) if $\mathrm{N} \geq 3$ and $\mathrm{N}=2$ respectively. Let

$$
\frac{C_{A}(N)^{1-\vartheta}}{C_{N, \vartheta}}\left(\int_{\mathbb{R}^{N}} V^{N /(2 \vartheta)}|x|^{(1-\vartheta) N /(2 \vartheta)} d x\right)^{N /(2 \vartheta)} \leq 1
$$

Then

$$
\begin{equation*}
H=-\Delta-V \geq 0, \quad \text { is positive } . \tag{24}
\end{equation*}
$$

If $N=2$, then (24) provided that

$$
C_{2, \vartheta}\left(\int_{\mathbb{R}^{2}} V^{1 / \vartheta}|x|^{(1-\vartheta) / \vartheta} d x\right)^{\vartheta} \leq 1
$$

Proof

we use Holder's inequality, we find

$$
\begin{gathered}
\int_{\mathbb{R}^{N}} V|v|^{2} d x=\int_{\mathbb{R}^{N}} V|x|^{\alpha}|v|^{2}|x|^{-\alpha} d x \\
\leq\left(\int_{\mathbb{R}^{N}} V^{q}|x|^{\alpha q} d x\right)^{1 / q}\left(\int_{\mathbb{R}^{N}}|x|^{-\alpha p} V|v|^{p} d x\right)^{2 / p}
\end{gathered}
$$

Where $1 / q+2 / p=1$, then

$$
\frac{1}{q}=1-2 \frac{N-2 \vartheta}{2 N}=\frac{2 \vartheta}{N} .
$$

Choosing

$$
\alpha=-\frac{\gamma}{p}=-2 N \frac{\vartheta-1}{N-2 \vartheta} \frac{N-2 \vartheta}{2 N}=1-\vartheta,
$$

we have

$$
\alpha q=(1-\vartheta) \frac{N}{2 \vartheta} .
$$

Using Corollary (2.6), we obtain

$$
\int_{\mathbb{R}^{N}}\left(|\nabla v|^{2}-V|v|^{2}\right) d x \geq
$$

$$
\left(1-\frac{C_{A}(N)^{1-\vartheta}}{C_{N, \vartheta}}\left(\int_{\mathbb{R}^{N}} V^{N /(2 \vartheta)}|x|^{(1-\vartheta) N /(2 \vartheta)} d x\right)^{N /(2 \vartheta)}\right) \int_{\mathbb{R}^{N}} V|v|^{2} d x \geq 0
$$

Acknowledgments

The authors would like to thanks the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia for the assistance.

References

[1]. L. Caffarelli, R. Kohn, and L. Nirenberg, "First order interpolation inequalities with weights", Compositio Math., 53:3 (1984), 259275.
[2]. Yu. V. Egorov and V. A. Kondrat_ev, On Spectral Theory of Elliptic Operators, Operator Theory: Advances and Applications, no. 89, Birkh"auser, Basel, 1996.
[3]. A. Laptev and T. Weidl, "Hardy Inequalities for Magnetic Dirichlet Forms", Operator Theory: Advances and Applications, no. 108, Birkh"auser, Basel, 1999, pp. 299-305.
[4]. M. Sh. Birman, "On the spectrum of singular boundary-value problems", Mat. Sb., 55(97):2 (1961), 125-174; English transl.: Amer. Math. Soc. Trans., 53 (1966), 23-80.
[5]. A. A. Balinsky, W. D. Evans, and R. T. Lewis, "On the number of negative eigenvalues of Schr"odinger operators with an Aharonov-Bohm magnetic field", Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 457:2014 (2001), 2481-2489.
[6]. A. Laptev and Yu. Netrusov, "On the negative eigenvalues of a class of Schr"odinger operators", Differential Operators and Spectral Theory, Amer. Math. Soc. Transl. Ser. 2, no. 189, Amer. Math. Soc., Providence, RI, 1999, pp. 173-186.
[7]. A. I. Nazarov, "Hardy-Sobolev inequalities in a cone", J. Math. Sci., 132:4 (2006), 419-427.
[8]. A. A. Balinsky, W. D. Evans, and R. T. Lewis, The Analysis and Geometry of Hardy's Inequality, Universitext, Springer, Cham, 2015
[9]. E. B. Davies, Heat Kernels and Spectral Theory, Cambridge University Press, Cambridge, 1989.
[10]. E. B. Davies, Spectral Theory and Differential Operators, Cambridge University Press, Cambridge, 1995.128
[11]. V. Maz_ya, Sobolev Spaces, Springer-Verlag, Berlin-Heidelberg-New York Tokyo, 1985.
[12]. M. Hoffmann-Ostenhof and Th. Hoffmann-Ostenhof, "Absence of an L^{2}-eigenfunction at the bottom of the spectrum of the Hamiltonian of the hydrogen negative ion in the triplet S-sector", J. Phys. A, 17 (1984), 3321-3325.
[13]. M. Hoffmann-Ostenhof, Th. Hoffmann-Ostenhof, and H. Stremnitzer, "Local properties of Coulombic wave functions", Comm. Math. Phys., 163:1 (1994), 185-213.
[14]. M. Z. Solomyak, "A remark on the Hardy inequalities", Integral Equations Operator Theory, 19:1 (1994), 120-124.
[15]. M. Z. Solomyak, "Piecewise-polynomial approximation of functions from $H^{l}\left((0,1)^{d}\right), 2 l=d$, and applications to the spectral theory of the Schrödinger operator", Israel J. Math., 86:1-3 (1994), 253-275.
[16]. M. Hoffmann-Ostenhof, Th. Hoffmann-Ostenhof, A. Laptev, and J. Tidblom, "Many-particle Hardy inequalities", J. Lond. Math. Soc. (2), 77:1 (2008), 99-114.
[17]. D. Lundholm, "Geometric extensions of many-particle Hardy inequalities", J. Phys. A: Math. Theor., 48:17 (2015), 175203.
[18]. G. Talenti, "Best constant in Sobolev inequality", Ann. Mat. Pura ed Appl., 110 (1976), 353-372.
[19]. E. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, no. 14, Amer. Math. Soc., Providence, RI, 2001.
[20]. E. Gagliardo, "Ulteriori propriet'a di alcune classi di funzioni in pi`u variabili", Ricerche Mat., 8 (1959), 24-51.
[21]. G. Lioni, A First Course in Sobolev Spaces, Graduate Studies in Mathematics, no. 181, Amer.Math. Soc., Providence, RI, 2017.
[22]. L. Nirenberg, "On elliptic partial differential equations", Ann. Squola Norm. Sup. Pisa Cl. Sci., 13 (1959), 115-162.
[23]. T. Ekholm and R. Frank, "On Lieb-Thirring inequalities for Schrödinger operators with virtual level", Comm. Math. Phys., 264:3 (2006), 725-740.

