Strongly 2-Nil Clean Fuzzy Rings

Muhammad Reza Maulana^{*}, Noor Hidayat, Abdul Rouf Alghofari

Department of Mathematics, University of Brawijaya, Indonesia

Abstract:

Based on the definition of a strongly 2-nil clean ring and the concept of fuzzy subring, we introduce a new structure that is a strongly 2-nil clean fuzzy ring. Some of characteristics of a strongly 2-nil clean fuzzy ring are as follows: (i) If R is a strongly 2-nil clean fuzzy ring then $\mu(1-x)=\mu((p-q)+g)$ for two idempotent elements p,q and a nilpotent element g; (ii) $\mu(x-x^3)=\mu(z)$ for a nilpotent element z; (iii) $\mu(1-x-t)=\mu(g)$ for a tripotent element t and a nilpotent element g; (iv) $\mu_{-}t$ is a subring on R for $t \in [0,\mu(0)]$. **Key Word:** Ring; Strongly 2-nil clean ring; Fuzzy subring.

Date of Submission: 03-06-2022 Date of Acce

Date of Acceptance: 17-06-2022

I. Introduction

An element of a ring with a unit element is said to be clean if it can be written as the sum of an idempotent element and a unit element. A ring is called as a clean ring if every element of it is clean [6]. If *R* is a clean ring and commutative then *R* is called as a strongly clean ring [7]. If each element of a ring *R* can be written as the sum of idempotent and nilpotent elements, then R is called as a nil clean rings [2]. Furthermore, if a nil clean ring *R* is commutative then it is called a strongly nil clean ring [3]. The structure (strongly) nil clean rings has attracted a lot of attention. For example, Ying et al. [9] have discussed about a strong sum of idempotent and tripotent that commute. Chen and Sheibani [1] have introduced the strongly 2-nil clean rings including their related concepts. A ring is said to be strongly 2-nil clean ring if each element of the ring can be written as the sum of two idempotent elements and nilpotent elements that commute [1]. One of important properties is that *R* is strongly 2-nil clean rings if and only if every $a \in R$, then there are two idempotents elements $w \in R$ that commute such that a = e - f + w.

In 1965, Zadeh [10] developed the concept of fuzzy sets. A fuzzy set on a set X is defined as a mapping from domain X into codomain [0,1]. The theory of fuzzy sets has evolved in many directions since its inception, and it now has applications in a wide range of domains. This concept was exploited by Rosenfeld [8] to construct the fuzzy subgroup theory. In 1982, Liu [4] proposed the fuzzy ring concept.

In this paper, we combine the concept of strongly 2-nil clean and fuzzy rings to develop a new structure, namely strongly 2-nil clean fuzzy rings. Some properties of strongly 2-nil clean fuzzy rings will also be derived.

II. Preliminaries

Before discussing the main results, we present some important properties of strongly 2-nil clean rings and fuzzy rings. The proof can be found in the given references.

Strongly 2-nil clean rings

Lemma 1. [9] Let $a \in R$. If $a^2 - a$ is nilpotent, then there exists a monic polynomial $\theta(t) \in \mathbb{Z}[t]$ such that $\theta(a)^2 = \theta(a)$ and $a - \theta(a)$ is nilpotent.

Lemma 2. [1] Let *R* be a ring. Then the following statement are equivalent:

- 1) *R* is strongly 2-nil clean
- 2) For any $a \in R$, there exist two idempotents $c, d \in R$ and nilpotent $w \in R$ that commute such that a = c d + w.

Theorem 1. [1] Let *R* be a ring. Then the following are equivalent:

- 1) *R* is strongly 2-nil clean
- 2) For all $a \in R$, $a a^3 \in N(R)$
- 3) For all $a \in R$, $a^2 \in R$ is strongly 2-nil clean.

Theorem 2. [1] Let *R* be a ring. Then the following are equivalent

- 1) *R* is strongly 2-nil clean
- 2) For any $a \in R$, there exists a tripotent $c \in R$ such that $a c \in R$ is nilpotent and ca = ac.

Theorem 3. [1] A ring *R* is strongly nil clean if and only if

- 1) $2 \in R$ is nilpotent
- 2) *R* is strongly 2-nil clean.

Fuzzy Subring

In the following part, we provide some concepts of fuzzy subring.

- **Theorem 4.** [5] Let μ be a fuzzy subset of R. Then μ is a fuzzy subring of R if and only if μ_t is a subring of R, for each $t \in [0, \mu(0)]$.
- **Theorem 5.** [5] Let *R* be a ring with identity, and let μ be a fuzzy subset of *R*. If μ is a fuzzy subring of *R*, then F(R) a ring.
- **Proposition 1.** [5] Let *R* be a commutative ring. Let μ and ν to be two fuzzy subrings of *R* such that $\mu \subset \nu$. Then $F_{\mu}(R)$ is a subring of $F_{\nu}(R)$.

III. Main Results

Definition 1. Let *R* be a ring with identity element 1, Id(R) is the idempotent element set in *R* and U(R) is the unit element set of *R*. A fuzzy ring μ of *R* is clean fuzzy rings if any $x, y \in R$ satisfies

- a) $\mu(x) \ge \min\{\mu(p), \mu(q)\}$ for each $p \in Id(R), q \in U(R)$.
- b) $\mu(x+y) \ge \min\{\mu(p_1+q_1), \mu(p_2+q_2)\}$ for each $p_1, p_2 \in Id(R), q_1, q_2 \in U(R)$.
- c) $\mu(-x) = \mu(-(p+q)) = \mu(p+q)$ for each $p \in Id(R), q \in U(R)$.
- d) $\mu(xy) \ge \min(\mu(p_1 + p_2) \cdot \mu(q_1 + q_2))$ for each $p_1, p_2 \in Id(R), q_1, q_2 \in U(R)$.

Lemma 3. If *R* is a clean ring with identity element 1, Id(R) is the idempotent element set of *R* and U(R) is the unit element set of *R*, then fuzzy ring μ of *R* is a clean fuzzy rings of *R*.

Proof. Let $x, y \in R$. Since R is a clean ring, then there are elements $p_1, p_2 \in Id(R), q_1, q_2 \in U(R)$, such that $x = p_1 + q_1, y = p_2 + q_2$, and thus

- a) $\mu(x) = \mu(p_1 + q_1) \ge \min\{\mu(p_1), \mu(q_1)\}.$
- b) $\mu(xy) = \mu(p_1 + q_1)(p_2 + q_2) \ge \min\{\mu(p_1 + q_1), \mu(p_2 + q_2)\} = \min\{\mu(x), \mu(y)\}.$
- c) $\mu(-x) = \mu(-(p_1 + q_1)) = \mu(p_1 + q_1) = \mu(x).$

Definition 2. Let *R* be a ring, Id(R) is the idempotent element set in *R* and N(R) is the nilpotent element set in *R*. A fuzzy ring μ in *R* is a nil clean fuzzy ring if each $x, y \in R$ satisfies

- a) $\mu(x) \ge \min\{\mu(p), \mu(q)\}$ for each $p \in Id(R), q \in N(R)$.
- b) $\mu(x + y) \ge \min\{\mu(p_1 + q_1), \mu(p_2 + q_2)\}$ for each $p_1, p_2 \in Id(R), q_1, q_2 \in N(R)$.
- c) $\mu(-x) = \mu(-(p+q)) = \mu(p+q)$ for each $p \in Id(R), q \in N(R)$.
- d) $\mu(xy) \ge \min\{\mu(p+q) \cdot \mu(r+s)\}$ for each $p, r \in Id(R), q, s \in N(R)$.

Lemma 4. If *R* is a nil clean ring with idempotent element set Id(R) and nilpotent element set N(R), then fuzzy ring μ in *R* is a nil clean fuzzy ring in *R*.

Proof. Let $x, y \in R$. Because R is a nil clean ring, then there exist $p_1, p_2 \in Id(R), q_1, q_2 \in N(R)$, such that $x = p_1 + q_1, y = p_2 + q_2$. Hence, we obtain

- a) $\mu(x) = \mu(p_1 + q_1) \ge \min\{\mu(p_1), \mu(q_1)\}$
- b) $\mu(xy) = \mu((p_1 + q_1)(p_2 + q_2)) \ge \min\{\mu(p_1 + q_1), \mu(p_2 + q_2)\} = \min\{\mu(x), \mu(y)\}$
- c) $\mu(-x) = \mu(-(p_1 + q_1)) = \mu(p_1 + q_1) = \mu(x).$

Proposition 2. Let *R* be a ring with identity element 1, Id(R) is the idempotent element set in *R*, N(R) is the nilpotent element set in *R*, and U(R) is the unit element set in *R*. If μ is a nil clean fuzzy ring on *R*, then μ is a clean fuzzy ring of *R*.

Proof. Let $x \in R$. Since μ is a clean fuzzy ring then $\mu(x) = \mu(p_1 + q_1) \ge \min\{\mu(p_1), \mu(q_1)\}$ for any $p_1 \in Id(R), q_1 \in N(R)$. Since $q_1 \in N(R)$, there is $n \in \mathbb{Z}^+$ so that $q_1^n = 0$.

Definition 3. Let *R* be a ring and its idempotent element set and nilpotent element set are respectively denoted by Id(R) and N(R). A fuzzy ring μ in *R* is called a strongly nil clean fuzzy ring if any $x, y \in R$ satisfies

- a) $\mu(x) \ge \min\{\mu(p), \mu(q)\}$ and $\mu(pq) = \mu(qp)$ for each $p \in Id(R), q \in N(R)$
- b) $\mu(x+y) \ge \min\{\mu(p_1+q_1), \mu(p_2+q_2)\}$ and $\mu(p_1q_1) = \mu(q_1p_1), \mu(p_2,q_2) = \mu(q_2p_2)$ for each $p_1, p_2 \in Id(R), q_1, q_2 \in N(R).$
- c) $\mu(-x) = \mu(-(p+q)) = \mu(p+q) = \mu(pq) = \mu(qp)$ for each $p \in Id(R), q \in N(R)$.

Lemma 5. If *R* is a strongly nil clean ring, Id(R) is the idempotent element set in *R* and N(R) is the nilpotent element set in *R*, then a fuzzy ring μ in *R* is a strongly nil clean fuzzy ring on *R*.

Proof. Since *R* is a strongly nil clean ring, every $x \in R$ can be expressed in terms x = a + b, with $a \in Id(R)$ and $b \in N(R)$ that commute. A fuzzy ring μ on *R* must satisfy

- a) $\mu(x y) \ge \min\{\mu(x), \mu(y)\} \forall x, y \in R$
- b) $\mu(xy) \ge \min\{\mu(x), \mu(y)\} \forall x, y \in R$

c)
$$\mu(1) = 1$$

and $x, y \in R$ can be expressed in terms of x = a + b and y = c + d for $a, c \in Id(R)$ and $b, d \in N(R)$. Thus, a fuzzy ring μ in R is a strongly nil clean fuzzy ring.

Definition 4. Let *R* be a ring, Id(R) is the idempotent element set in *R*, N(R) is the nilpotent element set in *R*. A fuzzy ring on *R* is called a strongly 2-nil clean fuzzy ring if each $x, y \in R$ satisfies:

- a) $\mu(x) \ge \min\{\mu(p), \mu(q), \mu(g)\}$ for each $p, q \in Id(R), g \in N(R)$.
- b) $\mu(x+y) \ge \min\{\mu((p+q)+g), \mu((r+s)+h)\}\$ for each $p, q, g \in Id(R), r, s, h \in N(R).$
- c) $\mu(-x) = \mu(-((p+q)+g)) = \mu((p+q)+g) = \mu(x)$ for each $p, q \in Id(R), g \in N(R)$
- d) $\mu(xy) \ge \min\{\mu((p+q)+g) \cdot \mu((r+s)+h)\}$ for each $p, q, r, s \in Id(R), g, h \in N(R)$.

Lemma 6. If *R* is a strongly 2-nil clean fuzzy ring with identity element and Id(R) is the idempotent element set in *R*. If μ is a fuzzy subring, then μ is a strongly 2-nil clean fuzzy ring.

Proof. Let $x, y \in R$. Then it can be shown that

a) $\mu(x) = \mu((p+q) + g) \ge \min\{\mu(p), \mu(q), \mu(g)\} \in R$

b)
$$\mu(x+y) = \mu[((p+q)+g) + ((r+s)+h)] \ge \min\{\mu((p+q)+g), \mu((r+s)+h)\}$$

- c) $\mu(-x) = \mu(-((p+q)+g)) = \mu((p+q)+g) = \mu(x), \forall x \in R$
- d) $\mu(xy) = \mu[((p+q)+g)((r+s)+h)] \ge \min\{\mu((p+q)+g),\mu((r+s)+h)\}.$

Lemma 7. If *R* is a strongly 2-nil clean fuzzy ring then for each $x \in R$, it holds that

$$\mu(1-x) = \mu\bigl((p-q) + g\bigr)$$

for idempotent $p, q \in R$ and nilpotent element $g \in R$.

Proof. Let $x \in R$. Because $x \in R$, x can be expressed in the form x = s + q + g for idempotent elements s, q and nilpotent element g. Next we show that if s is an idempotent element, then 1 - s is also an idempotent element:

$$(1-s)^2 = (1-s)(1-s)$$

= 1-2s+s²
= 1-2s+s

= 1 - s.

Let $1 - s = p, q \in R$ is an idempotent element and $g \in R$ is a nilpotent element. Then we have that

$$x = (s + q) + g$$

$$1 - x = 1 - ((s + q) + g)$$

$$1 - x = (1 - s) - q - g$$

$$1 - x = p - q - g$$

$$1 - x = p - q + g$$

$$\mu(1 - x) = \mu((p - q) + g).$$

Theorem 6. If *R* is a strongly 2-nil clean fuzzy ring, then for each $x \in R$, it holds that $\mu(x - x^3) = \mu(z)$, where $z \in N(R)$.

Proof. Let $x \in R$. Since *R* is a strongly 2-nil clean fuzzy ring, Lemma 3 says that there exist two idempotent elements *p*, *q* and nilpotent elements *g* that commute. Furthermore, we also have that $\mu(1 - x) = \mu((p - q) + g$. Let y = p - q, then we have $\mu 1 - x = \mu y + g$. By noting pq = qp, it holds that

$$y^{3} = (p - q)^{3}$$

= $(p - q)^{2}(p - q)$
= $(p - 2pq + q)(p - q)$
= $p^{2} - pq - 2p^{2}q + pq - q^{2}$
= $p - pq - 2pq + 2pq + pq - q$
= $p - q$
= y .

So, $\mu(x - x^3) = \mu[(y + g) - (y + g)^3]$, where $(y + g) - (y + g)^3 = z \in N(R)$.

Theorem 7. If *R* is a strongly 2-nil clean fuzzy ring then for each $x \in R$, there exists tripotent $t \in R$ such that $\mu(1 - x - t) = \mu(g)$ with $g \in N(R)$.

Proof. Let $x \in R$ with $p, q \in Id(R)$ and $g \in N(R)$. Due to R is a strongly 2-nil clean fuzzy ring, we have $\mu(1-x) = \mu((p-q)+g)$. For t = p - q, it can be shown that

$$t^{3} = (p - q)^{3}$$

= $(p - q)(p^{2} - 2pq + q^{2})$
= $(p - q)(p - 2pq + q^{2})$
= $p^{2} - 2p^{2}q + pq - pq + 2pq^{2} - q^{2}$
= $p^{2} - 2pq + pq - pq + 2pq - q^{2}$
= $p - q$
= t .

So, t is a tripotent and we can show that $\mu(1-x) = \mu((p-q)+g) = \mu(t-g)$. Furthermore, we also have $\mu(1-x-t) = \mu(t+g-t) = \mu(g)$, where $g \in N(R)$.

Theorem 8. If is a *R* strongly 2-nil clean fuzzy ring with membership function μ , then μ_t is a subring on *R* for each $t \in [0, \mu(0)]$.

Proof. $\mu_t = \{x \in R, \mu(x) \ge t\}$ is not an empty set on *R* because there is t = 0 so that $\mu(0) \ge 0$. Let $x, y \in \mu_t$, then x, y can be expressed in term of the sum of two idempotent elements and a nilpotent element and $\mu(x) \ge t$ and $\mu(y) \ge t$. Since μ is a fuzzy subring on *R*, we get $\mu(x - y) \ge \min\{\mu(x), \mu(y)\}$. It leads to

a) $\mu(x-y) \ge t$, that $x - y \in \mu_t$

b)
$$\mu(xy) \ge \min\{\mu(x), \mu(y)\}$$
 that $\mu(xy) \ge t$ and $xy \in \mu_t$

So μ_t is a subring on *R*.

References

- [1]. Chen H, Sheibani M. Strongly 2-nil clean rings. Journal of Algebra and Its Applications. 2017;16(9): 1750178.
- [2]. Diesl AJ. Nil clean rings. Journal of Algebra. 2013;383: 197-211.
- [3]. Koşan T, Wang Z, Zhou Y. Nil-clean and strongly nil-clean rings. Journal of Pure and Applied Algebra. 2016;220(2):633-646.
- [4]. Liu WJ. Fuzzy invariant subgroups and fuzzy ideals. Fuzzy Sets and Systems. 1981;8:133-139.
- [5]. Melliani S, Backhadach I, Chadli LS. Fuzzy rings and fuzzy polynomial rings. Springer Proceedings in Mathematics & Statistics. 2018;228: 89-98.
- [6]. Nicholson WK. Lifting idempotents and exchange rings. Transactions of the American Mathematical Society. 1977;229:269-278.
- [7]. Nicholson WK. Strongly clean rings and fitting's lemma. Communications in Algebra. 1999;27(8): 3583-3592.
- [8]. Rosenfeld A. Fuzzy groups. Journal of Mathematical Analysis and Applications. 1971;35(3): 512-517.
- [9]. Ying Z, Koşan T, Zhou Y. Rings in which every element is sum of two tripotents, Canadian Mathematical Bulletin. 2016;59(3): 661-672.
- [10]. Zadeh LA. Fuzzy Sets. Information and Control, 1965;8(3): 338-353.

Muhammad Reza Maulana, et. al. "Strongly 2-Nil Clean Fuzzy Rings." *IOSR Journal of Mathematics* (*IOSR-JM*), 18(3), (2022): pp. 01-05.