
IOSR Journal of Mathematics (IOSR-JM)

e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 18, Issue 3 Ser. II (May. – June. 2022), PP 06-12

www.iosrjournals.org

DOI: 10.9790/5728-1803020612 www.iosrjournals.org 6 | Page

Polynomial time algorithms of Critical Edge Detection

Problem on a tree

Syed Md Omar Faruk
1,*

, KamrunNahar Jabin
1

1
Department of Mathematics, Shahjalal University of Science and Technology

Abstract
In this paper we look at the critical edge detection problem (CEDP), which is the task of finding a set of K edges

in a graph G whose removal reduces the number of connections between pairs of nodes in the residual graph. In

particular, we mainly studied the case in which the given graph is a tree. We investigate the critical edge

detection problem over trees in different situations of edge weights. We provide polynomial algorithms for the

problems when all connections between pairs of nodes have unit cost.

Keywords: Critical edge detection, Pairwise connectivity, Polynomial time algorithm

--- ----------

Date of Submission: 03-06-2022 Date of Acceptance: 17-06-2022

--- ----------

1 Introduction

The critical edge detection problem (CEDP) is the optimization problem that consists in finding the set

of edges from a graph in order to obtain a disconnected graph with some specific properties. In general, one of

the oldest problems in graph theory involves removing edges from a graph. Myung and Kim [18] address the

problem of removing a small number of edges from an undirected graph in order to reduce the weighted number

of connections guaranteed in the residual graph. A variety of variants have been described and investigated in

the literature for problems involving the deletion of edges, such as the graph partitioning problem [5, 12, 20],

the minimum 𝑘-cut problem [14, 16], the multicut problem [8, 13, 15], the multiway cut problem [6, 7, 10], the

multi-multiway cut problem [3], etc.

The choice of the connectivity measure is of course a central element in a critical edge detection

problem. Indeed, various different connection measures have been presented in the literature, such as the total

number of pairwise connections [2, 11], the weight of the connections between the node pairs [2, 11], the size of

the largest connected components (to be minimized) [19, 21], the total number of connected components (which

should be maximized in order to fragment the graph) [1, 21], average shortest path value [9], distance-based

connectivity metrics [22], the diameter [1], and the graph information entropy [4, 23].

In this paper we consider the pairwise connectivity between nodes, formalized in [2]. The pairwise

connectivity of a graph 𝐺 = (𝑉, 𝐸) is defined as the number of pairs of nodes belonging to the same connected

component. For each pair (𝑢, 𝑣) ∈ 𝑉 × 𝑉, the pairwise connectivity 𝑐𝑢𝑣 is quantified as follows:

 𝑐𝑢𝑣 =
 1 if 𝑢 and 𝑣 are connected,
 0 otherwise.

According to the pairwise connectivity measure mentioned above, the Critical Edge Detection Problem (CEDP)

is formally stated as follows:

Given an undirected graph 𝐺(𝑉, 𝐸) with |𝑉| = 𝑛 nodes and an integer 𝐾 > 0 which is the maximunm

number of edges that can be removed. The Critical Edge Detection Problem calls for removing from 𝐺 a subset

of edges 𝑆 ⊆ 𝐸, where |𝑆| ≤ 𝐾, in order to minimize pairwise connectivity among the nodes in the subgraph

𝐺(𝐸\𝑆). Mathematically, the objective of the CEDP is to determine

Polynomial time algorithms of Critical Edge Detection Problem on a tree

DOI: 10.9790/5728-1803020612 www.iosrjournals.org 7 | Page

 (CEDP) 𝑆 = argmin
𝑆⊆𝐸

 ‍𝑢,𝑣∈(𝐸\𝑆) 𝑐𝑢𝑣 (𝐺(𝐸\𝑆): |𝑆| ≤ 𝐾

where

 𝑐𝑢𝑣 =
 1 if 𝑢, 𝑣 are in the same component of 𝐺(𝐸\𝑆)
 0 otherwise.

Formally, CEDP’s goal is to discover 𝑆 whose objective function yields the smallest value.

We present a dynamic programming approach for the case with unit costs and unit edge weights in

Section 2 whose complexity is polynomial. In Section 3 we present the case with unit costs and general edge

weights. We note that structural parts of our algorithmic framework are similar to those provided in [11, 17, 21].

Throughout the paper in our all dynamic programs, we denote by 𝑇𝑎 the subtree of the given tree

𝑇(𝑉, 𝐸) rooted at node 𝑎 ∈ 𝑉. If 𝑎 is not a leaf of 𝑇, we assume that an arbitrary order of its children is

specified. If 𝑎 has 𝑠 children 𝑎1 , … , 𝑎𝑠 , for every 𝑖 ∈ {1, … , 𝑠} we define 𝑇𝑎𝑖,𝑠 as the subtree of 𝑇 induced by

{𝑎} ∪ 𝑉(𝑇𝑎𝑖) ∪ …∪ 𝑉(𝑇𝑎𝑠), where we denote by 𝑉(𝐻) the set of vertices of 𝐻 for any given subtree 𝐻 of 𝑇.

Figure 1 shows an example of a tree 𝑇 rooted at node 𝑎 where subtree 𝑇𝑎2
 contains nodes of the set

{𝑎2 , 3,4,5,6,7}, while subtree 𝑇𝑎3,4
 contains nodes of the set {𝑎, 𝑎3 , 8,9,10,11,12, 𝑎4 , 13,14,15}. In our dynamic

programming approaches, all recursions are based on traversing the tree in postorder (that is, from the leaves to

the root) and from the right part of each tree level to the left part.

Figure 1: 𝑇𝑎 is an example of a subtree in which node 𝑎 has four children (i.e. 𝑠 = 4).

In the next two sections, we will look at unit weights and general nonnegative weights for the edges

separately, since even though the latter subsumes the former, unitary weights have a faster running time.

2 The unit cost, unit weight case on trees

In this part, we show how to solve CEDP on trees when 𝑐𝑢𝑣 = 1 for all 𝑢, 𝑣 and 𝑤𝑣 = 1 for all 𝑣 ∈ 𝐸.

In this scenario, the goal is to reduce the number of paths left in a tree 𝑇(𝑉, 𝐸) after removing at most 𝐾 edges.

To derive a dynamic programming algorithm, we will calculate recursively the following values:

 • 𝐹𝑎(𝑘,𝑚) = minimum number of connections that still exists in the subtree 𝑇𝑎 when 𝑘 edges are

removed from 𝑇𝑎 and 𝑚 nodes (including 𝑎 itself) of 𝑇𝑎 are still connected to the root 𝑎.

Polynomial time algorithms of Critical Edge Detection Problem on a tree

DOI: 10.9790/5728-1803020612 www.iosrjournals.org 8 | Page

• 𝐺𝑎𝑖(𝑘,𝑚) = minimum number of connections that still exists in the subtree 𝑇𝑎𝑖,𝑠 = 𝑎 + 𝑇𝑎𝑖 + ⋯+ 𝑇𝑎𝑠

when 𝑘 edges are removed from 𝑇𝑎𝑖,𝑠 and 𝑚 nodes of the subtree are still connected to 𝑎.

We remark that for both functions, the number of nodes connected to the root will never be 0 (i.e.

𝑚 > 0) because we never remove the root as the root is a node and we can not remove a node in the edge

deletion problem. Furthermore, whenever the conditions in one of the above definitions cannot be satisfied, we

set the value of the function to infinity.

The values of 𝐹𝑎 and 𝐺𝑎𝑖 are calculated in this order:

• we determine 𝐹𝑎 for every leaf 𝑎;

• for a non-leaf node 𝑎, assuming that the 𝐹𝑎′ and𝐺𝑎′ 𝑖 have been already found for all 𝑎′ ∈ 𝑉(𝑇𝑎), we

calculate 𝐺𝑎𝑠 , 𝐺𝑎𝑠−1
, … , 𝐺𝑎1

, and then 𝐹𝑎 .

At the end of the recursion, we can return the optimal value of the problem, assuming that the tree 𝑇 is

rooted at node 1, which is

 O𝑃𝑇 = min{𝐹1(𝐾,𝑚):𝑚 = 1,… , 𝑛}.

As usual in dynamic programming, an optimal solution can be reconstructed by backtracking.

We now provide the explicit formulas and then a justification for each of them. For a non-leaf node

𝑎 ∈ 𝑉, we have

 𝐹𝑎(𝑘,𝑚) = 𝐺𝑎1
(𝑘,𝑚),(1)

while for every leaf 𝑎 the formula is

 𝐹𝑎(𝑘,𝑚) =
 0 if 𝑘 = 0,𝑚 = 1,
 ∞ otherwise.

 (2)

For any non-leaf node 𝑎 ∈ 𝑉 and 𝑖 < 𝑠 (non-rightmost subtrees) we use the formula

 𝐺𝑎𝑖(𝑘,𝑚) =

min{𝐹𝑎𝑖(0, 𝑝) + 𝐺𝑎𝑖+1
(0,𝑚 − 𝑝) + 𝑝(𝑚 − 𝑝): 𝑝 = 0,… ,𝑚} if 𝑘 = 0,

min{min{𝐹𝑎𝑖(𝑞, 𝑝) + 𝐺𝑎𝑖+1
(𝑘 − 1 − 𝑞,𝑚): 𝑞 = 0,… , 𝑘 − 1,

 𝑝 = 0,… , 𝑉(𝑇𝑎𝑖)}, min{𝐹𝑎𝑖(𝑞, 𝑝) + 𝐺𝑎𝑖+1
(𝑘 − 𝑞,𝑚 − 𝑝) + 𝑝(𝑚 − 𝑝):

 𝑞 = 0,… , 𝑘, 𝑝 = 0,… ,𝑚}} if 𝑘 > 0,

 (3)

The initial conditions on each rightmost subtree 𝑇𝑎𝑠 are calculated as follows:

 𝐺𝑎𝑠(𝑘,𝑚) =

∞ if 𝑘 = 0,𝑚 = 1,
min{𝐹𝑎𝑠(𝑘 − 1, 𝑝): 𝑝 = 0,… , |𝑉(𝑇𝑎𝑠)|} if 𝑘 > 0,𝑚 = 1,

𝐹𝑎𝑠(𝑘,𝑚 − 1) + (𝑚 − 1) if 𝑘 ≥ 0,𝑚 > 1.

 (4)

We now give a justification for the above formulas. Equation (1) follows because 𝑇𝑎 = 𝑇𝑎1,𝑠
 for any non-leaf

node 𝑎 ∈ 𝑉.

Equation (2) handles the case of a one-node tree. Since 𝑎 ∈ 𝑉 is a leaf, it is not possible to remove any edge

(𝑘 = 0) and only 𝑎 is connected to itself (𝑚 = 1) and the number of paths surviving in 𝑇𝑎 is 0.

Recursion (3) can be interpreted as follows:

Polynomial time algorithms of Critical Edge Detection Problem on a tree

DOI: 10.9790/5728-1803020612 www.iosrjournals.org 9 | Page

The case 𝑘 = 0 means that we are not removing any edge from 𝑇𝑎𝑖 ,𝑠 = 𝑇𝑎𝑖 + 𝑇𝑎𝑖+1,𝑠
. Since we have to

keep everything, we are not allowed to remove anything from the subtrees 𝑇𝑎𝑖 and 𝑇𝑎𝑖+1,𝑠
. If 𝑎𝑖 is connected to 𝑝

nodes of 𝑇𝑎𝑖 , then 𝑎 is connected to 𝑚 − 𝑝 nodes in 𝑇𝑎𝑖+1,𝑠
 and the paths passing through 𝑎 are exactly 𝑝(𝑚 −

𝑝). Hence by definition of 𝐹 and 𝐺 the minimum number of paths that survive in 𝑇𝑎𝑖,𝑠 when we are not removing

anything will be 𝐺𝑎𝑖(0,𝑚) = min𝑝{𝐹𝑎𝑖(0, 𝑝) + 𝐺𝑎𝑖+1
(0,𝑚 − 𝑝) + 𝑝(𝑚 − 𝑝)}.

The case 𝑘 > 0 means that we have to remove at least one edge. When the value of 𝐺𝑎𝑖(𝑘,𝑚) is achieved from

the expression 𝐹𝑎𝑖(𝑞, 𝑝) + 𝐺𝑎𝑖+1
(𝑘 − 1 − 𝑞,𝑚), we remove the edge 𝑒 (which connects 𝑎 to 𝑎𝑖). Expression

𝐹𝑎𝑖(𝑞, 𝑝) gives the minimum number of paths that survive in 𝑇𝑎𝑖 when 𝑞 edges are removed from 𝑇𝑎𝑖 and 𝑝

nodes of 𝑇𝑎𝑖 are still connected to 𝑎𝑖 . Since 𝑞 edges have been removed from 𝑇𝑎𝑖 , exactly 𝑘 − 1 − 𝑞 edges must

be removed from 𝑇𝑎𝑖+1,𝑠
. The minimum number of paths that survive in 𝑇𝑎𝑖+1,𝑠

 when 𝑘 − 1 − 𝑞 edges are

removed from 𝑇𝑎𝑖+1,𝑠
 is given by 𝐺𝑎𝑖+1

(𝑘 − 1 − 𝑞,𝑚). Thus the expression 𝐹𝑎𝑖(𝑞, 𝑝) + 𝐺𝑎𝑖+1
(𝑘 − 1 − 𝑞,𝑚)

gives the minimum number of paths that survive in 𝑇𝑎𝑖 ,𝑠 when 𝑞 edges are removed from 𝑇𝑎𝑖 (and the other

𝑘 − 1 − 𝑞 edges are removed from 𝑇𝑎𝑖+1,𝑠
) and 𝑝 nodes of 𝑇𝑎𝑖 are still connected to 𝑎𝑖 . By taking the minimum

over 𝑞 = 0,… , 𝑘 − 1 and 𝑝 = 0,… , |𝑉(𝑇𝑎𝑖)|, we find the value of 𝐺𝑎𝑖(𝑘,𝑚).

When the value of 𝐺𝑎𝑖(𝑘,𝑚) is achieved from the expression 𝐹𝑎𝑖(𝑞, 𝑝) + 𝐺𝑎𝑖+1
(𝑘 − 𝑞,𝑚 − 𝑝) +

𝑝(𝑚 − 𝑝), we are not removing the edge 𝑒. As above, expression 𝐹𝑎𝑖(𝑞, 𝑝) gives the minimum number of paths

that survive in 𝑇𝑎𝑖 when 𝑞 edges are removed from 𝑇𝑎𝑖 and 𝑝 nodes of 𝑇𝑎𝑖 are still connected to 𝑎𝑖 . Since 𝑞 edges

have been removed from 𝑇𝑎𝑖 , exactly 𝑘 − 𝑞 edges must be removed from 𝑇𝑎𝑖+1,𝑠
 and since 𝑝 nodes of 𝑇𝑎𝑖 are still

connected to 𝑎𝑖 and thus to 𝑎, exactly 𝑚− 𝑝 nodes of 𝑇𝑎𝑖+1,𝑠
 must remain connected to 𝑎. The minimum number

of paths that survive in 𝑇𝑎𝑖+1,𝑠
 when 𝑘 − 𝑞 edges are removed from 𝑇𝑎𝑖+1,𝑠

 and 𝑚 − 𝑝 nodes of 𝑇𝑎𝑖+1,𝑠
 are still

connected to 𝑎 is given by 𝐺𝑎𝑖+1
(𝑘 − 𝑞,𝑚 − 𝑝). Thus the expression 𝐹𝑎𝑖(𝑞, 𝑝) + 𝐺𝑎𝑖+1

(𝑘 − 𝑞,𝑚 − 𝑝) gives the

minimum number of paths that survive in 𝑇𝑎𝑖 or 𝑇𝑎𝑖+1,𝑠
 when 𝑞 edges are removed from 𝑇𝑎𝑖 (and the other 𝑘 − 𝑞

edges are removed from 𝑇𝑎𝑖+1,𝑠
) and 𝑝 nodes of 𝑇𝑎𝑖 are still connected to 𝑎𝑖 , while 𝑚 − 𝑝 nodes of 𝑇𝑎𝑖+1,𝑠

 are still

connected to 𝑎. Now we have to add the paths connecting nodes of 𝑇𝑎𝑖 to nodes of 𝑇𝑎𝑖+1,𝑠
, i.e. 𝑝(𝑚 − 𝑝) paths.

This gives expression 𝐹𝑎𝑖(𝑞, 𝑝) + 𝐺𝑎𝑖+1
(𝑘 − 𝑞,𝑚 − 𝑝) + 𝑝(𝑚 − 𝑝) of recursion (3). By taking the minimum

over 𝑞 = 0,… , 𝑘 and 𝑝 = 0,… ,𝑚, we find the value of 𝐺𝑎𝑖(𝑘,𝑚).

More specifically, if 𝑘 = 0, we have only one choice so that we have to keep the edge 𝑒 (which

connects 𝑎 to 𝑎𝑖) because we are not removing any edge. While in the case 𝑘 > 0, we have two possibilities that

both are possible i.e., we can choose if we want to remove the edge 𝑒 or we want to keep it.

For a justification of (4), recall that 𝑇𝑎𝑠,𝑠
= 𝑎 + 𝑇𝑎𝑠 . If 𝑚 = 1 and 𝑘 > 0, then we have to remove the

edge between 𝑎 and 𝑎𝑠 and the other 𝑘 − 1 edges we have to be removed from the subtree 𝑇𝑎𝑠 and the number

of connections that survive are those in the subtree 𝑇𝑎𝑠 . On the other hand if 𝑚 > 1, then we can not remove the

edge 𝑎 to 𝑎𝑠 and in this time we have to remove all the 𝑘 edges inside the subtree 𝑇𝑎𝑠 . Since 𝑚 nodes are

connected to 𝑎 including 𝑎 itself, in the subtree we will find the other 𝑚 − 1 nodes connected to 𝑎𝑠. Then we

have to add all the connections of 𝑎 to the nodes that are connected to 𝑎𝑠 in the subtree.

We obtain the following result.

Proposition 1 CEDP on a tree with unit connection costs and unit edge weights can be solved by

recursion (1)–(4) in 𝒪(𝐾2𝑛3) time.

Proof. For each node 𝑎 ∈ 𝑉 there are at most 𝐾 + 1 = 𝒪(𝐾) values for 𝑘 and 𝑛 + 1 = 𝒪(𝑛) values for

𝑚; this gives 𝒪(𝐾𝑛2) values of 𝐹 and 𝐺 to compute. The heaviest computation is that of equation (3) that

Polynomial time algorithms of Critical Edge Detection Problem on a tree

DOI: 10.9790/5728-1803020612 www.iosrjournals.org 10 | Page

requires at most 𝒪(𝐾𝑛) steps. Hence in the worst case a number of operations bounded by 𝒪(𝐾2𝑛3) are

required.

3 The case with unit costs and arbitrary edge weights

Let 𝑤𝑒 ≥ 0 be arbitrary weights assigned to the edges 𝑒 ∈ 𝐸. The CEDP problem in this case amounts

to finding a subset 𝑆 of edges with total weight ‍𝑒∈𝑆 𝑤𝑒 not exceeding a given budget 𝑊 such that the number

of surviving paths after having removed the edge set 𝑆 is minimized.

A dynamic programming algorithm, constructed in the same spirit as the one described in the preceding

section, can be used to solve this case. The recursion uses two parameters, 𝑚 and 𝑘, which represent the number

of nodes connected to the root of a subtree and the number of paths that survive within that subtree, respectively.

 The following functions are defined using the subtree notation described in the preceding section.

 • 𝐹𝑎(𝑘,𝑚) is the minimum total weight of the edges to be removed from the subtree 𝑇𝑎 in order to

have node 𝑎 connected to exactly 𝑚 nodes (including 𝑎 itself) and 𝑘 paths surviving in 𝑇𝑎 .

 • 𝐺𝑎𝑖(𝑘,𝑚) is the minimum total weight of the edges to be removed from the subtree 𝑇𝑎𝑖 ,𝑠 = 𝑎 +

𝑇𝑎𝑖 + 𝑇𝑎𝑖+1
+ ⋯+ 𝑇𝑎𝑠 in order to have 𝑎 connected to 𝑚 nodes of 𝑇𝑎𝑖,𝑠 and 𝑘 paths surviving in 𝑇𝑎𝑖 ,𝑠 .

 We compute the values for 𝐹 and 𝐺 recursively for all 𝑎 ∈ 𝑉, 𝑘 = 0,… , 𝑛(𝑛 − 1)/2, 𝑚 = 1,… , 𝑛, as

follows. Assume 𝐹𝑎(𝑘,𝑚) = ∞, 𝐺𝑎(𝑘,𝑚) = ∞ if 𝑘 < 0 or 𝑚 < 0.

𝐹𝑎 𝑘,𝑚 = 𝐺𝑎1
 𝑘,𝑚 for all non − leaf nodes a ∈ V,(5)

𝐺𝑎𝑖(𝑘,𝑚) = min{𝑤𝑒 + min{𝐹𝑎𝑖(𝑞, 𝑝) + 𝐺𝑎𝑖+1
(𝑘 − 𝑞,𝑚): 𝑞 = 0,… , 𝑘, 𝑝 = 0,… , 𝑉(𝑇𝑎𝑖)},

 min{𝐹𝑎𝑖(𝑞, 𝑝) + 𝐺𝑎𝑖+1
[𝑘 − 𝑞 − 𝑝(𝑚 − 𝑝),𝑚 − 𝑝]: 𝑞 = 0,… , 𝑘, 𝑝 = 0,… ,𝑚}}, (6)

where 𝑒 is the edge connecting 𝑎 to 𝑎𝑖 . Equation (6) is written for all non-leaf nodes 𝑎𝑖 ∈ 𝑉 with 𝑖 < 𝑠 (non-

rightmost subtrees). For each rightmost subtree 𝑇𝑎𝑠 we specify the initial condition

 𝐺𝑎𝑠 𝑘,𝑚 =
𝑤𝑒 + min 𝐹𝑎𝑠 𝑘, 𝑝 : 𝑝 = 0,… , 𝑉 𝑇𝑎𝑠 if 𝑚 = 1,

𝐹𝑎𝑠 𝑘 − 𝑚 + 1,𝑚 − 1 if 𝑚 > 1,
 (7)

where 𝑒 is the edge connecting 𝑎 to 𝑎𝑠 , and for every leaf 𝑎:

𝐹𝑎(𝑘,𝑚) =
 0 if 𝑘 = 0,𝑚 = 1,
 ∞ in all other cases.

 (8)

To explain equations (5)–(8), we apply the same reasoning as in the preceding section for equations

(1)–(4).

 For equation (5), note that 𝑇𝑎 = 𝑇𝑎1,𝑠
 for any non-leaf node 𝑎 ∈ 𝑉.

 For equation (6) note that the edge 𝑒 (which connects 𝑎 to 𝑎𝑖) is the connecting edge between the

subtrees 𝑇𝑎𝑖 and 𝑇𝑎𝑖+1,𝑠
. There are two cases to compute the value of 𝐺𝑎𝑖(𝑘,𝑚) based on the edge 𝑒, either we

remove 𝑒 or we have to keep it. If the value of 𝐺𝑎𝑖(𝑘,𝑚) is achieved from the expression 𝑤𝑒 + min{𝐹𝑎𝑖(𝑞, 𝑝) +

𝐺𝑎𝑖+1
(𝑘 − 𝑞,𝑚)}, then besides removing the optimal edges from 𝑇𝑎𝑖 and 𝑇𝑎𝑖+1,𝑠

 we should also remove the edge

𝑒 and in this case a path surviving in 𝑇𝑎𝑖,𝑠 = 𝑇𝑎𝑖 + 𝑇𝑎𝑖+1,𝑠
 either completely belongs to 𝑇𝑎𝑖 or to 𝑇𝑎𝑖+1 ,𝑠.

According to the definition of 𝐺𝑎𝑖(𝑘,𝑚), 𝑚 nodes are still connected to 𝑎 and all nodes are inside the subtree

𝑇𝑎𝑖+1 ,𝑠, whereas at most 𝑉(𝑇𝑎𝑖) nodes can be connected to 𝑎𝑖 . If 𝑞 paths belong to 𝑇𝑎𝑖 exactly 𝑘 − 𝑞 paths belong

to 𝑇𝑎𝑖+1 ,𝑠. Hence by definition of 𝐹 and 𝐺 the minimum total weight of the edges removed from 𝑇𝑎𝑖,𝑠 will be

𝐺𝑎𝑖(𝑘,𝑚) = 𝑤𝑒 + min𝑞,𝑝{𝐹𝑎𝑖(𝑞, 𝑝) + 𝐺𝑎𝑖+1
(𝑘 − 𝑞,𝑚)} where 𝑤𝑒 corresponds to the weight of the edge 𝑒.

Polynomial time algorithms of Critical Edge Detection Problem on a tree

DOI: 10.9790/5728-1803020612 www.iosrjournals.org 11 | Page

On the other hand, if the edge 𝑒 is not removed, then 𝑎 is connected to 𝑚 nodes of 𝑇𝑎 and a path in 𝑇𝑎𝑖,𝑠

can be either completely contained in one of 𝑇𝑎𝑖 , 𝑇𝑎𝑖+1,𝑠
, or partially contained in both subtrees because it passes

through the edge 𝑒. If 𝑎𝑖 is connected to 𝑝 nodes of 𝑇𝑎𝑖 and 𝑎 is connected to 𝑚 − 𝑝 nodes in 𝑇𝑎𝑖+1,𝑠
, the paths

passing through 𝑎 are exactly 𝑝(𝑚 − 𝑝). If 𝑞 paths survive in 𝑇𝑎𝑖 , 𝑘 − 𝑞 − 𝑝(𝑚 − 𝑝) paths survive in 𝑇𝑎𝑖+1,𝑠

and, by definition of 𝐹 and 𝐺, 𝐺𝑎𝑖(𝑘,𝑚) = min𝑞 ,𝑝{𝐹𝑎𝑖(𝑞, 𝑝) + 𝐺𝑎𝑖+1
[𝑘 − 𝑞 − 𝑝(𝑚 − 𝑝),𝑚 − 𝑝]}.

 The initial condition (7) takes into account that, if the edge 𝑒 (which connects 𝑎 to 𝑎𝑠) is removed

(𝑚 = 1), the 𝑘 surviving paths of 𝑇𝑎𝑠,𝑠
= 𝑎 + 𝑇𝑎𝑠 must belong entirely to 𝑇𝑎𝑠 , hence the minimum possible

weight for the edges removed from 𝑇𝑎𝑠,𝑠
 will be 𝐺𝑎𝑠(𝑘,𝑚) = 𝑤𝑒 + min𝑝{𝐹𝑎𝑠(𝑘, 𝑝)}. On the other hand if the

edge 𝑒 is not removed (𝑚 > 1), we must have 𝑚− 1 nodes connected to 𝑎𝑠 in 𝑇𝑎𝑠 and the number of surviving

paths is 𝑘 − (𝑚 − 1). Thus 𝐺𝑎𝑠(𝑘,𝑚) = 𝐹𝑎𝑠(𝑘 − 𝑚 + 1,𝑚 − 1) follows.

 The equation (8) says that since 𝑎 ∈ 𝑉 is a leaf, the only possible condition is when 𝑚 = 1, 𝑘 = 0 and

all other combinations of 𝑚 and 𝑘 are infeasible and are considered to have an infinite weight.

The optimal value, assuming the tree is rooted at node 1, is given by

 O𝑃𝑇 = min{𝑘: 𝐹1(𝑘,𝑚) ≤ 𝑊, 𝑘 = 0,… , 𝑛(𝑛 − 1)/2,𝑚 = 1,… , 𝑛}.(9)

The optimal solution is recovered by backtracking.

Proposition 2 CEDP on a tree with unit connection costs and arbitrary edge weights can be solved by

recursion (5)–(8) in 𝒪(𝑛7) time.

Proof. For each node 𝑎 ∈ 𝑉 there are at most 𝑛(𝑛 − 1)/2 + 1 = 𝒪(𝑛2) values for 𝑘 and 𝑛 + 1 = 𝒪(𝑛)

values for 𝑚; this gives 𝒪(𝑛4) values 𝐹𝑎(⋅,⋅) and 𝐺𝑎𝑖(⋅,⋅) to compute. The heaviest computation lies in equation

(6), where 𝒪(𝑛2) values are possible for 𝑞 and 𝒪(𝑛) for 𝑝. Hence in the worst case a number of operations

bounded by 𝒪(𝑛) ⋅ 𝒪(𝑛2) ⋅ 𝒪(𝑛4) = 𝒪(𝑛7) are required.

4 Conclusion

In this paper we investigated the critical edge detection problem over trees. We showed that the cases with unit

connection costs and unit or arbitrary edge weights are solvable in polynomial time through dynamic

programming approaches.

References

[1] Albert, R., Jeong, H., A. L. Barabasi, A. L.: Error and attack tolerance of complex networks, Nature,

406, 378–382 (2000).

[2] Arulselvan A., Commander C.W., Elefteriadou L., Pardalos P.M.: Detecting critical nodes in sparse

graphs, Computers & Operations Research, 36, 2193–2200 (2009).

[3] Avidor, A., Langberg, M.: The multi-multiway cut problem, Theoret. Comput. Sci., 377 (1-3), 35-42

(2007).

[4] Borgatti, S.P.: Identifying sets of key players in a network, Computational and Mathematical

Organization Theory, 12, 21–34 (2006).

[5] Buluc, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent advances in graph partitioning,

in: Algorithm Engineering, Springer, 117-158 (2016).

[6] Chopra, S., Rao, M.R.: On the multiway cut polyhedron, Networks, 21 (1), 51-89 (1991).

[7] Chopra, S., Owen, J.H.: Extended formulations for the A-cut problem, Math. Program., 73 (1), 7-30

(1996).

Polynomial time algorithms of Critical Edge Detection Problem on a tree

DOI: 10.9790/5728-1803020612 www.iosrjournals.org 12 | Page

[8] Costa, M.-C., Letocart, L., Roupin, F.: Minimal multicut and maximal integer multiflow: A survey,

European J. Oper. Res., 162 (1), 55-69 (2005).

[9] Crucitti, P., Latora, V., Marchiori, M., Rapisarda, A.: Efficiency of scale-free networks: Error and

attack tolerance, PHYSICA A, 320, 622–642 (2003).

[10] Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The complexity of
multiterminal cuts, SIAM J. Comput., 23 (4), 864-894 (1994).

[11] Di Summa, M., Grosso, A., Locatelli, M.: Complexity of the critical node problem over trees,

Computers & Operations Research, 38(12), 1766-1774 (2011).

[12] Fjallstrom, P.-O.: Algorithms for Graph Partitioning: A Survey, Linkoping University Electronic

Press Linkoping, Vol. 3, (1998).

[13] Garg N., Vazirani V.V., Yannakakis M.: Primal-dual approximation algorithms for integral flow and

multicut in trees, Algorithmica, 18, 3–30 (1997).

[14] Goldschmidt, O., Hochbaum, D.S.: A polynomial algorithm for the 𝑘-cut problem for fixed k, Math.

Oper. Res. 19 (1), 24-37 (1994).

[15] Guo, J., Niedermeier, R.: Fixed-parameter tractability and data reduction for multicut in trees,

Networks, 46 (3), 124-135 (2005).

[16] He, X.: An improved algorithm for the planar 3-cut problem, J. Algorithms, 12 (1), 23-37 (1991).

[17] Lalou, M., Tahraoui, M., Kheddouci, H.: Component-cardinality-constrained critical node problem
in graphs, Discrete Applied Mathematics, 210, 150-163 (2016).

[18] Myung, Y.-S. and Kim, H.-J.: A cutting plane algorithm for computing k-edge survivability of a

network, European Journal of Operational Research, 156(3), 579-589 (2004).

[19] Oosten, M., Rutten, J.H.G.C., Spieksma, F.C.R.: Disconnecting graphs by removing vertices: a

polyhedral approach, Statistica Neerlandica 61(1), 35-60 (2007).

[20] Pothen, A.: Graph partitioning algorithms with applications to scientific computing, in: Parallel

Numerical Algorithms, Springer, 323-368 (1997).

[21] Shen, S., Smith, J.: Polynomial-time algorithms for solving a class of critical node problems on trees

and series-parallel graphs, Networks, 60(2), 103-119 (2012).

[22] Veremyev, A., Prokopyev, O., Pasiliao, E.: Critical nodes for distance-based connectivity and related
problems in graphs, Networks, 66(3), 170-195 (2015).

[23] Veremyev, A., Prokopyev, O.A., Pasiliao, E.: An integer programming framework for critical

elements detection in graphs, Journal of Combinatorial Optimization, 28(1), 233-273 (2014).

Syed Md Omar Faruk, et. al. "Polynomial time algorithms of Critical Edge Detection Problem on a

tree."IOSR Journal of Mathematics (IOSR-JM), 18(3), (2022): pp. 06-12.

