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Abstract 
In this paper we look at the critical edge detection problem (CEDP), which is the task of finding a set of K edges 

in a graph G whose removal reduces the number of connections between pairs of nodes in the residual graph. In 

particular, we mainly studied the case in which the given graph is a tree. We investigate the critical edge 

detection problem over trees in different situations of edge weights. We provide polynomial algorithms for the 

problems when all connections between pairs of nodes have unit cost. 
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1 Introduction 
 

The critical edge detection problem (CEDP) is the optimization problem that consists in finding the set 

of edges from a graph in order to obtain a disconnected graph with some specific properties. In general, one of 

the oldest problems in graph theory involves removing edges from a graph. Myung and Kim [18] address the 

problem of removing a small number of edges from an undirected graph in order to reduce the weighted number 

of connections guaranteed in the residual graph. A variety of variants have been described and investigated in 

the literature for problems involving the deletion of edges, such as the graph partitioning problem [5, 12, 20], 

the minimum 𝑘-cut problem [14, 16], the multicut problem [8, 13, 15], the multiway cut problem [6, 7, 10], the 

multi-multiway cut problem [3], etc. 

The choice of the connectivity measure is of course a central element in a critical edge detection 

problem. Indeed, various different connection measures have been presented in the literature, such as the total 

number of pairwise connections [2, 11], the weight of the connections between the node pairs [2, 11], the size of 

the largest connected components (to be minimized) [19, 21], the total number of connected components (which 

should be maximized in order to fragment the graph) [1, 21], average shortest path value [9], distance-based 

connectivity metrics [22], the diameter [1], and the graph information entropy [4, 23]. 

In this paper we consider the pairwise connectivity between nodes, formalized in [2]. The pairwise 

connectivity of a graph 𝐺 = (𝑉, 𝐸) is defined as the number of pairs of nodes belonging to the same connected 

component. For each pair (𝑢, 𝑣) ∈ 𝑉 × 𝑉, the pairwise connectivity 𝑐𝑢𝑣  is quantified as follows:  

 𝑐𝑢𝑣 =  
 1 if  𝑢  and  𝑣  are  connected,
 0 otherwise.

  

According to the pairwise connectivity measure mentioned above, the Critical Edge Detection Problem (CEDP) 

is formally stated as follows: 

Given an undirected graph 𝐺(𝑉, 𝐸) with |𝑉| = 𝑛 nodes and an integer 𝐾 > 0 which is the maximunm 

number of edges that can be removed. The Critical Edge Detection Problem calls for removing from 𝐺 a subset 

of edges 𝑆 ⊆ 𝐸, where  |𝑆| ≤ 𝐾, in order to minimize pairwise connectivity among the nodes in the subgraph 

𝐺(𝐸\𝑆). Mathematically, the objective of the CEDP is to determine  
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 (CEDP)        𝑆 = argmin
𝑆⊆𝐸

 ‍𝑢,𝑣∈(𝐸\𝑆) 𝑐𝑢𝑣 (𝐺(𝐸\𝑆): |𝑆| ≤ 𝐾 

where  

 𝑐𝑢𝑣 =  
 1 if 𝑢, 𝑣 are in the same component of 𝐺(𝐸\𝑆)
 0 otherwise.

  

Formally, CEDP’s goal is to discover 𝑆 whose objective function yields the smallest value. 

We present a dynamic programming approach for the case with unit costs and unit edge weights in 

Section 2 whose complexity is polynomial. In Section 3 we present the case with unit costs and general edge 

weights. We note that structural parts of our algorithmic framework are similar to those provided in [11, 17, 21]. 

Throughout the paper in our all dynamic programs, we denote by 𝑇𝑎  the subtree of the given tree 

𝑇(𝑉, 𝐸) rooted at node 𝑎 ∈ 𝑉. If 𝑎 is not a leaf of 𝑇, we assume that an arbitrary order of its children is 

specified. If 𝑎 has 𝑠 children 𝑎1 , … , 𝑎𝑠 , for every 𝑖 ∈ {1, … , 𝑠} we define 𝑇𝑎𝑖,𝑠  as the subtree of 𝑇 induced by 

{𝑎} ∪ 𝑉(𝑇𝑎𝑖) ∪ …∪ 𝑉(𝑇𝑎𝑠), where we denote by 𝑉(𝐻) the set of vertices of 𝐻 for any given subtree 𝐻 of 𝑇. 

Figure 1 shows an example of a tree 𝑇 rooted at node 𝑎 where subtree 𝑇𝑎2
 contains nodes of the set 

{𝑎2 , 3,4,5,6,7}, while subtree 𝑇𝑎3,4
 contains nodes of the set {𝑎, 𝑎3 , 8,9,10,11,12, 𝑎4 , 13,14,15}. In our dynamic 

programming approaches, all recursions are based on traversing the tree in postorder (that is, from the leaves to 

the root) and from the right part of each tree level to the left part. 

 

Figure 1: 𝑇𝑎  is an example of a subtree in which node 𝑎 has four children (i.e. 𝑠 = 4). 

In the next two sections, we will look at unit weights and general nonnegative weights for the edges 

separately, since even though the latter subsumes the former, unitary weights have a faster running time. 

 

2 The unit cost, unit weight case on trees 
 

In this part, we show how to solve   CEDP on trees when 𝑐𝑢𝑣 = 1 for all 𝑢, 𝑣 and 𝑤𝑣 = 1 for all 𝑣 ∈ 𝐸. 

In this scenario, the goal is to reduce the number of paths left in a tree 𝑇(𝑉, 𝐸) after removing at most 𝐾 edges. 

To derive a dynamic programming algorithm, we will calculate recursively the following values: 

 • 𝐹𝑎(𝑘,𝑚) = minimum number of connections that still exists in the subtree 𝑇𝑎  when 𝑘 edges are 

removed from 𝑇𝑎  and 𝑚 nodes (including 𝑎 itself) of 𝑇𝑎  are still connected to the root 𝑎. 
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• 𝐺𝑎𝑖(𝑘,𝑚) = minimum number of connections that still exists in the subtree 𝑇𝑎𝑖,𝑠 = 𝑎 + 𝑇𝑎𝑖 + ⋯+ 𝑇𝑎𝑠  

when 𝑘 edges are removed from 𝑇𝑎𝑖,𝑠  and 𝑚 nodes of the subtree are still connected to 𝑎.  

We remark that for both functions, the number of nodes connected to the root will never be 0 (i.e. 

𝑚 > 0) because we never remove the root as the root is a node and we can not remove a node in the edge 

deletion problem. Furthermore, whenever the conditions in one of the above definitions cannot be satisfied, we 

set the value of the function to infinity. 

The values of 𝐹𝑎  and 𝐺𝑎𝑖  are calculated in this order:   

• we determine 𝐹𝑎  for every leaf 𝑎;  

• for a non-leaf node 𝑎, assuming that the 𝐹𝑎′  and𝐺𝑎′ 𝑖  have been already found for all 𝑎′ ∈ 𝑉(𝑇𝑎), we 

calculate 𝐺𝑎𝑠 , 𝐺𝑎𝑠−1
, … , 𝐺𝑎1

, and then 𝐹𝑎 .  

At the end of the recursion, we can return the optimal value of the problem, assuming that the tree 𝑇 is 

rooted at node 1, which is  

 O𝑃𝑇 = min{𝐹1(𝐾,𝑚):𝑚 = 1,… , 𝑛}. 

As usual in dynamic programming, an optimal solution can be reconstructed by backtracking. 

We now provide the explicit formulas and then a justification for each of them. For a non-leaf node 

𝑎 ∈ 𝑉, we have 

 𝐹𝑎(𝑘,𝑚) = 𝐺𝑎1
(𝑘,𝑚),(1) 

while for every leaf 𝑎 the formula is  

 𝐹𝑎(𝑘,𝑚) =  
 0 if 𝑘 = 0,𝑚 = 1,
 ∞ otherwise.

 (2) 

For any non-leaf node 𝑎 ∈ 𝑉 and 𝑖 < 𝑠 (non-rightmost subtrees) we use the formula  

 𝐺𝑎𝑖(𝑘,𝑚) = 

 
 
 

 
 

min{𝐹𝑎𝑖(0, 𝑝) + 𝐺𝑎𝑖+1
(0,𝑚 − 𝑝) + 𝑝(𝑚 − 𝑝): 𝑝 = 0,… ,𝑚} if 𝑘 = 0,

min{min{𝐹𝑎𝑖(𝑞, 𝑝) + 𝐺𝑎𝑖+1
(𝑘 − 1 − 𝑞,𝑚): 𝑞 = 0,… , 𝑘 − 1,

    𝑝 = 0,… , 𝑉(𝑇𝑎𝑖)}, min{𝐹𝑎𝑖(𝑞, 𝑝) + 𝐺𝑎𝑖+1
(𝑘 − 𝑞,𝑚 − 𝑝) + 𝑝(𝑚 − 𝑝):

    𝑞 = 0,… , 𝑘, 𝑝 = 0,… ,𝑚}} if 𝑘 > 0,

 (3) 

The initial conditions on each rightmost subtree 𝑇𝑎𝑠  are calculated as follows: 

 𝐺𝑎𝑠(𝑘,𝑚) =  

∞ if 𝑘 = 0,𝑚 = 1,
min{𝐹𝑎𝑠(𝑘 − 1, 𝑝): 𝑝 = 0,… , |𝑉(𝑇𝑎𝑠)|} if 𝑘 > 0,𝑚 = 1,

𝐹𝑎𝑠(𝑘,𝑚 − 1) + (𝑚 − 1) if 𝑘 ≥ 0,𝑚 > 1.

 (4) 

We now give a justification for the above formulas. Equation (1) follows because 𝑇𝑎 = 𝑇𝑎1,𝑠
 for any non-leaf 

node 𝑎 ∈ 𝑉. 

Equation (2) handles the case of a one-node tree. Since 𝑎 ∈ 𝑉 is a leaf, it is not possible to remove any edge 

(𝑘 = 0) and only 𝑎 is connected to itself (𝑚 = 1) and the number of paths surviving in 𝑇𝑎  is 0. 

Recursion (3) can be interpreted as follows: 
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The case 𝑘 = 0 means that we are not removing any edge from 𝑇𝑎𝑖 ,𝑠 = 𝑇𝑎𝑖 + 𝑇𝑎𝑖+1,𝑠
. Since we have to 

keep everything, we are not allowed to remove anything from the subtrees 𝑇𝑎𝑖  and 𝑇𝑎𝑖+1,𝑠
. If 𝑎𝑖  is connected to 𝑝 

nodes of 𝑇𝑎𝑖 , then 𝑎 is connected to 𝑚 − 𝑝 nodes in 𝑇𝑎𝑖+1,𝑠
 and the paths passing through 𝑎 are exactly 𝑝(𝑚 −

𝑝). Hence by definition of 𝐹 and 𝐺 the minimum number of paths that survive in 𝑇𝑎𝑖,𝑠  when we are not removing 

anything will be 𝐺𝑎𝑖(0,𝑚) = min𝑝{𝐹𝑎𝑖(0, 𝑝) + 𝐺𝑎𝑖+1
(0,𝑚 − 𝑝) + 𝑝(𝑚 − 𝑝)}. 

The case 𝑘 > 0 means that we have to remove at least one edge. When the value of 𝐺𝑎𝑖(𝑘,𝑚) is achieved from 

the expression 𝐹𝑎𝑖(𝑞, 𝑝) + 𝐺𝑎𝑖+1
(𝑘 − 1 − 𝑞,𝑚), we remove the edge 𝑒 (which connects 𝑎 to 𝑎𝑖). Expression 

𝐹𝑎𝑖(𝑞, 𝑝) gives the minimum number of paths that survive in 𝑇𝑎𝑖  when 𝑞 edges are removed from 𝑇𝑎𝑖  and 𝑝 

nodes of 𝑇𝑎𝑖  are still connected to 𝑎𝑖 . Since 𝑞 edges have been removed from 𝑇𝑎𝑖 , exactly 𝑘 − 1 − 𝑞 edges must 

be removed from 𝑇𝑎𝑖+1,𝑠
. The minimum number of paths that survive in 𝑇𝑎𝑖+1,𝑠

 when 𝑘 − 1 − 𝑞 edges are 

removed from 𝑇𝑎𝑖+1,𝑠
 is given by 𝐺𝑎𝑖+1

(𝑘 − 1 − 𝑞,𝑚). Thus the expression 𝐹𝑎𝑖(𝑞, 𝑝) + 𝐺𝑎𝑖+1
(𝑘 − 1 − 𝑞,𝑚) 

gives the minimum number of paths that survive in 𝑇𝑎𝑖 ,𝑠  when 𝑞 edges are removed from 𝑇𝑎𝑖  (and the other 

𝑘 − 1 − 𝑞 edges are removed from 𝑇𝑎𝑖+1,𝑠
) and 𝑝 nodes of 𝑇𝑎𝑖  are still connected to 𝑎𝑖 . By taking the minimum 

over 𝑞 = 0,… , 𝑘 − 1 and 𝑝 = 0,… , |𝑉(𝑇𝑎𝑖)|, we find the value of 𝐺𝑎𝑖(𝑘,𝑚). 

When the value of 𝐺𝑎𝑖(𝑘,𝑚) is achieved from the expression 𝐹𝑎𝑖(𝑞, 𝑝) + 𝐺𝑎𝑖+1
(𝑘 − 𝑞,𝑚 − 𝑝) +

𝑝(𝑚 − 𝑝), we are not removing the edge 𝑒. As above, expression 𝐹𝑎𝑖(𝑞, 𝑝) gives the minimum number of paths 

that survive in 𝑇𝑎𝑖  when 𝑞 edges are removed from 𝑇𝑎𝑖  and 𝑝 nodes of 𝑇𝑎𝑖  are still connected to 𝑎𝑖 . Since 𝑞 edges 

have been removed from 𝑇𝑎𝑖 , exactly 𝑘 − 𝑞 edges must be removed from 𝑇𝑎𝑖+1,𝑠
 and since 𝑝 nodes of 𝑇𝑎𝑖  are still 

connected to 𝑎𝑖  and thus to 𝑎, exactly 𝑚− 𝑝 nodes of 𝑇𝑎𝑖+1,𝑠
 must remain connected to 𝑎. The minimum number 

of paths that survive in 𝑇𝑎𝑖+1,𝑠
 when 𝑘 − 𝑞 edges are removed from 𝑇𝑎𝑖+1,𝑠

 and 𝑚 − 𝑝 nodes of 𝑇𝑎𝑖+1,𝑠
 are still 

connected to 𝑎 is given by 𝐺𝑎𝑖+1
(𝑘 − 𝑞,𝑚 − 𝑝). Thus the expression 𝐹𝑎𝑖(𝑞, 𝑝) + 𝐺𝑎𝑖+1

(𝑘 − 𝑞,𝑚 − 𝑝) gives the 

minimum number of paths that survive in 𝑇𝑎𝑖  or 𝑇𝑎𝑖+1,𝑠
 when 𝑞 edges are removed from 𝑇𝑎𝑖  (and the other 𝑘 − 𝑞 

edges are removed from 𝑇𝑎𝑖+1,𝑠
) and 𝑝 nodes of 𝑇𝑎𝑖  are still connected to 𝑎𝑖 , while 𝑚 − 𝑝 nodes of 𝑇𝑎𝑖+1,𝑠

 are still 

connected to 𝑎. Now we have to add the paths connecting nodes of 𝑇𝑎𝑖  to nodes of 𝑇𝑎𝑖+1,𝑠
, i.e. 𝑝(𝑚 − 𝑝) paths. 

This gives expression 𝐹𝑎𝑖(𝑞, 𝑝) + 𝐺𝑎𝑖+1
(𝑘 − 𝑞,𝑚 − 𝑝) + 𝑝(𝑚 − 𝑝) of recursion (3). By taking the minimum 

over 𝑞 = 0,… , 𝑘 and 𝑝 = 0,… ,𝑚, we find the value of 𝐺𝑎𝑖(𝑘,𝑚). 

More specifically, if 𝑘 = 0, we have only one choice so that we have to keep the edge 𝑒 (which 

connects 𝑎 to 𝑎𝑖) because we are not removing any edge. While in the case 𝑘 > 0, we have two possibilities that 

both are possible i.e., we can choose if we want to remove the edge 𝑒 or we want to keep it. 

For a justification of (4), recall that 𝑇𝑎𝑠,𝑠
= 𝑎 + 𝑇𝑎𝑠 . If 𝑚 = 1 and 𝑘 > 0, then we have to remove the 

edge between 𝑎 and 𝑎𝑠 and the other 𝑘 − 1 edges we have to be removed from the subtree 𝑇𝑎𝑠  and the number 

of connections that survive are those in the subtree 𝑇𝑎𝑠 . On the other hand if 𝑚 > 1, then we can not remove the 

edge 𝑎 to 𝑎𝑠 and in this time we have to remove all the 𝑘 edges inside the subtree 𝑇𝑎𝑠 . Since 𝑚 nodes are 

connected to 𝑎 including 𝑎 itself, in the subtree we will find the other 𝑚 − 1 nodes connected to 𝑎𝑠. Then we 

have to add all the connections of 𝑎 to the nodes that are connected to 𝑎𝑠 in the subtree. 

We obtain the following result. 

Proposition 1 CEDP on a tree with unit connection costs and unit edge weights can be solved by 

recursion (1)–(4) in 𝒪(𝐾2𝑛3) time.  

Proof. For each node 𝑎 ∈ 𝑉 there are at most 𝐾 + 1 = 𝒪(𝐾) values for 𝑘 and 𝑛 + 1 = 𝒪(𝑛) values for 

𝑚; this gives 𝒪(𝐾𝑛2) values of 𝐹 and 𝐺 to compute. The heaviest computation is that of equation (3) that 
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requires at most 𝒪(𝐾𝑛) steps. Hence in the worst case a number of operations bounded by 𝒪(𝐾2𝑛3) are 

required.  

3  The case with unit costs and arbitrary edge weights 
 

Let 𝑤𝑒 ≥ 0 be arbitrary weights assigned to the edges 𝑒 ∈ 𝐸. The CEDP problem in this case amounts 

to finding a subset 𝑆 of edges with total weight  ‍𝑒∈𝑆 𝑤𝑒  not exceeding a given budget 𝑊 such that the number 

of surviving paths after having removed the edge set 𝑆 is minimized. 

A dynamic programming algorithm, constructed in the same spirit as the one described in the preceding 

section, can be used to solve this case. The recursion uses two parameters, 𝑚 and 𝑘, which represent the number 

of nodes connected to the root of a subtree and the number of paths that survive within that subtree, respectively.  

 The following functions are defined using the subtree notation described in the preceding section.   

    • 𝐹𝑎(𝑘,𝑚) is the minimum total weight of the edges to be removed from the subtree 𝑇𝑎  in order to 

have node 𝑎 connected to exactly 𝑚 nodes (including 𝑎 itself) and 𝑘 paths surviving in 𝑇𝑎 .  

    • 𝐺𝑎𝑖(𝑘,𝑚) is the minimum total weight of the edges to be removed from the subtree 𝑇𝑎𝑖 ,𝑠 = 𝑎 +

𝑇𝑎𝑖 + 𝑇𝑎𝑖+1
+ ⋯+ 𝑇𝑎𝑠  in order to have 𝑎 connected to 𝑚 nodes of 𝑇𝑎𝑖,𝑠  and 𝑘 paths surviving in 𝑇𝑎𝑖 ,𝑠 .  

 We compute the values for 𝐹 and 𝐺 recursively for all 𝑎 ∈ 𝑉, 𝑘 = 0,… , 𝑛(𝑛 − 1)/2, 𝑚 = 1,… , 𝑛, as 

follows. Assume 𝐹𝑎(𝑘,𝑚) = ∞, 𝐺𝑎(𝑘,𝑚) = ∞ if 𝑘 < 0 or 𝑚 < 0.  

𝐹𝑎 𝑘,𝑚 = 𝐺𝑎1
 𝑘,𝑚 for all non − leaf nodes a ∈ V,(5) 

𝐺𝑎𝑖(𝑘,𝑚) = min{𝑤𝑒 + min{𝐹𝑎𝑖(𝑞, 𝑝) + 𝐺𝑎𝑖+1
(𝑘 − 𝑞,𝑚): 𝑞 = 0,… , 𝑘, 𝑝 = 0,… , 𝑉(𝑇𝑎𝑖)}, 

 min{𝐹𝑎𝑖(𝑞, 𝑝) + 𝐺𝑎𝑖+1
[𝑘 − 𝑞 − 𝑝(𝑚 − 𝑝),𝑚 − 𝑝]: 𝑞 = 0,… , 𝑘, 𝑝 = 0,… ,𝑚}},  (6) 

where 𝑒 is the edge connecting 𝑎 to 𝑎𝑖 . Equation (6) is written for all non-leaf nodes 𝑎𝑖 ∈ 𝑉 with 𝑖 < 𝑠 (non-

rightmost subtrees). For each rightmost subtree 𝑇𝑎𝑠  we specify the initial condition  

 𝐺𝑎𝑠 𝑘,𝑚 =  
𝑤𝑒 + min 𝐹𝑎𝑠 𝑘, 𝑝 : 𝑝 = 0,… , 𝑉 𝑇𝑎𝑠  if 𝑚 = 1,

𝐹𝑎𝑠 𝑘 − 𝑚 + 1,𝑚 − 1 if 𝑚 > 1,
                                 (7) 

where 𝑒 is the edge connecting 𝑎 to 𝑎𝑠 , and for every leaf 𝑎: 

𝐹𝑎(𝑘,𝑚) =  
 0 if 𝑘 = 0,𝑚 = 1,
 ∞ in all other cases.

 (8) 

To explain equations (5)–(8), we apply the same reasoning as in the preceding section for equations 

(1)–(4). 

 For equation (5), note that 𝑇𝑎 = 𝑇𝑎1,𝑠
 for any non-leaf node 𝑎 ∈ 𝑉.  

 For equation (6) note that the edge 𝑒 (which connects 𝑎 to 𝑎𝑖) is the connecting edge between the 

subtrees 𝑇𝑎𝑖  and 𝑇𝑎𝑖+1,𝑠
. There are two cases to compute the value of 𝐺𝑎𝑖(𝑘,𝑚) based on the edge 𝑒, either we 

remove 𝑒 or we have to keep it. If the value of 𝐺𝑎𝑖(𝑘,𝑚) is achieved from the expression 𝑤𝑒 + min{𝐹𝑎𝑖(𝑞, 𝑝) +

𝐺𝑎𝑖+1
(𝑘 − 𝑞,𝑚)}, then besides removing the optimal edges from 𝑇𝑎𝑖  and 𝑇𝑎𝑖+1,𝑠

 we should also remove the edge 

𝑒 and in this case a path surviving in 𝑇𝑎𝑖,𝑠 = 𝑇𝑎𝑖 + 𝑇𝑎𝑖+1,𝑠
 either completely belongs to 𝑇𝑎𝑖  or to 𝑇𝑎𝑖+1 ,𝑠. 

According to the definition of 𝐺𝑎𝑖(𝑘,𝑚), 𝑚 nodes are still connected to 𝑎 and all nodes are inside the subtree 

𝑇𝑎𝑖+1 ,𝑠, whereas at most 𝑉(𝑇𝑎𝑖) nodes can be connected to 𝑎𝑖 . If 𝑞 paths belong to 𝑇𝑎𝑖  exactly 𝑘 − 𝑞 paths belong 

to 𝑇𝑎𝑖+1 ,𝑠. Hence by definition of 𝐹 and 𝐺 the minimum total weight of the edges removed from 𝑇𝑎𝑖,𝑠  will be 

𝐺𝑎𝑖(𝑘,𝑚) = 𝑤𝑒 + min𝑞,𝑝{𝐹𝑎𝑖(𝑞, 𝑝) + 𝐺𝑎𝑖+1
(𝑘 − 𝑞,𝑚)} where 𝑤𝑒  corresponds to the weight of the edge 𝑒. 
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On the other hand, if the edge 𝑒 is not removed, then 𝑎 is connected to 𝑚 nodes of 𝑇𝑎  and a path in 𝑇𝑎𝑖,𝑠  

can be either completely contained in one of 𝑇𝑎𝑖 , 𝑇𝑎𝑖+1,𝑠
, or partially contained in both subtrees because it passes 

through the edge 𝑒. If 𝑎𝑖  is connected to 𝑝 nodes of 𝑇𝑎𝑖  and 𝑎 is connected to 𝑚 − 𝑝 nodes in 𝑇𝑎𝑖+1,𝑠
, the paths 

passing through 𝑎 are exactly 𝑝(𝑚 − 𝑝). If 𝑞 paths survive in 𝑇𝑎𝑖 , 𝑘 − 𝑞 − 𝑝(𝑚 − 𝑝) paths survive in 𝑇𝑎𝑖+1,𝑠
 

and, by definition of 𝐹 and 𝐺, 𝐺𝑎𝑖(𝑘,𝑚) = min𝑞 ,𝑝{𝐹𝑎𝑖(𝑞, 𝑝) + 𝐺𝑎𝑖+1
[𝑘 − 𝑞 − 𝑝(𝑚 − 𝑝),𝑚 − 𝑝]}. 

 The initial condition (7) takes into account that, if the edge 𝑒 (which connects 𝑎 to 𝑎𝑠) is removed 

(𝑚 = 1), the 𝑘 surviving paths of 𝑇𝑎𝑠,𝑠
= 𝑎 + 𝑇𝑎𝑠  must belong entirely to 𝑇𝑎𝑠 , hence the minimum possible 

weight for the edges removed from 𝑇𝑎𝑠,𝑠
 will be 𝐺𝑎𝑠(𝑘,𝑚) = 𝑤𝑒 + min𝑝{𝐹𝑎𝑠(𝑘, 𝑝)}. On the other hand if the 

edge 𝑒 is not removed (𝑚 > 1), we must have 𝑚− 1 nodes connected to 𝑎𝑠 in 𝑇𝑎𝑠  and the number of surviving 

paths is 𝑘 − (𝑚 − 1). Thus 𝐺𝑎𝑠(𝑘,𝑚) = 𝐹𝑎𝑠(𝑘 − 𝑚 + 1,𝑚 − 1) follows. 

 The equation (8) says that since 𝑎 ∈ 𝑉 is a leaf, the only possible condition is when 𝑚 = 1, 𝑘 = 0 and 

all other combinations of 𝑚 and 𝑘 are infeasible and are considered to have an infinite weight.  

The optimal value, assuming the tree is rooted at node 1, is given by  

 O𝑃𝑇 = min{𝑘: 𝐹1(𝑘,𝑚) ≤ 𝑊, 𝑘 = 0,… , 𝑛(𝑛 − 1)/2,𝑚 = 1,… , 𝑛}.(9) 

The optimal solution is recovered by backtracking. 

Proposition 2 CEDP on a tree with unit connection costs and arbitrary edge weights can be solved by 

recursion (5)–(8) in 𝒪(𝑛7) time.  

Proof. For each node 𝑎 ∈ 𝑉 there are at most 𝑛(𝑛 − 1)/2 + 1 = 𝒪(𝑛2) values for 𝑘 and 𝑛 + 1 = 𝒪(𝑛) 

values for 𝑚; this gives 𝒪(𝑛4) values 𝐹𝑎(⋅,⋅) and 𝐺𝑎𝑖(⋅,⋅) to compute. The heaviest computation lies in equation 

(6), where 𝒪(𝑛2) values are possible for 𝑞 and 𝒪(𝑛) for 𝑝. Hence in the worst case a number of operations 

bounded by 𝒪(𝑛) ⋅ 𝒪(𝑛2) ⋅ 𝒪(𝑛4) = 𝒪(𝑛7) are required. 

4  Conclusion 
 

In this paper we investigated the critical edge detection problem over trees. We showed that the cases with unit 

connection costs and unit or arbitrary edge weights are solvable in polynomial time through dynamic 

programming approaches. 
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