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Abstract 
Forecasting for a future has turned to be of practical importance in the world in many areas. Time series 

modeling has grown fundamental importance in forecasting to evaluate the said future events.  Many important 
models have been proposed to improve the accuracy of the future prediction. Weather pattern have been 

changing due to global warming, which has brought a big challenge to the world in affecting economic and 

noneconomic activities. Global warming causes severe weather changes, which are characterized by 

precipitation and temperature. Rainfall prediction is one of the most important and challenging tasks in today’s 

world. The objective of this study was to develop a Bayesian vector autoregressive model to forecast the rainfall 

pattern in Kenya. The Bayesian vector autoregressive model was developed after a diagnostic analysis of the 

rainfall data. The developed model was used for forecasting ten future points were obtained for each zone. The 

Ljung-Box test of residuals shows that the graphs of the naïve method produced forecasts that appear to 

account for all available information. The mean of the residuals was close to zero and there was no 

significant correlation in the residual series. The time plot of the residuals shows that the variation of the 

residuals stays much the same across the historical data. The histogram shows that the residuals were 
normally distributed, which represented Gaussian behavior. The ACF graph shows that the spikes were within 

the required limits, so the conclusion was that the residuals had no autocorrelation among them. The Ljung-

Box test shows that the developed model was good for forecasting. The developed model was used to give the 

prediction error for each value. The Bayesian Vector Autoregressive (BVAR) model gave an  accuracy level of   

88.73%. Finally, the researcher recommends the application of other techniques like random forest and 

bootstrapping technique to check whether the accuracy may further be improved by other models. 
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I. Introduction 
The world is currently generating large datasets in virtually all fields. The amount of data produced and 

recorded has grown enormously in many fields which include; weather recording, biomedical, social network, 

mobile network data, digital archives, and electronic trading, among others. This unanticipated amount of data 

provides unprecedented opportunities for data-driven decision making and knowledge discovery. However, the 

massive sample size and high dimensionality of Big Data introduces unique computational and statistical 

challenges, including scalability and storage bottle neck, noise accumulation, spurious correlation, incidental 

endogeneity and measurement errors. The task of analyzing such large-scale data sets poses significant 

challenges and calls for innovative statistical methods specifically designed for faster speed and higher 
efficiency and accuracy. These challenges are eminent and require a new computational and statistical paradigm 

shift. In spite of the explosion of this big data, specific tools are required for modelling, mining, visualizing and 

predicting to understanding these large data sets. In many situations, it is easy to predict the outcome given the 

cause. However, in science, more often than not, we are faced with the question; when given the outcome of an 

experiment, what are the causes or the probability of the causes compared to other outcomes? Bayesian theory 

provides a framework for plausible reasoning and a concept which is a more powerful and general tool for 

handling this problem. To apply Bayesian, it is required to partition the data into the training and the testing sets, 

where training set is used to develop a model and testing set is for testing the developed model.  This idea of 

Bayesian theory was championed by Jaynes (2003). There has been a growing interest in applying big data to 
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many analytical areas, particularly in time series prediction. The primary model in Multivariate time series 

analysis is the Vector Autoregressive (VAR). This study helps to integrate interdependent variables to develop a 

computational efficient model for VAR prediction using Bayesian model. One of the actively researched areas is 

the weather distribution pattern, about which the understanding is still in its early stages of inference. Numerous 

studies have been conducted to further the knowledge; but Bayesian methodology finds its place to aid in 

obtaining scientific inferences about certain facts from available data. This study provides an account of VAR 

and Bayesian model data analysis applied to weather distribution with a particular focus on rainfall distribution 

patterns in Kenya. The GVAR model is obtained by integrating the regional model through inter-linkages using 

different weather variables that allows for interdependencies. Weather forecasting is the application of science 

and technology in predicting the state of the atmosphere for a future time at a given location. It is carried out by 
collecting quantitative data about the current and past state of the weather conditions. This study used VAR 

model which was a tool for forecasting. The amount of rainfall in a given region is affected by several factors 

which include; temperature, atmospheric pressure, wind speed, relative humidity, radiation, and altitude, among 

others.  

Much of the discussion around climate change focuses on how much the earth would warm up over the 

coming century. Climate change is not only limited to temperature, but also how precipitation (both rain and 

snow) changes would also have a great impact on the global population. This study considered a number of 

variables they included; Rainfall, which was the response variable, and the explanatory variables which were 

Temperature, Humidity, Atmospheric Pressure, Wind Speed, Radiation, and Wind Gust. The main purpose of 

this study was to get more insight about the rainfall patterns in Kenya. Several predictor variables were used in 

this study which were noted to influence rainfall patterns in Kenya. The effects of global warming have greatly 

affected rainfall patterns in Kenya, which have caused adverse economic and social effects.  
Bayesian Vector Autoregressive (BVAR) is used to conduct both classical unconditional as well as 

conditional forecasts. Unconditional forecasts rival those obtained from factor models in accuracy Giannone et 

al. (2015) and are used for a variety of analyses. Conditional forecasts allow for elaborate scenario analyses, 

where the future path of one or more variables is assumed to be known. They are handy tools for analyzing 

possible realizations of policy-relevant variables.  

 

Purpose of the study 

Rainfall is one of the most affected weather components which is virtually influenced by other weather 

components. However, how do we deal with such a problem of variable interaction? The interaction and 

interdependence of variables that constitute response variables are found in many areas. VAR method are used 

to handle the variable inter-linkage which results from the big data. It represents the correlations among a set of 
variables, which are used to analyze certain aspects of the relationship between the variables of interest.  The 

study also used Global VAR which played a key role. The main idea behind the global VAR framework is to 

incorporate inter-linkages between cross-sectional weather zones in a viable way. The integration of regional 

VAR models was used to formulate Global VAR. The next part was to ensure that improved accurate prediction 

was achieved. This was done through the introduction of Bayesian approaches. Bayesian theory provided a 

framework for plausible reasoning, a concept which was more powerful and general, an idea championed by 

Jayes(2003).  Bayesian analysis was a useful technique which used to detect the rainfall patterns and changes 

using the past data to give the present information about what would happen in future.  Thus, a need to develop 

a more accurate prediction model is necessary to overcome this global challenge. Most of the methods employed 

were probabilistic models, they were having a challenge of clearly identifying the part of the weather signal that 

was due to change, making it complex to unravel. Consequently, the probabilistic models had a weakness that 

they could not predict accurately. One way to overcome this weakness is through the use of Bayesian Models. 
The study tackled the problem of predicting adverse rainfall patterns by applying BVAR to the big data. Since 

an accurate forecast of rainfall patterns would save lives, support emergency management teams, mitigate the 

impacts of damages, and prevent economic losses, hence the important of this study. The central idea of the 

Bayesian method is the use of study data to update the state of knowledge about the quantity of interest has been 

studied. This idea in the Bayesian approach is a very intuitive one, namely, that of updating knowledge. The 

state of knowledge about the quantities of interest before or prior to a study is updated by the current study data, 

which yielded the state of knowledge after or posterior to the study. The transformation from prior to posterior is 

achieved by Bayes Theorem, an explicit mathematical expression for the updating process. Since from the 

review of the previous literatures no conclusion has been made on a good weather predictor, this motivated this 

study to explore the idea of the prior-to-posterior transformation by considering the rainfall data set in Kenya 

and using BVAR model. Models for accurate prediction of weather changes in Kenya are identified as a major 
area of concern that this study sought to address. This paper aims at conducting data variable analyzes to 

develop a predictive model of rainfall patterns using Bayesian Vector Autoregressive. 
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II. Literature Review 
Kenya has experienced prolonged droughts and intense flooding every year Mary Kilavi at el. (2018). 

With an increase in such extreme weather events, the glaciers around Mount Kenya have disappeared, leading to 

the drying up of rivers and streams. Weather changes have also led to harvest losses and food shortages, as well 

as landslides, soil degradation, and a loss of biodiversity Otiende and Brian (2009). The diminishing water 

sources and erratic rainfall have reduced the availability of water. However, meteorological phenomena like 

rainfall, normally vary more on local scales. Linacre and Geerts (1997) state that Numerical Weather Prediction 

(NWP) is a simplified set of equations called the primitive equation used to calculate the changes of conditions. 
According to Lutgens and TarBuck (1989), the word “numerical” is misleading since all types of weather 

forecasting are based on some quantitative data and therefore could fit under this area. The large number of 

variables that are included when considering the dynamic atmosphere makes this task extremely difficult. 

Manipulating the large data sets and performing the complex calculations necessary to predict weather and make 

a resolution conclusive enough to make the result useful require the use of some of the most powerful 

computers. In the last forty years, facilitated by advances in observing systems and improvements in the 

understanding and modelling of the various components of the Earth system and supported by enhancements in 

computing capabilities, steady advances in weather and climate prediction have occurred at major operational 

centers across the world, Bauer et al., (2015). Complementing these advances in weather and climate prediction, 

there have been important milestones in advancing the science and operational infrastructure for prediction at 

longer timescales. The first generations of dynamic seasonal forecast systems were implemented at operational 

centers in the mid-1990s, Stockdale et al., (1998). Routine weather and climate forecasts at the global and 
regional levels now provide information critical for the economic welfare of society and for mitigating losses of 

life and property. According to the State of the Climate in 2017, Blunden, Ji. et al., (2018), since 1901, the mean 

annual global (land + ocean) surface air temperature had warmed by 0.7–0.9° Celsius per century, and the rate 

of warming had nearly doubled since 1975 to 1.5–1.8° Celsius per century. A steady rise in temperature has 

triggered important changes in the frequency and intensity of extreme weather and climate events such as heat 

and cold waves, droughts, floods, hurricanes, and so forth over various parts of the globe Intergovernmental 

Panel on Climate Change, (2013). These unprecedented long-term climatic changes have influenced sub 

seasonal and seasonal-to-interannual variability and had a profound impact on the natural environment as well 

as on the life, health and well-being of human society, Coumou and Rahmstorf (2012). 

Bayesian Vector Autoregressive (BVAR) is used to conduct both classical unconditional as well as 

conditional forecasts. Unconditional forecasts rival those obtained from factor models in accuracy Giannone et 
al. (2015) and are used for a variety of analyses. Conditional forecasts allow for elaborate scenario analyses, 

where the future path of one or more variables is assumed to be known. They are a handy tool for analyzing 

possible realizations of policy-relevant variables. Impulse Response Functions (IRF) are a central tool for 

structural analysis. They provided insights into the behavior of weather systems and are another cornerstone of 

inference in VAR models. IRFS served as a representation of shocks hitting the system and are used to analyze 

the reactions of individual variables. The exact propagation of these shocks is of great interest, but meaningful 

interpretation relies on proper identification. BVAR features a framework for identification schemes, with two 

of the most popular schemes currently available; namely short-term zero restriction and sign restriction. The 

former is also known as recursive identification and is achieved via Cholesky decomposition of the Variance 

Covariance Vector (VCOV) matrix by Kilian and Lutkepohl (2017). Additionally, identification via sign 

restrictions comes at the cost of increased uncertainty and a loss of precision for the resulting IRF. Another 
related tool for structural analysis is Forecast Error Variance Decomposition (FEVD).  

When BVAR models are conducted, Granger Causality tests are required to check if there is a 

significant association between variables. Lütkepohl (2005) states that there is Granger Causality, if information 

from one endogenous time series gives the most accurate prediction of another endogenous time series even 

though all other possible information is taken into account. Subsequently, Lütkepohl (2005) meant that the idea 

behind the Granger Causality test is that the effect is generated by the cause, and not the reverse. However, it is 

important to note that the test also identifies the direction of the association between variables and not only 

causality. 

 

III. Methodology 
The study used secondary data, which was sourced from Trans- African Hydro-Meteorological 

Observatory (TAHMO) and Kenya Meteorological stations. The data captured over a period of four years from 

2014 June to June 2017. The data was collected in Kenya a cross five regions, namely; Coastal, Arid, Semi- 

arid, Highlands, and Lake regions. The data was in the form of daily recordings for at least five evenly 

distributed weather stations in each of their respective regions. The study considered the data for seven 

variables, which included; Rainfall, Temperature, Atmospheric pressure, Wind speed, Wind gust, Radiation and 

Relative humidity. The data was converted into CSV files to import it into R statistical software for analysis. To 
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remove scaling, normalization was done through linear scaling technique. It was essential because all variables 

used different units of measurement. Moreover, a variable may have a large impact on the predictor variable 

only because of its numerical scale. The technique of linear scaling, which is also referred to as min-max 

normalization estimation has a formula stated as;  

    
          

               
 

Normalization transformed the data into a common range of between 0 and 1. Thus, removing the scaling effects 

from all variables. 

Let    be an n x 1 random vector that takes values in the domain of real numbers. The evolution of    the 

endogenous variable is described by a system of p-th order difference equations in the VAR(p):   

                        

The vector of stochastic innovation,   , an independent and identically distributed random variable for each t. 

the distribution from which    is drawn which determined the distribution of   , conditional on its past  

                              . 

 The standard assumption is that the errors are Gaussian.    

               . 

This implies that the conditional distribution of     is also Normal. Bayesian inference on the     model amount 

to updating prior beliefs about the VAR parameters, that are seen as stochastic variables, after having observed a 

sample 

                               . 

Prior beliefs about the VAR coefficients are summarized by a probability density function, and updated using 

Bayes’ Law. 

               
                    

         
 ∝               

Define A = [        ]’ as a k x n matrix, with k = np +1. The joint posterior distribution of the VAR(p) 

coefficients p(A,  )  summarizes the initial information about the model parameters, and the sample information 

is the likelihood function. The posterior distribution summarizes the entire information available and is used to 

conduct inference on the VAR parameters. Under the assumption of Gaussian errors, the conditional likelihood 
of VAR is 

                    
 

       
        

 

   

  
 

 
                         

Where  

       
           

      
The likelihood in this equation is written in compact form, by using the apparently unrelated regression 

representation of the VAR. 

         
Using this notation and standard properties of the trace operator, the conditional likelihood function is 

equivalently expressed as 

                      
 

                  
 

 
                   

 

 
                      } 

Where       is the maximum likelihood estimator (MLE) of A, and     the matrix of sums of squared residuals that 

is      (     )     ,                
 
                

The likelihood is written in terms of the vectorized representation of the VAR 

           ∝   ,              

Where    =          and e =         are Tn x 1 vectors, and ∝         is nk x1. In this vectorized notation, 

the likelihood function is written as 

                      
 

        
             

 

 
                  

 

 
 ∝  ∝             ∝  ∝     

Where, consistently, ∝          is nk x 1. The likelihood function is used to update the prior information 

regarding the VAR parameters.  
This ability in Bayesian assists in the predictability of the future or the current situation. If time series 

observations are available for a variable of interest and the data from the past contains information about the 

future development of the available, it is plausible to use a forecast of some function of the data collected in the 

past. As forecasting is one of the main objectives of multiple time series analysis.  Forecast for horizon h ≥ 0 of 

an empirical VAR(p) process are generated recursively according to Box and Jenkins (2008). 

                  +……….+             

              for j <0 
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where, 
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The matrices    are the empirical coefficient matrices of the Wald moving average representation of a stable 

VAR(p) - process and the operator    is the Kronecker product. 

 

IV. Findings 
To ensure that the time series data contains no flaws, is stable, and it is not affected by serial 

correlation, diagnostic analysis was put into use. To achieve these, two tests were conducted to ascertain the 

applicability of the data in this study. The test included Stationarity test and Granger causality test. The first step 

was to obtain the time plot graph. When these tests were determined, the BVAR models were developed and 

forecasting was done and the results presented below. 

 

Time plot graph for the data  

 
Figure 1: Time series graph 

 

Time series graph for zone one 

The plots exhibit a time series in nature. This graph is a sample representation of all other zones as they 

exhibited the same behavior. The time plot shows the seasonality behavior and needs to be differenced and 

tested for stability.  

Stationarity Test  

The test was conducted to establish the stability of the data 

Zone One 
Variables ADF Test 

Statistics 

Phillips-

Perron  

Truncation 

lag 

parameter 

P-Value 

ADF 

P-Value 

P.P 

Remarks 

  -2.285 -22.53 3 0.04631 0.0127 Stationary 

   -2.6144 -12.11 3 0.03372 0.0343 Stationary 

   -2.129 -14.12 3 0.0523 0.0218 Stationary 
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   -3.832 -19.58 3 0.020318 0.033 Stationary 

   -3.893 -10.819 3 0.0274 0.04245 Stationary 

   -2.312 -17.09 3 0.0453 0.01643 Stationary 

   -2.206 -9.378 3 0.04934 0.039382 Stationary 

Table 1: Zone One Stationarity Test 

 
From Table 1, it shows that after differencing once all variables were stationary, and they had a unit root. Thus, 

we make a conclusion that zone one data was stationary. 

Granger Causality Test 

The test was to determine if there was any serial correlation among different variables. It was also used to test if 

one time series could be used to forecast another time series. 

Zone One 

The hypothesis was that rainfall is not a granger caused by the independent variables. 

 Hypothesis Testing for Granger causality Zone one 

 
X*xi F P Null hypothesis rejected 

x1 -9 49254 2.03e-05 ***
 √ 

X2 -9 21369 4.68e-05 ***
 √ 

X3  -9 95712 1.045e-05 ***
 √ 

X4 -9 28929 3.457e-05 
***

 √ 

X5 -9 164550 6.077e-06 ***
 √ 

X6 -9 1417 0.0007054 ***
 √ 

Table 2: Granger Causality test zone, one 

 
Table 2 shows that Granger causality existed since the P- value was statistical significant.  

Residual test 

The test was done by use of Ljung-box to determine if the developed model was fit for forecasting. The test used 

the residuals that were obtained from the model. 

Ljung-box test 

It shows three items; the graph of the residuals, which displays the deviations from the actual values, it also 

displays the ACF graph, which helps to check for uncorrelation in the residuals. It is the standard residual 

diagnostic to check if they behave as white noise and therefore the model can be used for forecasting. In this 

case, the developed model can be used for the intended purposes of forecasting. The last part is the histogram, 

which is used to check for the Gaussian behavior. The bell shape is well displayed in the histogram, and since a 

good forecast method should have normally distributed residuals, then the model would give a good forecast. 
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Zone One: Residual analysis 

 
Figure 2: Ljung-Box test 

 

These graphs show that the naïve method produces forecasts that appear to account for all available 

information. The mean of the residuals is close to zero and there is no significant correlation in the residual 

series. The time plot of the residuals shows that the variation of the residuals stays much the same across the 

historical data, apart from the two values that are beyond 0.2 or -0.2, and therefore the residual variance can 
be treated as constant. The histogram shows that the residuals are normally distributed, which represents 

Gaussian behavior. The ACF graph shows that the spikes are within the required limits, so the conclusion is 

that the residuals have no autocorrelation with the residuals.  

 

Ten points future forecasting. 

Zone one forecasting analysis 
 fcst  lower  upper  CI 

1 0.2435105  -0.3638516944  0.8508728  0.6073622 

2  0.5907031 -0.0723471584  1.2537533  0.6630502 

3 0.3862335  -0.3390821988  1.1115492  0.7253157 

4 0.7652912   0.0008073628  1.5297750  0.7644838 

5 0.5235901  -0.2554446203  1.3026249  0.7790347 

6 0.4256933  -0.3559468631  1.2073335  0.7816402 

7 0.3165178 -0.4687087960  1.1017444  0.7852266 

8 0.3283320  -0.4594947612  1.1161588  0.7878268 

9 0.2991094  -0.4991364994  1.0973553  0.7982459 

10 0.3431256  -0.4608876550  1.1471390  0.8040133 

Table3: Zone one forecasting analysis 
 

The table shows the forecasted values and the intervals between the maximum and minimum values where the 

forecasting values will lie. It also shows the confident interval from the mean forecasted value. 
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Zone one model comparison results of actual and predictive 
 Actual value Predicted value Error  

1 0.09292385  0.09307039 -0.00014653 

2 0.60660266 0.55920463   0.04739802 

3 0.25305800 0.18979422   0.06326378 

4 0.36735499 0.31946700   0.04788799 

5 0.64869131 0.52741294   0.12127836 

6 0.08976720 0.06899376   0.02077343 

7 0.18768907 0.50749100 -0.3198019 

8 0.1282763 0.1236670 0.0046093 

9 0.1582632 0.1406648 0.0175984 

10 0.7836330 0.7575771 0.0260559 

Table 4: The Prediction Accuracy Test 

 

This table above is used to compare the forecasted value from BVAR model and the actual values. It also gives 

the prediction error  for each value. The accuracy level displayed of  88.73% shows that the forecasting is more 

accurate compared to forecasting using VAR model which gave an accuracy of 78.68%. 
 

Holtwinters Forecasting Analysis 

 
Figure 3: HoltWinters forecast for zone one 

 

The figure shows the 80% and 90%, ten months forward forecasting, where the thick blue represents 80% while 

the light blue is 90%. 

Zone Two 

Stationarity Test for Zone Two 
Variables ADF Test 

Statistics 

Phillips-

Perron  

Truncation lag 

parameter 

P-Value 

ADF 

P-Value 

P. P 

Remarks 

  -4.347 -28.68 3 0.0357 0.01 Stationary 

   -1.792 -7.131 3 0.655 0.0268 Stationary 

   -3.285 -26.15 3 0.04825 0.0119 Stationary 

   -3.148  -15.06 3 0.01212 0.0183 Stationary 

   -3.531 -14.94 3 0.0507 0.0190 Stationary 

   -3.914 -27.23 3 0.0235 0.0437 Stationary 

   -2.686 -13.16 3 0.0303 0.0138 Stationary 

Table 5: Zone Two shows that the variables are Stationarity. 

 

Zone Two 

The hypothesis was that rainfall is not a granger causal by temperature, humidity, wind, wind gusts, atmospheric 

pressure, and radiation.  

Hypothesis Testing for Granger causality Zone two 
X*xi F P Null hypothesis rejected 

x1 -6 4.8389 0.007123 **
 √ 

X2 -6 5.4861 0.004149 **
 √ 

X3  -6 1.0541 0.04334
*
 √ 

X4 -6 4.9635 0.006399 **
 √ 
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X5 -6 3.1795 0.03492 * √ 

X6 -6 3.1194 0.03723 * √ 

Table 6: Granger test zone two 

 

Therefore, the Granger causality test for Zone two shows that all variables were having a strong significant 

influence on the causes of the dependent variable X. Their level of significant was less than 0.05. 

 Ljung-Box test 

The Ljung-box test shows three items; the graph of the residuals, which displays the deviations from the actual 

values, it also displays the ACF graph, which helps to check for uncorrelation in the residuals. It is the standard 

residual diagnostic to check if they behave as white noise and therefore the model can be used for forecasting. In 

this case, the developed model can be used for the intended purposes of forecasting. The last part is the 
histogram, which is used to check for the gaussian behavior. The bell shape is well displayed in the histogram, 

and since a good forecast method should have normally distributed residuals, then the model would give a good 

forecast. 

 

 
Figure 4: forecast for zone two 

 

These graphs show that the naïve method produces forecasts that appear to account for all available 
information. The mean of the residuals is close to zero and there is no significant correlation in the residual 

series. The time plot of the residuals shows that the variation of the residuals stays much the same across the 

historical data, and therefore the residual variance can be treated as constant. This can also be seen on the 

histogram of the residuals. The histogram suggests that the residuals have a bell shape, which means that 

they are normally distributed. Consequently, the forecasts from this developed model means that it will be 

quite good. 

 

Ten points future forecasting. 

Zone Two Forecasting Analysis 
 fcst  lower  upper  CI 

1 -0.16261840  -0.4962751  0.1710383  0.3336567 

2 -0.06079294  -0.4543378  0.3327519  0.3935448 

3 0.23503271  -0.2104697  0.6805351  0.4455024 

4 0.27284283  -0.1855569  0.7312426  0.4583997 

5 0.12222782  -0.3651445  0.6096001  0.4873723 

6 0.03352417  -0.4732197  0.5402680  0.5067438 

7 0.07436820  -0.4399424  0.5886788  0.5143106 

8 0.15271189  -0.3665874  0.6720112  0.5192993 

9 0.16461172  -0.3558062  0.6850296  0.5204179 
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10 0.11846059  -0.4034188  0.6403400  0.5218794 

Table 7: Zone Two Forecasting Analysis 

 

The table shows the forecasted values and the intervals between the maximum and minimum values where the 

forecasting values will lie. It also shows the confident interval from the mean forecasted value. 

 

Zone two model comparison results of actual and predictive 
 Actual value Predicted value Error  

1 0.2099334357 0.397611215 -0.187677780 

2 0.0087685612 0.187554743 -0.178786182 

3 0.0009600614 0.136364679 -0.135404617 

4 0.0641001024 0.008314018   0.055786085 

5 0.0698604711 0.004570093   0.065290378 

6 0.0239375320 0.032621564 -0.008684032 

7 0.0501472094 0.435995180 -0.385847971 

8 0.3279249872 0.304371484   0.023553503 

9 0.0451228879 0.071784835 -0.026661948 

10 0.3874017 0.3775781 0.0098236 

Table 8: Zone Two Prediction Error Analysis 

 

This table above is used to compare the forecasted value from BVAR model and the actual values. It also gives 

the prediction error  for each value. The accuracy level displayed of 84.404% shows that the forecasting is more 

accurate compared to forecasting using VAR model which gives an accuracy of 81.68%. 

Holtwinters Forecasting Analysis 
 

 
Figure 5: HoltWinters forecast for zone two 

 

The figure shows the ten months forward forecasting, where the thick blue represents 80% while the light blue is 

90%. The diagram shows a thin range of both sides in the two cases. 

 

V. Conclusions 
The graphs of the initial time series data had seasonality, which prompted a need to difference, where 

after testing the data become stable. The stationarity test was evaluated using two tests, ADF and PP tests. The 

two zones were found to be stationary from the ADF and PP tests which gave a strong statistical significance of 

the p – values obtained. The Ganger Causality test, which was to test if there was any serial correlation and if 

the lag of the predictor variables influenced that of the response variable, was conducted. It was concluded that 

the temperature, relative humidity, atmospheric pressure, wind speed, radiation, and wind gust granger caused 

rainfall. This was clearly given by the statistically significant p-values in the two zones. The Ljung-Box test 

shows that the developed model was good for forecasting. For these purposes, the researchers established and 

estimated a forecasting model from the monthly meteorological variables. Applying Vector Autoregressive 

(VAR) method and the Bayesian method of multivariate time series analysis, it was found that the rainfall 
variable and other variables were interrelated. BVAR was customized for forecasting purposes, using the 

training data, it was possible to test and come up with the predicted values. In zone one, radiation and wind 

speed had very minimal influences on the dependent variable. In zone two, the wind gusts had no effect and thus 

it was dropped.  
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VI. Recommendations 
Since the predictive model has a more accurate prediction, it is recommended that it be adopted in the 

area of Artificial Intelligence. When comparing the weather variables for different regions, the rainfall pattern 

was been influenced by a number of other weather variables, therefore the study recommends that any other 

weather forecast influencing factors should be put into consideration. For further research, the researcher 

recommends the use of more weather variables like topography, cloud cover, sun shine duration, among others 

to improve the accuracy of the predictability. Finally, the researcher recommends the application of other 

techniques like Random Forest and Bootstrapping technique to check whether the accuracy may further be 
improved by other models. 
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