A Review on Jacobsthal and Jacobsthal-Lucas Numbers

M. Narayan Murty
(Visiting Professor in Physics, Department of Physics, GIET University, Gunupur-765022, Dist. Rayagada, Odisha, India)

Abstract

This article presents a review on Jacobsthal and Jacobsthal-Lucas numbers. Some basic properties of Jacobsthal numbers J_{n} and Jacobsthal-Lucas numbers j_{n} are given in this article. Except j_{0}, all J_{n} and j_{n} are odd integers. The relations between Jacbsthal and Jacobsthal- Lucas numbers are mentioned in this article. These numbers can be represented by matrices. Fibonacci numbers can be expressed in terms of Jacobsthal numbers and vice versa. Also the identities satisfied by Jacobsthal numbers are discussed in this article.

Keywords: Jacobsthal numbers, Jacobsthal- Lucas numbers, Fibonacci numbers, Pell numbers, Pell-Lucas numbers.

I. Introduction

The Jacobsthal numbers are integers named after the German mathematician Ernst Jacobsthal. The Jacobsthal sequence $\left\{J_{n}\right\}$ is defined by the recurrence relation

$$
\begin{equation*}
J_{n+2}=J_{n+1}+2 J_{n}, \quad J_{0}=0, J_{1}=1, n \geq 0 \tag{1}
\end{equation*}
$$

Where, J_{n} denotes $n^{\text {th }}$ Jacobsthal number. Putting $n=0$ in (1) we get $J_{2}=J_{1}+2 J_{0}=1$. For $n=1$, we have $J_{3}=J_{2}+2 J_{1}=3$. Similarly, other Jacobsthal numbers can be calculated from (1).

The Jacobsthal-Lucas sequence $\left\{j_{n}\right\}$ is defined by the recurrence relation

$$
\begin{equation*}
j_{n+2}=j_{n+1}+2 j_{n}, \quad j_{0}=2, j_{1}=1, n \geq 0 \tag{2}
\end{equation*}
$$

Where, j_{n} represents $n^{\text {th }}$ Jacobsthal number. Putting $n=0$ in (2) we have $j_{2}=j_{1}+2 j_{0}=5$. For $n=1$, we have $j_{3}=j_{2}+2 j_{1}=7$. Similarly, other Jacobsthal-Lucas numbers can be found out using (2).

The Jacobsthal Oblong sequence $\left\{J_{o n}\right\}$ is defined by the recurrence relation

$$
\begin{equation*}
J_{o n}=J_{n} J_{n+1}, \quad n \geq 0 \tag{3}
\end{equation*}
$$

Where, $J_{0 n}$ denotes $n^{\text {th }}$ Jacobsthal Oblong number.
From (1), (2) and (3), we have the following Table no. 1 for sequences of Jacbsthal numbers J_{n}, Jacobsthal-Lucas numbers j_{n} and Jacobsthal Oblong numbers $J_{o n}$. It is observed from this table, all $J_{n}, j_{n} \& J_{o n}$, except $j_{0}=2$, are odd integers.

Table no.1: Sequences of $J_{n}, j_{n} \& J_{o n}$.

n	0	1	2	3	4	5	6	7	8	9	$10 \ldots \ldots \ldots$
J_{n}	0	1	1	3	5	11	21	43	85	171	$341 \ldots \ldots \ldots$
j_{n}	2	1	5	7	17	31	65	127	257	511	$1025 \ldots \ldots \ldots$
$J_{o n}$	0	1	3	15	55	231	903	3655	14535	58311	$232903 \ldots \ldots \ldots$

The rest of the article is organized as follows. Section-II presents few interesting properties of Jacobsthal and Jacbsthal-Lucas numbers. The interrelationships between Jacobsthal and Jacobsthal-Lucas numbers are mentioned in Section-III. Matrix representations of Jacobsthal and Jacobsthal-Lucas numbers are given in Section-IV. The relation between Jacobsthal numbers and Fibonacci numbers is mentioned in SectionV. The analogy of Jocobsthal and Jacobsthal-Lucas numbers with other number systems is presented in sectionVI. The first set, second set and third set of identities satisfied by Jacobsthal numbers are given in Section-VII, Section-VIII and Section-IX respectively. Finally, conclusion is given in Section-X.

II. Properties of Jacobsthal and Jacobsthal-Lucas numbers

The following few important properties of Jacobsthal and Jacobsthal-Lucas numbers are stated by A.F.Horadam in [1].

1. (a) For odd n, Jacobsthal numbers can be known using the expression

$$
\begin{equation*}
J_{n}=\sum_{s=0}^{\left[\frac{n-1}{2}\right]}\binom{n-1-s}{s} 2^{s} \text { for odd } n \tag{4}
\end{equation*}
$$

Example: Applying the notation $\binom{p}{x}=\frac{p!}{x!(p-x)!}$ in the above expression (4), we have for $n=5$,

$$
\begin{aligned}
J_{5} & =\sum_{s=0}^{2} \frac{(4-s)!}{s!(4-2 s)!} 2^{s} \\
\Rightarrow J_{5} & =\frac{4!}{0!4!} 2^{0}+\frac{3!}{1!2!} 2^{1}+\frac{2!}{2!0!} 2^{2}=1+6+4=11
\end{aligned}
$$

This is true as per the Table no.1.
(b) For even n, Jacobsthal-Lucas numbers can be found out using the expression

$$
\begin{equation*}
j_{n}=\sum_{s=0}^{\left[\frac{n}{2}\right]}\left(\frac{n}{n-s}\right)\binom{n-s}{s} 2^{s} \text { for even } n \tag{5}
\end{equation*}
$$

Example: Substituting $n=6$ in the above expression (5), we get

$$
\begin{aligned}
j_{6} & =\sum_{s=0}^{3}\left(\frac{6}{6-s}\right) \frac{(6-s)!}{s!(6-s))!} 2^{s} \\
& =\frac{6}{6} \times \frac{6!}{0!6!} 2^{0}+\frac{6}{5} \times \frac{5!}{1!4!} 2^{1}+\frac{6}{4} \times \frac{4!}{2!2!} 2^{2}+\frac{6}{3} \times \frac{3!}{3!0!} 2^{3} \\
& =1+12+36+16=65
\end{aligned}
$$

This is true as per the Table no.1.
2. (a) Jacobsthal numbers can be found out using the generating function

$$
\begin{equation*}
\sum_{i=1}^{\infty} J_{i} x^{i-1}=\left(1-x-2 x^{2}\right)^{-1} \tag{6}
\end{equation*}
$$

Using the Binomial expansion in RHS of the above expression (6), we get
$J_{1}+J_{2} x+J_{3} x^{2}+J_{4} x^{3}+\cdots$

$$
\begin{aligned}
& =1+(-1)\left(-x-2 x^{2}\right)+\frac{(-1)(-1-1)}{2!}\left(-x-2 x^{2}\right)^{2}+\frac{(-1)(-1-1)(-1-2)}{3!}\left(-x-2 x^{2}\right)^{3}+\cdots \\
& =1+\left(x+2 x^{2}\right)+\left(x^{2}+4 x^{4}+4 x^{3}\right)+\left(x^{3}+8 x^{6}+3 x^{2} \times 2 x^{2}+3 x \times 4 x^{4}\right)+\cdots \\
& =1+x+3 x^{2}+5 x^{3}+\cdots
\end{aligned}
$$

Comparing both sides of the above expression, we get

$$
J_{1}=1, J_{2}=1, J_{3}=3, J_{4}=5, \ldots
$$

Thus the Jacobsthal numbers are calculated from its generating function (6).
(b) Jacobsthal- Lucas numbers can be known using the generating function

$$
\begin{equation*}
\sum_{i=1}^{\infty} j_{i} x^{i-1}=(1+4 x)\left(1-x-2 x^{2}\right)^{-1} \tag{7}
\end{equation*}
$$

Using the Binomial expansion in RHS of the above expression (7), we obtain
$J_{1}+J_{2} x+J_{3} x^{2}+J_{4} x^{3}+\cdots=(1+4 x)\left(1+x+3 x^{2}+5 x^{3}+\cdots\right)$

$$
\begin{aligned}
& =(1+4 x)+(1+4 x) x+(1+4 x) 3 x^{2}+(1+4 x) 5 x^{3}+\cdots \\
& =1+5 x+7 x^{2}+17 x^{3}+\cdots
\end{aligned}
$$

Comparing both sides of the above expression, we have

$$
j_{1}=1, j_{2}=5, j_{3}=7, j_{4}=17, \ldots
$$

Thus the Jacobsthal-Lucas numbers are determined from its generating function (7).
3. (a) Jacobsthal numbers satisfy the Binet formula

$$
\begin{equation*}
J_{n}=\frac{\alpha^{n}-\beta^{n}}{3}=\frac{2^{n}-(-1)^{n}}{3} \text { for } n \geq 0 \tag{8}
\end{equation*}
$$

Where α and β are the roots of quadratic equation

$$
x^{2}-x-2=0
$$

Solving the above quadratic equation, we get $\alpha=2$ and $\beta=-1$.
(b)The Binet formula for Jacobsthal-Lucas sequence is given by

$$
\begin{equation*}
j_{n}=\alpha^{n}+\beta^{n}=2^{n}+(-1)^{n} \text { for } n \geq 0 \tag{9}
\end{equation*}
$$

4. (a) Jacobsthal numbers satisfy the Simson formula

$$
\begin{equation*}
J_{n+1} J_{n-1}-J_{n}^{2}=(-1)^{n} 2^{n-1} \tag{10}
\end{equation*}
$$

Proof: Using the Binet formula (8), we have

$$
\begin{aligned}
J_{n+1} J_{n-1}-J_{n}^{2} & =\frac{\left(\alpha^{n+1}-\beta^{n+1}\right)\left(\alpha^{n-1}-\beta^{n-1}\right)-\left(\alpha^{n}-\beta^{n}\right)^{2}}{9} \\
& =\frac{\left(\alpha^{2 n}-\alpha^{n+1} \beta^{n-1}-\beta^{n+1} \alpha^{n-1}+\beta^{2 n}\right)-\left(\alpha^{2 n}+\beta^{2 n}-2 \alpha^{n} \beta^{n}\right)}{9} \\
& =\frac{-\alpha^{n+1} \beta^{n-1}-\beta^{n+1} \alpha^{n-1}+2 \alpha^{n} \beta^{n}}{9}=\frac{-\alpha^{n-1} \beta^{n-1}\left(\alpha^{2}+\beta^{2}-2 \alpha \beta\right)}{9} \\
& =\frac{-\alpha^{n-1} \beta^{n-1}(\alpha-\beta)^{2}}{9}
\end{aligned}
$$

Substituting $\alpha=2$ and $\beta=-1$ in RHS of above expression, we get

$$
J_{n+1} J_{n-1}-J_{n}^{2}=-2^{n-1}(-1)^{n-1}=(-1)^{n} 2^{n-1}
$$

Hence the Simson formula for Jacobsthal numbers is proved.
(b) Jacobsthal-Lucas numbers satisfy the Simson formula

$$
\begin{equation*}
j_{n+1} j_{n-1}-j_{n}^{2}=9(-1)^{n-1} 2^{n-1} \tag{11}
\end{equation*}
$$

Proof: Applying the Binet formula (9), we get

$$
\begin{aligned}
j_{n+1} j_{n-1}-j_{n}^{2} & =\left(\alpha^{n+1}+\beta^{n+1}\right)\left(\alpha^{n-1}+\beta^{n-1}\right)-\left(\alpha^{n}+\beta^{n}\right)^{2} \\
& =\left(\alpha^{2 n}+\alpha^{n+1} \beta^{n-1}+\beta^{n+1} \alpha^{n-1}+\beta^{2 n}\right)-\left(\alpha^{2 n}+\beta^{2 n}+2 \alpha^{n} \beta^{n}\right) \\
& =\alpha^{n+1} \beta^{n-1}+\beta^{n+1} \alpha^{n-1}-2 \alpha^{n} \beta^{n}
\end{aligned}
$$

$$
=\alpha^{n-1} \beta^{n-1}(\alpha-\beta)^{2}
$$

Substituting $\alpha=2$ and $\beta=-1$ in RHS of above expression, we obtain

$$
j_{n+1} j_{n-1}-j_{n}^{2}=9 \times 2^{n-1}(-1)^{n-1}
$$

Hence the Simson formula for Jacobsthal-Lucas numbers is proved.
5. (a) Jacobsthal numbers satisfy the summation formula

$$
\begin{equation*}
\sum_{i=2}^{n} J_{i}=\frac{J_{n+2}-3}{2} \text { for } n \geq 0 \tag{12}
\end{equation*}
$$

This formula can be verified by taking an example. For $n=6$,
LHS of (12) $=J_{2}+J_{3}+J_{4}+J_{5}+J_{6}=1+3+5+11+21=41$
RHS of $(12)=\frac{J_{8}-3}{2}=\frac{85-3}{2}=41$
Since LHS = RHS, (12) is verified.
(b) Jacobsthal-Lucas numbers satisfy the summation formula

$$
\begin{equation*}
\sum_{i=1}^{n} j_{i}=\frac{j_{n+2}-5}{2} \quad \text { for } n \geq 0 \tag{13}
\end{equation*}
$$

This formula can be verified by taking an example. For $n=6$,
LHS of (13) $=j_{1}+j_{2}+j_{3}+j_{4}+j_{5}+j_{6}=1+5+7+17+31+65=126$
RHS of (13) $=\frac{j_{8}-5}{2}=\frac{257-5}{2}=126$
As LHS = RHS, (13) is verified.
6. (a) Jacobsthal numbers satisfy the relation

$$
\begin{equation*}
3\left(J_{n+1}+J_{n}\right)=3 \times 2^{n} \tag{14}
\end{equation*}
$$

For $n=5$, LHS $=3\left(J_{6}+J_{5}\right)=3(21+11)=96$ and RHS $=3 \times 2^{5}=96$. Hence (14) is verified.
(b) Jacobsthal-Lucas numbers satisfy the relation

$$
\begin{equation*}
j_{n+1}+j_{n}=3 \times 2^{n} \tag{15}
\end{equation*}
$$

For $n=5, \mathrm{LHS}=j_{6}+j_{5}=65+31=96$ and RHS $=3 \times 2^{5}=96$. Thus (15) is verified.

III. Interrelationships between Jacobsthal and Jacobsthal-Lucas numbers

The following interrelationships between Jacobsthal numbers and Jacobsthal-Lucas numbers are given in [1]. These relations are verified by taking examples and showing that the LHS of a relation is equal to its RHS. Table no. 1 is referred for the values of Jacobsthal and Jacobsthal-Lucas numbers.
$1 . \quad j_{n} J_{n}=J_{2 n}$
Proof: Using Binet formulas (8) and (9) in LHS of above expression(16), we get

$$
\begin{equation*}
j_{n} J_{n}=\frac{\left(\alpha^{n}+\beta^{n}\right)\left(\alpha^{n}-\beta^{n}\right)}{3}=\frac{\alpha^{2 n}-\beta^{2 n}}{3}=J_{2 n}=\text { RHS of (16) [By eqn. (8)] } \tag{16}
\end{equation*}
$$

Hence, (16) is proved. To verify (16) consider the example $n=3$. Then LHS $=j_{3} J_{3}=7 \times 3=21$ and RHS $=J_{6}=21$. Since LHS $=$ RHS $=21$, the relation (16) is verified.
2. $j_{n}=J_{n+1}+2 J_{n-1}$

For $n=5, \mathrm{LHS}=j_{5}=31$ and $\mathrm{RHS}=J_{6}+2 J_{4}=21+2 \times 5=31$.
3. $9 J_{n}=j_{n+1}+2 j_{n-1}$

For $n=6, \mathrm{LHS}=9 J_{6}=9 \times 21=189$ and RHS $=j_{7}+2 j_{5}=127+2 \times 31=189$.
4. $\quad j_{n+1}+j_{n}=3\left(J_{n+1}+J_{n}\right)$

For $n=5$, LHS $=j_{6}+j_{5}=65+31=96$ and RHS $=3\left(J_{6}+J_{5}\right)=3(21+11)=96$.
5. $\quad j_{n+1}-j_{n}=3\left(J_{n+1}-J_{n}\right)+4(-1)^{n+1}=2^{n}+2(-1)^{n+1}$

For $n=5$,
$j_{n+1}-j_{n}=j_{6}-j_{5}=65-31=34$,
$3\left(J_{n+1}-J_{n}\right)+4(-1)^{n+1}=3\left(J_{6}-J_{5}\right)+4(-1)^{6}=3(21-11)+4=34$ and
$2^{n}+2(-1)^{n+1}=2^{5}+2(-1)^{6}=32+2=34$.
Since the above three expressions have same value for $n=5$, the relation (20) is verified.
6. $\quad j_{n+1}-2 j_{n}=3\left(2 J_{n}-J_{n+1}\right)=3(-1)^{n+1}$

For $n=4$,
$j_{n+1}-2 j_{n}=j_{5}-2 j_{4}=31-2 \times 17=-3$,
$3\left(2 J_{n}-J_{n+1}\right)=3\left(2 \times J_{4}-J_{5}\right)=3(2 \times 5-11)=-3$ and
$3(-1)^{n+1}=3(-1)^{5}=-3$.
. As the above three expressions have same value for $n=4$, the relation (21) is verified
7. $2 j_{n+1}+j_{n-1}=3\left(2 J_{n+1}+J_{n-1}\right)+6(-1)^{n+1}$

For $n=4$, LHS $=2 j_{5}+j_{3}=2 \times 31+7=69$ and RHS $=3\left(2 \times J_{5}+J_{3}\right)+6(-1)^{5}=3(2 \times 11+3)-6=$ 69.
8. $j_{n+r}+j_{n-r}=3\left(j_{n+r}+J_{n-r}\right)+4(-1)^{n-r}=2^{n-r}\left(2^{2 r}+1\right)+2(-1)^{n-r}$

For $n=4$ and $r=2$,

$$
\begin{align*}
& j_{n+r}+j_{n-r}=j_{6}+j_{2}=65+5=70, \\
& 3\left(J_{n+r}+J_{n-r}\right)+4(-1)^{n-r}=3\left(J_{6}+J_{2}\right)+4(-1)^{2}=3(21+1)+4=70 \\
& \text { and } 2^{n-r}\left(2^{2 r}+1\right)+2(-1)^{n-r}=2^{2}\left(2^{4}+1\right)+2(-1)^{2}=70 . \tag{24}
\end{align*}
$$

Since the above three expressions have same value for $n=4$ and $r=2$, the relation (23) is verified.
9. $j_{n+r}-j_{n-r}=3\left(j_{n+r}-j_{n-r}\right)=2^{n-r}\left(2^{2 r}-1\right)$

For $n=4$ and $r=2$,
$j_{n+r}-j_{n-r}=j_{6}-j_{2}=65-5=60$,
$3\left(J_{n+r}-J_{n-r}\right)=3\left(J_{6}-J_{2}\right)=3(21-1)=60$ and
$2^{n-r}\left(2^{2 r}-1\right)=2^{2}\left(2^{4}-1\right)=60$.
As the above three expressions have same value for $n=4 \& r=2$, the relation (24) is verified.
10. $\quad j_{n}=3 J_{n}+2(-1)^{n}$

For $n=5, \mathrm{LHS}=j_{5}=31$ and RHS $=3 J_{5}+2(-1)^{5}=3 \times 11-2=31$.
11. $3 J_{n}+j_{n}=2^{n+1}$

For $n=6$, LHS $=3 J_{6}+j_{6}=3 \times 21+65=128$ and $\operatorname{RHS}=2^{7}=128$.
12. $\quad J_{n}+j_{n}=2 J_{n+1}$

For $n=6, \mathrm{LHS}=J_{6}+j_{6}=21+65=86$ and RHS $=2 J_{7}=2 \times 43=86$.
13.

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\frac{J_{n+1}}{J_{n}}\right)=\lim _{n \rightarrow \infty}\left(\frac{j_{n+1}}{j_{n}}\right)=2 \tag{27}
\end{equation*}
$$

For $n=9, \frac{J_{n+1}}{J_{n}}=\frac{J_{10}}{J_{9}}=\frac{341}{171} \approx 1.994$ and for $=14, \frac{J_{n+1}}{J_{n}}=\frac{J_{15}}{J_{14}}=\frac{10923}{5461} \approx 2.001$.
For $n=8, \frac{j_{n+1}}{j_{n}}=\frac{j_{9}}{j_{8}}=\frac{511}{257} \approx 1.988$ and for $=9, \frac{j_{n+1}}{j_{n}}=\frac{j_{10}}{j_{9}}=\frac{1025}{511} \approx 2.005$.
The above examples show that as n increases, both the ratios $\frac{J_{n+1}}{J_{n}}$ and $\frac{j_{n+1}}{j_{n}}$ approach to 2 . Hence the relation (28) is verified.
14.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{j_{n}}{J_{n}}=3 \tag{29}
\end{equation*}
$$

For $n=9, \frac{j_{9}}{J_{9}}=\frac{511}{171} \approx 2.988$.
For $n=10, \frac{j_{10}}{J_{10}}=\frac{1025}{341} \approx 3.005$.
The above examples show that as n increases $\frac{j_{n}}{j_{n}}$ become closer and closer to 3 . Hence the relation (29) is verified.
15. $\quad j_{n+2} j_{n-2}-j_{n}^{2}=-9\left(J_{n+2} J_{n-2}-J_{n}^{2}\right)=9(-1)^{n} 2^{n-2}$

Proof: Using the Binet formula (9) in left terms of the above expression (30), we get

$$
\begin{align*}
j_{n+2} j_{n-2}-j_{n}^{2} & =\left(\alpha^{n+2}+\beta^{n+2}\right)\left(\alpha^{n-2}+\beta^{n-2}\right)-\left(\alpha^{n}+\beta^{n}\right)^{2} \tag{30}\\
& =\alpha^{n+2} \beta^{n-2}+\beta^{n+2} \alpha^{n-2}-2 \alpha^{n} \beta^{n} \tag{30a}\\
& =\alpha^{n-2} \beta^{n-2}\left(\alpha^{2}-\beta^{2}\right)^{2} \\
& =2^{n-2}(-1)^{n-2} \times 9=9(-1)^{n} 2^{n-2} \\
& {[\because \alpha=2 \& \beta=-1] }
\end{align*}
$$

Using the Binet formula (8) in the middle terms of the expression (30), we have

$$
\begin{align*}
-9\left(J_{n+2} J_{n-2}-J_{n}^{2}\right) & =-\left(\alpha^{n+2}-\beta^{n+2}\right)\left(\alpha^{n-2}-\beta^{n-2}\right)-\left(\alpha^{n}-\beta^{n}\right)^{2} \\
& =\alpha^{n+2} \beta^{n-2}+\beta^{n+2} \alpha^{n-2}-2 \alpha^{n} \beta^{n} \\
& =\alpha^{n-2} \beta^{n-2}\left(\alpha^{2}-\beta^{2}\right)^{2} \\
& =2^{n-2}(-1)^{n-2} \times 9=9(-1)^{n} 2^{n-2} \tag{30~b}
\end{align*}
$$

$$
[\because \alpha=2 \& \beta=-1]
$$

As the values in (30 a) and (30 b) are equal, Eqn. (30) is proved. To verify (30) take an example with $n=6$.
Then
$j_{n+2} j_{n-2}-j_{n}^{2}=j_{8} j_{4}-j_{6}^{2}=257 \times 17-65^{2}=4369-4225=144$,
$-9\left(J_{n+2} J_{n-2}-J_{n}^{2}\right)=-9\left(J_{8} J_{6}-J_{6}^{2}\right)=-9\left(85 \times 5-21^{2}\right)=-9(425-441)=144$
and $9(-1)^{n} 2^{n-2}=9(-1)^{6} 2^{4}=144$.
Since the above three expressions have same value for $=6$, the relation (30) is verified.
16. $\quad J_{m} j_{n}+J_{n} j_{m}=2 J_{m+n}$

This relation same as (16) for $m=n$. When $m=4 \& n=5$, LHS $=J_{4} j_{5}+J_{5} j_{4}=5 \times 31+11 \times 17=155+$ $187=342$ and RHS $=2 J_{9}=2 \times 171=342$.
17.

$$
\begin{equation*}
j_{m} j_{n}+9 J_{m} J_{n}=2 j_{m+n} \tag{32}
\end{equation*}
$$

For $m=4 \& n=5$, LHS $=j_{4} j_{5}+9 j_{4} J_{5}=17 \times 31+9 \times 5 \times 11=527+495=1022$ and RHS $=2 j_{9}=$ $2 \times 511=1022$.
18.

$$
\begin{equation*}
j_{n}^{2}+9 j_{n}^{2}=2 j_{2 n} \tag{33}
\end{equation*}
$$

This relation is same as the previous relation (32) for $m=n$. If $n=4$, LHS $=j_{4}^{2}+9 J_{4}^{2}=17^{2}+9 \times 5^{2}=$ $289+225=514$ and RHS $=2 j_{8}=2 \times 257=514$.
19. $J_{m} j_{n}-J_{n} j_{m}=(-1)^{n} 2^{n+1} J_{m-n}$

For $m=5 \& n=4$, LHS $=J_{5} j_{4}-J_{4} j_{5}=11 \times 17-5 \times 31=187-155=32$ and RHS $=(-1)^{4} \times 2^{5} J_{1}=$ $1 \times 32 \times 1=32$.
20. $\quad j_{m} j_{n}-9 J_{m} J_{n}=(-1)^{n} 2^{n+1} j_{m-n}$

For $m=5 \& n=4$, LHS $=j_{5} j_{4}-9 j_{5} J_{4}=31 \times 17-9 \times 11 \times 5=527-495=32$ and RHS $=(-1)^{4} \times$ $2^{5} j_{1}=1 \times 32 \times 1=32$.
21. $j_{n}^{2}-9 J_{n}^{2}=(-1)^{n} 2^{n+1} j_{0}$

This relation is same as the previous relation (35) for $m=n$. If $n=4$, LHS $=j_{4}^{2}-9 J_{4}^{2}=17^{2}-9 \times 5^{2}=$ $289-225=64$ and RHS $=(-1)^{4} 2^{5} j_{0}=1 \times 32 \times 2=64$.

IV. Matrix representations of Jacobsthal and Jacobsthal-Lucas numbers

The matrix description of Jacobsthal and Jacobsthal-Lucas numbers is given by Koke and Bozkurt in [2]. These authors have defined Jacobsthal F-matrix as follows:

$$
F=\left(\begin{array}{ll}
1 & 2 \tag{37}\\
1 & 0
\end{array}\right)
$$

and proved for any natural number n that

$$
F^{n}=\left(\begin{array}{cc}
J_{n+1} & 2 J_{n} \tag{38}\\
J_{n} & 2 J_{n-1}
\end{array}\right)
$$

The Jacobsthal F-matrix (37) can be generated by taking $n=1$ in (38).Thus we have

$$
F=\left(\begin{array}{ll}
J_{2} & 2 J_{1} \\
J_{1} & 2 J_{0}
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right)
$$

Jacobsthal numbers satisfy the following matrix relation.

$$
\begin{equation*}
\binom{J_{n+1}}{J_{n}}=F\binom{J_{n}}{J_{n-1}} \tag{39}
\end{equation*}
$$

This relation can be verified by taking $n=2$. Using (37) in (39), we have

$$
\text { RHS of }(39)=\left(\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right)\binom{J_{2}}{J_{1}}=\binom{J_{2}+2 J_{1}}{J_{2}}=\binom{J_{3}}{J_{2}}\left[\because J_{3}=J_{2}+2 J_{1} \text { for } n=1 \text { in }(1)\right]
$$

Jacobsthal-Lucas numbers satisfy the following matrix relation.

$$
=\text { LHS of (39) }
$$

$$
\begin{equation*}
\binom{j_{n+1}}{j_{n}}=F\binom{j_{n}}{j_{n-1}} \tag{40}
\end{equation*}
$$

The above relation can be verified by taking $n=3$. Using (37) in (40), we get

$$
\begin{gathered}
\operatorname{RHS} \text { of }(40)=\left(\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right)\binom{j_{3}}{j_{2}}=\binom{j_{3}+2 j_{2}}{j_{3}}=\binom{j_{4}}{j_{3}}\left[\because j_{4}=j_{3}+2 j_{2} \text { for } n=2 \text { in }(2)\right] \\
=\operatorname{LHS} \text { of }(40)
\end{gathered}
$$

The matrix relation (38) can be verified by taking $n=3$. Then,
LHS of $(38)=F^{3}=F \times F \times F=\left(\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right)=\left(\begin{array}{ll}3 & 2 \\ 1 & 2\end{array}\right)\left(\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right)=\left(\begin{array}{ll}5 & 6 \\ 3 & 2\end{array}\right)$
RHS of (38) $=\left(\begin{array}{ll}J_{4} & 2 J_{3} \\ J_{3} & 2 J_{2}\end{array}\right)=\left(\begin{array}{ll}5 & 2 \times 3 \\ 3 & 2 \times 1\end{array}\right)=\left(\begin{array}{ll}5 & 6 \\ 3 & 2\end{array}\right)$
Since LHS $=$ RHS, relation (38) is verified.

V. Relation between Jacobsthal numbers and Fibonacci numbers

If F_{n} denotes the $n^{\text {th }}$ Fibonacci number, the Fibonacci sequence is given the following recurrence relation.

$$
\begin{equation*}
F_{n+2}=F_{n}+F_{n+1}, \quad n \geq 0, \quad F_{0}=1 \& F_{1}=1 \tag{41}
\end{equation*}
$$

The Fibonacci sequence using the above relation (41) is written as

$$
\begin{equation*}
0,1,1,2,3,5,8,13,21,34,55,89,144,233, \ldots \ldots \ldots \tag{42}
\end{equation*}
$$

Any Fibonacci number is a product of two Jacobsthal numbers. That is,

$$
\begin{equation*}
F_{k}=J_{m} J_{n} \tag{43}
\end{equation*}
$$

This relation is satisfied for the following sets of integers (k, m, n).
$(k, m, n) \equiv(1,1,1),(2,1,1),(1,1,2),(2,1,2),(1,2,2),(2,2,2),(4,1,3),(4,2,3),(5,1,4),(5,2,4),(10,4,5),(8,1,6)$, $(8,2,6)$, etc.
For example, if $(k, m, n) \equiv(10,4,5)$, the relation $F_{10}=J_{4} J_{5}$ is satisfied since $F_{10}=55, J_{4}=5 \& J_{5}=11$.
Similarly, any Jacobsthal number is a product of two Fibonacci numbers.

$$
\begin{equation*}
J_{k}=F_{m} F_{n} \tag{44}
\end{equation*}
$$

The above relation is satisfied by the following sets of integers.
$(k, m, n) \equiv(1,1,1),(2,1,1),(1,2,1),(2,2,1),(1,2,2),(2,2,2),(3,4,1),(3,4,2),(4,5,1),(4,5,2),(6,8,1),(6,8,2)$, etc. For example, if $(k, m, n) \equiv(6,8,2)$, the relation $J_{6}=F_{8} F_{2}$ is satisfied since $J_{6}=21, F_{8}=21 \& F_{2}=1$.

VI. Analogy of Jacobsthal and Jacobsthal-Lucas numbers with other number systems

The sequence of Fibonacci numbers $\left\{F_{n}\right\}$ was defined by the recurrence relation (41). The sequences of Lucas numbers $\left\{L_{n}\right\}$ and Pell numbers $\left\{P_{n}\right\}$ and Pell-Lucas numbers $\left\{Q_{n}\right\}$ are defined by the following recurrence relations.

$$
\begin{align*}
& L_{n}=L_{n-1}+L_{n-2}, n \geq 2 \text { with } L_{0}=2 \text { and } L_{1}=1 \tag{45}\\
& P_{n}=2 P_{n-1}+P_{n-2}, n \geq 2 \text { with } P_{0}=0 \text { and } P_{1}=1 \tag{46}\\
& Q_{n}=2 Q_{n-1}+Q_{n-2}, n \geq 2 \text { with } Q_{0}=0 \text { and } Q_{1}=1 \tag{47}
\end{align*}
$$

Some values of sequences $\left\{L_{n}\right\},\left\{P_{n}\right\} \&\left\{Q_{n}\right\}$ are given in following Table no.2.
Table no.2: Values of $\left\{L_{n}\right\}\left\{P_{n}\right\} \&\left\{Q_{n}\right\}$.

n	0	1	2	3	4	5	6	7	8	9	$10 \ldots \ldots \ldots$
L_{n}	2	1	3	4	7	11	18	29	47	76	$123 \ldots \ldots \ldots$
P_{n}	0	1	2	5	12	29	70	169	408	985	$2378 \ldots \ldots \ldots$
Q_{n}	2	2	6	14	34	82	198	478	1154	2786	$6726 \ldots \ldots$

The relation between Jacobsthal and Jacobsthal-Lucas numbers is given by

$$
J_{n} j_{n}=J_{2 n}
$$

(48) [Refer eqn.(16)]

The above relation (48) is analogous to the following relation between Fobonacci and Lucas numbers

$$
\begin{equation*}
F_{n} L_{n}=F_{2 n} \tag{49}
\end{equation*}
$$

This relation can be verified using the Fibonacci sequence (42) and the values of Lucas numbers given in Table no.2.

Similarly the relation (48) is also analogous to the following relation between Pell and Pell-Lucas numbers

$$
\begin{equation*}
P_{n} Q_{n}=P_{2 n} \tag{50}
\end{equation*}
$$

The above relation (50) can be verified using the values of Pell and Pell-Lucas numbers given in Table no.2.

VII. First set of Identities satisfied by Jacobsthal numbers

The following set of identities satisfied by Jacobsthal numbers are stated in [3]. These identities are verified by taking examples and showing the LHS of identity is equal to its RHS. The Table no. 1 is referred for the values of Jacobsthal numbers. Let

$$
\begin{align*}
& \beta_{n}=\frac{2^{4 n+2}-1}{3} \tag{51}\\
& \gamma_{n}=\frac{2^{4 n+2}+1}{5} \tag{52}\\
& \tau_{n}=\frac{2^{4 n}-1}{15} \tag{53}\\
& \eta_{n}=2^{4 n+4}+1 \tag{54}\\
& \sigma_{n}=5 J_{4 n+3} \tag{55}\\
& \delta_{n}=\frac{2^{4 n+1}+1}{3} \tag{56}\\
& v_{n}=\frac{5\left(2^{4 n+5}+1\right)}{3} \tag{57}\\
& \mu_{n}=\frac{2^{4 n+3}+1}{3} \tag{58}
\end{align*}
$$

Using the above expressions (51)-(58) and Table no. 1 for Jacobsthal numbers, the values of $\beta_{n}, \gamma_{n}, \tau_{n}, \eta_{n}, \sigma_{n}, \delta_{n}, v_{n} \& \mu_{n}$ for $n=0 \& 1$ are calculated. These values are given in the following Table no.3.

Table no.3: Values of $\beta_{n}, \gamma_{n}, \tau_{n}, \eta_{n}, \sigma_{n}, \delta_{n}, v_{n} \& \mu_{n}$ for $n=0 \& 1$

$\begin{array}{ll}\beta_{0} & \beta_{1}\end{array}$	$\begin{array}{ll}\gamma_{0} & \gamma_{1}\end{array}$	$\begin{array}{ll}\tau_{0} & \tau_{1}\end{array}$	$\begin{array}{ll}\eta_{0} & \eta_{1}\end{array}$	$\sigma_{0} \quad \sigma_{1}$	$\delta_{0} \quad \delta_{1}$	$v_{0} \quad v_{1}$	μ_{0}	μ_{1}
$1 \quad 21$	113	$0 \quad 1$	$17 \quad 257$	15215	111	55855	3	43

Jacobsthal numbers satisfy the following identities.

1. For every $n \geq 0$ and $k \geq 0$,

$$
\begin{equation*}
\left(\beta_{n+1} \gamma_{n+1}-\beta_{n} \gamma_{n}\right) J_{2 k}^{2}+8\left(\beta_{n+1} \tau_{n+1}-\beta_{n} \tau_{n}\right) J_{2 k}=J_{2 k+4 n+4}^{2}+J_{2 k+4 n+2}^{2}-J_{4 n+4}^{2}-J_{4 n+2}^{2} \tag{59}
\end{equation*}
$$

Verification: This identity is verified by taking an example.

$$
\text { For } \begin{aligned}
n=0 \& k=2, \text { LHS } & =\left(\beta_{1} \gamma_{1}-\beta_{0} \gamma_{0}\right) J_{4}^{2}+8\left(\beta_{1} \tau_{1}-\beta_{0} \tau_{0}\right) J_{4} \\
& =(21 \times 13-1 \times 1) 5^{2}+8(21 \times 1-1 \times 0) 5 \\
& =(273-1) 25+8 \times 21 \times 5=7640
\end{aligned}
$$

For $n=0 \& k=2, \operatorname{RHS}=J_{8}^{2}+J_{6}^{2}-J_{4}^{2}-J_{2}^{2}=85^{2}+21^{2}-5^{2}-1^{2}$

$$
=7225+441-25-1=7640
$$

[Refer Tables no. $1 \&$ no.3]
This identity is verified since $\mathrm{LHS}=$ RHS
2. For every $n \geq 0$ and $k \geq 0$,

$$
\begin{align*}
\left(\tau_{n+2} \eta_{n+1}\right. & \left.-\tau_{n+1} \eta_{n}\right) J_{2 k}^{2}+8\left(\beta_{n+1} \tau_{n+2}-\beta_{n} \tau_{n+1}\right) J_{2 k} \\
& =J_{2 k+4 n+6}^{2}+J_{2 k+4 n+4}^{2}-J_{4 n+6}^{2}-J_{4 n+4}^{2} \tag{60}
\end{align*}
$$

Verification:

For $n=0 \& k=1$, LHS $=\left(\tau_{2} \eta_{1}-\tau_{1} \eta_{0}\right) J_{2}^{2}+8\left(\beta_{1} \tau_{2}-\beta_{0} \tau_{1}\right) J_{2}$
$\operatorname{Using}(53), \tau_{2}=\frac{2^{8}-1}{15}=17$. Then,
LHS $=(17 \times 257-1 \times 17) 1^{2}+8(21 \times 17-1 \times 1) 1=(4369-17)+8(357-1)$
$=4352+8 \times 356=7200$
For $n=0 \& k=1$, RHS $=J_{8}^{2}+J_{6}^{2}-J_{6}^{2}-J_{4}^{2}=J_{8}^{2}-J_{4}^{2}=85^{2}-5^{2}=7200$
[Refer Tables no. $1 \&$ no.3]
This identity is verified since LHS = RHS.
3. For every $m \geq 0 \& k \geq 0$,

$$
\begin{align*}
& \sum_{i=0}^{m} J_{2 k+2 i}^{2}=\sum_{i=0}^{m} J_{2 i}^{2}+\beta_{n} J_{2 k}\left[\gamma_{n} J_{2 k}+8 \tau_{n}\right] \tag{61}\\
& \text { if } m=2 n \text { and } n=0,1,2, \ldots . . \text { etc. }
\end{align*}
$$

Verification: when $n=0$, we have $m=2 n=0$, then
LHS $=J_{2 k}^{2}$
RHS $=J_{0}^{2}+\beta_{0} J_{2 k}\left[\gamma_{0} J_{2 k}+8 \tau_{0}\right]$
Since, $J_{0}=0, \beta_{0}=1, \gamma_{0}=1 \& \tau_{0}=0$, we get
RHS $=J_{2 k}^{2}$
This identity is verified since LHS = RHS.
4. For every $m \geq 0 \& k \geq 0$,

$$
\begin{equation*}
\sum_{i=0}^{m} J_{2 k+2 i}^{2}=\sum_{i=0}^{m} J_{2 i}^{2}+\tau_{n+1} J_{2 k}\left[\eta_{n} J_{2 k}+8 \beta_{n}\right] \tag{62}
\end{equation*}
$$

$$
\text { if } m=2 n+1 \text { and } n=0,1,2, \ldots . \text { etc. }
$$

Verification: when $n=0$, we have $m=2 n+1=1$, then

$$
\begin{align*}
& \text { LHS }=\sum_{i=0}^{1} J_{2 k+2 i}^{2}=J_{2 k}^{2}+J_{2 k+2}^{2} \\
& \text { RHS }=\sum_{i=0}^{1} J_{2 i}^{2}+\tau_{1} J_{2 k}\left[\eta_{0} J_{2 k}+8 \beta_{0}\right]=J_{0}^{2}+J_{2}^{2}+\tau_{1} J_{2 k}\left[\eta_{0} J_{2 k}+8 \beta_{0}\right] \\
& \text { Since, } J_{0}=0, J_{2}=1, \tau_{1}=1, \eta_{0}=17 \& \beta_{0}=1 \text {, we obtain } \\
& \text { RHS }=1+J_{2 k}\left[17 J_{2 k}+8\right]=1+17 J_{2 k}^{2}+8 J_{2 k} \\
& \qquad=J_{2 k}^{2}+\left(4 J_{2 k}+1\right)^{2} \tag{63}
\end{align*}
$$

For $k \geq 0$, Jacobsthal numbers satisfy the relation

$$
\begin{equation*}
J_{2 k}=4 J_{2 k-2}+1 \text { [Refer Eqn.(71)] } \tag{64}
\end{equation*}
$$

Replacing k by $(k+1)$ in (63) we get

$$
\begin{equation*}
J_{2 k+2}=4 J_{2 k}+1 \tag{65}
\end{equation*}
$$

Using (65) in (63), RHS $=J_{2 k}^{2}+J_{2 k+2}^{2}$, which is also the LHS of (62). Hence the above identity (62) is verified. 5. For $k \geq 0$,

$$
\begin{equation*}
J_{2 k+1}^{2}=16 J_{2 k} J_{2 k-2}+8 J_{2 k}+1 \tag{66}
\end{equation*}
$$

Verification: Let $k=3$, then LHS $=J_{7}^{2}=43^{2}=1849$ and RHS $=16 J_{6} J_{4}+8 J_{6}+1=16 \times 21 \times 5+8 \times$ $21+1=1680+168+1=1849$. As LHS = RHS, this identity is verified.
6. For $k \geq 0$,

$$
\begin{equation*}
J_{2 k+1}^{2}+J_{2 k+3}^{2}=10+8 J_{2 k}\left(34 J_{2 k-2}+15\right) \tag{67}
\end{equation*}
$$

Verification: When $k=2$, LHS $=J_{5}^{2}+J_{7}^{2}=11^{2}+43^{2}=121+1849=1970$ and RHS $=10+$ $8 J_{4}\left(34 J_{2}+15\right)=10+8 \times 5(34 \times 1+15)=1970$. Since LHS $=$ RHS, this identity is verified.
7. For every $m \geq 0 \& k \geq 0$,

$$
\begin{equation*}
\sum_{i=0}^{m} J_{2 k+2 i+1}^{2}=\sum_{i=0}^{m} J_{2 i+1}^{2}+8 \beta_{n} J_{2 k}\left[2 \gamma_{n} J_{2 k-2}+\delta_{n}\right] \tag{68}
\end{equation*}
$$

if $m=2 n$ and $n=0,1,2, \ldots$. etc.

Verification: when $n=0$, we have $m=2 n=0$, then
LHS $=J_{2 k+1}^{2}$
RHS $=J_{1}^{2}+8 \beta_{0} J_{2 k}\left[2 \gamma_{0} J_{2 k-2}+\delta_{0}\right]$
Now taking $k=1$, we get
LHS $=J_{3}^{2}=3^{2}=9$
RHS $=J_{1}^{2}+8 \beta_{0} J_{2}\left[2 \gamma_{0} J_{0}+\delta_{0}\right]=1^{2}+8 \times 1 \times 1[2 \times 1 \times 0+1]=9$
This identity is verified since LHS $=$ RHS.
8. For every $m \geq 0 \& k \geq 0$,

$$
\begin{equation*}
\sum_{i=0}^{m} J_{2 k+2 i+1}^{2}=\sum_{i=0}^{m} J_{2 i+1}^{2}+8 \tau_{n+1} J_{2 k}\left[2 \eta_{n} J_{2 k-2}+\sigma_{n}\right] \tag{69}
\end{equation*}
$$

$$
\text { if } m=2 n+1 \text { and } n=0,1,2, \ldots . \text { etc. }
$$

Verification: when $n=0$, we have $m=2 n+1=1$, then
LHS $=\sum_{i=0}^{1} J_{2 k+2 i+1}^{2}=J_{2 k+1}^{2}+J_{2 k+3}^{2}$
RHS $=\sum_{i=0}^{1} J_{2 i+1}^{2}+8 \tau_{1} J_{2 k}\left[2 \eta_{0} J_{2 k-2}+\sigma_{0}\right]$
Now taking $k=1$, we get
LHS $=J_{3}^{2}+J_{5}^{2}=3^{2}+11^{2}=9+121=130$
RHS $=J_{1}^{2}+J_{3}^{2}+8 \tau_{1} J_{2}\left[2 \eta_{0} J_{0}+\sigma_{0}\right]$
$=1^{2}+3^{2}+8 \times 1 \times 1[2 \times 17 \times 0+15]=130$
This identity is verified since LHS $=$ RHS.
9. For $k \geq 0$,

$$
\begin{equation*}
J_{2 k+1}=8 J_{2 k-2}+3 \tag{70}
\end{equation*}
$$

Proof:
Replacing n by $(2 k+1)$ in the Binet formula (8), we obtain

$$
\begin{array}{rlr}
J_{2 k+1} & =\frac{2^{2 k+1}-(-1)^{2 k+1}}{3} \\
& =\frac{2^{2 k+1}+(-1)^{2 k+2}}{3} \\
& =\frac{2^{2 k+1}+1}{3} \\
& =\frac{2^{2 k-2} \times 2^{3}-8+9}{3} & \\
& =8\left(\because \text { For } k \geq 0,(-1)^{2 k+2}=1\right] \\
& =8\left[\frac{2^{2 k-2}-1}{3}\right)+3 & \\
3 & &
\end{array}
$$

$\Rightarrow J_{2 k+1}=8 J_{2 k-2}+3 \quad[$ Using Binet formula (8)]
Hence (70) is proved.
10. For every $k \geq 0$,

$$
\begin{equation*}
J_{2 k}=4 J_{2 k-2}+1 \tag{71}
\end{equation*}
$$

Proof: Using the Binet formula (8) the RHS can be written as

$$
\begin{aligned}
\text { RHS }=4 J_{2 k-2}+1 & =4\left[\frac{2^{2 k-2}-(-1)^{2 k-2}}{3}\right]+1=\frac{2^{2 k}-4(-1)^{2 k-2}+3}{3} \\
& =\frac{2^{2 k}-4+3}{3} \quad\left[\because \text { For } k \geq 0,(-1)^{2 k-2}=1\right] \\
& =\frac{2^{2 k}-1}{3} \\
& =\frac{2^{2 k}-(-1)^{2 k}}{3} \quad\left[\because \text { For } k \geq 0,(-1)^{2 k}=1\right] \\
& =J_{2 k}[\text { By Binet formula }(8)] \\
& =\text { LHS }
\end{aligned}
$$

Hence (71) is proved.
11. For every $k \geq 0$,

$$
\begin{equation*}
J_{2 k} J_{2 k+1}+J_{2 k+2} J_{2 k+3}=3+J_{2 k}\left(136 J_{2 k-2}+55\right) \tag{72}
\end{equation*}
$$

Verification: When $k=1$, LHS $=J_{2} J_{3}+J_{4} J_{5}=1 \times 3+5 \times 11=58$ and RHS $=3+J_{2}\left(136 J_{0}+55\right)=$ $3+1(136 \times 0+55)=58$. Since LHS $=$ RHS, this identity is verified.
12. For every $k \geq 0$,

$$
\begin{equation*}
J_{2 k+2}^{2}-J_{2 k}^{2}=1+J_{2 k}\left(60 J_{2 k-2}+23\right) \tag{73}
\end{equation*}
$$

Verification: When $k=2$, LHS $=J_{6}^{2}-J_{4}^{2}=21^{2}-5^{2}=441-25=416$ and RHS $=1+J_{4}\left(60 J_{2}+\right.$ $23=1+560 \times 1+23=416$. As LHS $=$ RHS, this identity is verified.
13. For every $k \geq 0$,

$$
\begin{equation*}
J_{2 k+3} J_{2 k+2}-J_{2 k+1} J_{2 k}=3+J_{2 k}\left(120 J_{2 k-2}+49\right) \tag{74}
\end{equation*}
$$

Verification: When $k=2$, LHS $=J_{7} J_{6}-J_{5} J_{4}=43 \times 21-11 \times 5=903-55=848$ and RHS $=3+J_{4}\left(120 J_{2}+49\right)=3+5(120 \times 1+49)=848$. Since LHS $=$ RHS, this identity is verified.
14. For every $n \geq 0 \& k \geq 0$,

$$
\begin{align*}
J_{2 k}\left[8 \left(\beta_{n+1} \gamma_{n+1}\right.\right. & \left.\left.-\beta_{n} \gamma_{n}\right) J_{2 k-2}+\beta_{n+1} \mu_{n+1}-\beta_{n} \mu_{n}\right] \\
& =J_{2 k+4 n+5} J_{2 k+4 n+4}+J_{2 k+4 n+3} J_{2 k+4 n+2}-J_{4 n+5} J_{4 n+4}-J_{4 n+3} J_{4 n+2} \tag{75}
\end{align*}
$$

Verification: For $n=0 \& k=2$,

$$
\begin{aligned}
\mathrm{LHS} & =J_{4}\left[8\left(\beta_{1} \gamma_{1}-\beta_{0} \gamma_{0}\right) J_{2}+\beta_{1} \mu_{1}-\beta_{0} \mu_{0}\right] \\
& =5[8(21 \times 13-1 \times 1) 1+21 \times 43-1 \times 3]=15380
\end{aligned}
$$

$$
\mathrm{RHS}=J_{9} J_{8}+J_{7} J_{6}-J_{5} J_{4}-J_{3} J_{2}=171 \times 85+43 \times 21-11 \times 5-3 \times 1=15380
$$

As LHS = RHS, this identity is verified.
15. For every $m \geq 0 \& k \geq 0$,
$\sum_{i=0}^{m} J_{2 k+2 i} J_{2 k+2 i+1}=\sum_{i=0}^{m} J_{2 i} J_{2 i+1}+\beta_{n} J_{2 k}\left[8 \gamma_{n} J_{2 k-2}+\mu_{n}\right]$

$$
\begin{equation*}
\text { if } m=2 n \text { and } n=0,1,2, \ldots . \text { etc. } \tag{76}
\end{equation*}
$$

Verification: For $n=1 \& k=2$,
$\mathrm{LHS}=\sum_{i=0}^{2} J_{4+2 i} J_{5+2 i}=J_{4} J_{5}+J_{6} J_{7}+J_{8} J_{9}=5 \times 11+21 \times 43+85 \times 171$

$$
=55+903+14535=15493
$$

$$
\begin{aligned}
\mathrm{RHS} & =\sum_{i=0}^{2} J_{2 i} J_{2 i+1}+\beta_{1} J_{4}\left[8 \gamma_{1} J_{2}+\mu_{1}\right] \\
& =J_{0} J_{1}+J_{2} J_{3}+J_{4} J_{5}+\beta_{1} J_{4}\left[8 \gamma_{1} J_{2}+\mu_{1}\right] \\
& =0 \times 1+1 \times 3+5 \times 11+21 \times 5[8 \times 13 \times 1+43]=15493
\end{aligned}
$$

As LHS $=$ RHS, this identity is verified.
16. For every $m \geq 0 \& k \geq 0$,

$$
\begin{align*}
& \sum_{i=0}^{m} J_{2 k+2 i} J_{2 k+2 i+1}=\sum_{i=0}^{m} J_{2 i} J_{2 i+1}+\tau_{n+1} J_{2 k}\left[8 \eta_{n} J_{2 k-2}+v_{n}\right] \tag{77}\\
& \text { if } m=2 n+1 \text { and } n=0,1,2, \ldots . \text { etc. } \\
& \text { Verification: For } n=1 \& k=2, \\
& \begin{aligned}
\text { LHS }=\sum_{i=0}^{3} J_{4+2 i} J_{5+2 i} & =J_{4} J_{5}+J_{6} J_{7}+J_{8} J_{9}+J_{10} J_{11} \\
& =5 \times 11+21 \times 43+85 \times 171+341 \times 683 \\
& =55+903+14535+232903=248396
\end{aligned} \\
& \begin{aligned}
& \text { RHS }= \sum_{i=0}^{3} J_{2 i} J_{2 i+1}+ \\
&=\tau_{2} J_{4}\left[8 \eta_{1} J_{2}+v_{1}\right] \\
&= J_{0} J_{1}+J_{2} J_{3}+J_{4} J_{5}+J_{6} J_{7}+\tau_{2} J_{4}\left[8 \eta_{1} J_{2}+v_{1}\right] \\
&= \times 1+1 \times 3+5 \times 11+21 \times 43+17 \times 5[8 \times 257 \times 1+855] \\
&=3+55+903+85[2056+855]=248396
\end{aligned}
\end{align*}
$$

Since LHS $=$ RHS, this identity is verified.
17. For every $k \geq 0$,

$$
\begin{equation*}
J_{2 k+1}^{2}=1+8 J_{2 k}\left[2 J_{2 k-2}+1\right] \tag{78}
\end{equation*}
$$

Verification: For $k=2$,
LHS $=J_{5}^{2}=11^{2}=121$
RHS $=1+8 J_{4}\left[2 J_{2}+1\right]=1+8 \times 5[2 \times 1+1]=121$
As LHS $=$ RHS, this identity is verified.
18. For every $k \geq 0$,

$$
\begin{equation*}
J_{2 k+3}^{2}-J_{2 k+1}^{2}=8+8 J_{2 k}\left[30 J_{2 k-2}+13\right] \tag{79}
\end{equation*}
$$

Verification: For $k=2$,
LHS $=J_{7}^{2}-J_{5}^{2}=43^{2}-11^{2}=1849-121=1728$
RHS $=8+8 J_{4}\left[30 J_{2}+13\right]=8+8 \times 5[30 \times 1+13]=1728$
VIII. Second set of Identities satisfied by Jacobsthal numbers

The following set of identities satisfied by Jacobsthal numbers are mentioned in [3]. These identities are verified by taking examples and showing the LHS of identity is equal to its RHS. The Table no. 1 is referred for the values of Jacobsthal numbers.

Define

$$
\begin{align*}
& \begin{array}{r}
\tau_{0}^{*}=1 \text { and }\left(\tau_{n+1}^{*}-\tau_{n}^{*}\right)=2^{4 n+3}\left(50 \times 2^{4 n}-1\right) \\
\text { for } n=0,1,2, \ldots . \text { etc. } . \\
\gamma_{n}^{*}=\frac{2^{8 n+4}+1}{17} \text { for } n=0,1,2, \ldots . \text { etc. } \\
\beta_{0}^{*}=23 \text { and }\left(\beta_{n+1}^{*}-\beta_{n}^{*}\right)=2^{4 n+5}\left(200 \times 2^{4 n}-1\right) \\
\text { for } n=0,1,2, \ldots . \text { etc. } \\
\eta_{n}^{*}=\frac{2^{8 n+8}-1}{17} \text { for } n=0,1,2, \ldots . \text { etc. } .
\end{array} . \tag{80}
\end{align*}
$$

Jacobsthal numbers satisfy the following identities.

1. For every $n \geq 0$ and $k \geq 0$,
$J_{2 k}\left\{4\left(\gamma_{n+1}^{*}-\gamma_{n}^{*}\right) J_{2 k-2}+\tau_{n+1}^{*}-\tau_{n}^{*}\right\}=J_{2 k+4 n+4}^{2}-J_{2 k+4 n+2}^{2}-J_{4 n+4}^{2}+J_{4 n+2}^{2}$
Verification: For $n=1 \& k=2$,

$$
\begin{equation*}
\overline{\mathrm{LHS}}=J_{4}\left\{4\left(\gamma_{2}^{*}-\gamma_{1}^{*}\right) J_{2}+\tau_{2}^{*}-\tau_{1}^{*}\right\} \tag{84}
\end{equation*}
$$

Substituting $n=1$ in (80), we get

$$
\left(\tau_{2}^{*}-\tau_{1}^{*}\right)=2^{7}\left(50 \times 2^{4}-1\right)=102272
$$

Applying (81) we obtain

$$
\begin{equation*}
\gamma_{1}^{*}=\frac{2^{12}+1}{17}=241 \text { and } \gamma_{2}^{*}=\frac{2^{20}+1}{17}=61681 \tag{86}
\end{equation*}
$$

Using (86) \& (87) in (85) we have
LHS $=5\{4(61681-241) \times 1+102272\}=1740160$

$$
\begin{equation*}
\left[J_{4}=5 \& J_{2}=1\right] \tag{88}
\end{equation*}
$$

Now, for $n=1 \& k=2$, RHS of (84) is given by
$\begin{aligned} \text { RHS } & =J_{12}^{2}-J_{10}^{2}-J_{8}^{2}+J_{6}^{2}=1365^{2}-341^{2}-85^{2}+21^{2} \\ & =1863225-116281-7225+441=1740160\end{aligned}$
The values of LHS in (88) is equal to the value of RHS in (89). Hence this identity is verified.
2. For every $n \geq 0$ and $k \geq 0$,

$$
\begin{equation*}
J_{2 k}\left\{4\left(\eta_{n+1}^{*}-\eta_{n}^{*}\right) J_{2 k-2}+\beta_{n+1}^{*}-\beta_{n}^{*}\right\}=J_{2 k+4 n+6}^{2}-J_{2 k+4 n+4}^{2}+J_{4 n+4}^{2}-J_{4 n+6}^{2} \tag{90}
\end{equation*}
$$

Verification: For $n=0 \& k=2$,

$$
\begin{equation*}
\mathrm{LHS}=J_{4}\left\{4\left(\eta_{1}^{*}-\eta_{0}^{*}\right) J_{2}+\beta_{1}^{*}-\beta_{0}^{*}\right\} \tag{91}
\end{equation*}
$$

Using (83) we obtain

$$
\begin{equation*}
\eta_{0}^{*}=\frac{2^{8}-1}{17}=15 \text { and } \eta_{1}^{*}=\frac{2^{16}-1}{17}=3855 \tag{92}
\end{equation*}
$$

Substituting $n=0$ in (82), we get

$$
\begin{equation*}
\left(\beta_{1}^{*}-\beta_{0}^{*}\right)=2^{5}(200-1)=6368 \tag{93}
\end{equation*}
$$

Using (92) \& (93) in (91) we get
LHS $=5\{4(3855-15) \times 1+6368\}=108640$

$$
\begin{equation*}
\left[J_{4}=5 \& J_{2}=1\right] \tag{94}
\end{equation*}
$$

Now, for $n=0 \& k=2$, RHS of (90) is given by
$\begin{aligned} \mathrm{RHS} & =J_{10}^{2}-J_{8}^{2}+J_{4}^{2}-J_{6}^{2}=341^{2}-85^{2}+5^{2}-21^{2} \\ & =116281-7225+25-441=108640\end{aligned}$
The values of LHS in (94) and RHS in (95) are equal. Hence this identity is verified
3. For every $m \geq 0 \& k \geq 0$,
$\sum_{i=0}^{m}(-1)^{i} J_{2 k+2 i}^{2}=\sum_{i=0}^{m}(-1)^{i} J_{2 i}^{2}+J_{2 k}\left[4 \gamma_{n}^{*} J_{2 k-2}+\tau_{n}^{*}\right]$
if $m=2 n$ and $n=0,1,2, \ldots$.etc.
Verification: when $n=1$, we have $m=2 n=2$, then
LHS $=\sum_{i=0}^{2}(-1)^{i} J_{2 k+2 i}^{2}$ and RHS $=\sum_{i=0}^{2}(-1)^{i} J_{2 i}^{2}+J_{2 k}\left[4 \gamma_{1}^{*} J_{2 k-2}+\tau_{1}^{*}\right]$
Now taking $k=2$, we get
LHS $=\sum_{i=0}^{2}(-1)^{i} J_{4+2 i}^{2}=J_{4}^{2}-J_{6}^{2}+J_{8}^{2}=5^{2}-21^{2}+85^{2}$
$=25-441+7225=6809$
RHS $=\sum_{i=0}^{2}(-1)^{i} J_{2 i}^{2}+J_{4}\left[4 \gamma_{1}^{*} J_{2}+\tau_{1}^{*}\right]$

$$
\begin{equation*}
=J_{0}^{2}-J_{2}^{2}+J_{4}^{2}+J_{4}\left[4 \gamma_{1}^{*} J_{2}+\tau_{1}^{*}\right] \tag{97}
\end{equation*}
$$

Substituting $n=0$ in (80), we have

$$
\begin{gather*}
\tau_{1}^{*}-\tau_{0}^{*}=2^{3}(50-1)=392 \\
\Rightarrow \tau_{1}^{*}=392+\tau_{0}^{*}=392+1=393 \tag{98}
\end{gather*}
$$

Using (87),(98) and the values of Jacobsthal numbers in (97), we obtain
RHS $=0^{2}-1^{2}+5^{2}+5[4 \times 241 \times 1+393]=6809$
This identity is verified since the value of either LHS or RHS is equal to 6809.
4. For every $m \geq 0 \& k \geq 0$,
$\sum_{i=0}^{m}(-1)^{i} J_{2 k+2 i}^{2}=\sum_{i=0}^{m}(-1)^{i} J_{2 i}^{2}-J_{2 k}\left[4 \eta_{n}^{*} J_{2 k-2}+\beta_{n}^{*}\right]$

$$
\begin{equation*}
\text { if } m=2 n+1 \text { and } n=0,1,2, \ldots \ldots \text { etc. } \tag{99}
\end{equation*}
$$

Verification: when $n=1$, we have $m=2 n+1=3$, then
LHS $=\sum_{i=0}^{3}(-1)^{i} J_{2 k+2 i}^{2}$ and RHS $=\sum_{i=0}^{3}(-1)^{i} J_{2 i}^{2}-J_{2 k}\left[4 \eta_{1}^{*} J_{2 k-2}+\beta_{1}^{*}\right]$
Now taking $k=2$, we get
LHS $=\sum_{i=0}^{3}(-1)^{i} J_{4+2 i}^{2}=J_{4}^{2}-J_{6}^{2}+J_{8}^{2}-J_{10}^{2}=5^{2}-21^{2}+85^{2}-341^{2}$
$=25-441+7225-116281=-109472$
RHS $=\sum_{i=0}^{3}(-1)^{i} J_{2 i}^{2}-J_{4}\left[4 \eta_{1}^{*} J_{2}+\beta_{1}^{*}\right]$
$=J_{0}^{2}-J_{2}^{2}+J_{4}^{2}-J_{6}^{2}-J_{4}\left[4 \eta_{1}^{*} J_{2}+\beta_{1}^{*}\right]$
Substituting $n=0$ in (82), we have

$$
\begin{align*}
& \beta_{1}^{*}-\beta_{0}^{*}=2^{5}(200-1)=6368 \\
\Rightarrow & \beta_{1}^{*}=6368+\beta_{0}^{*}=6368+23=6391 \tag{101}
\end{align*}
$$

Using (92),(101) and the values of Jacobsthal numbers in (100), we get
RHS $=0^{2}-1^{2}+5^{2}-21^{2}-5[4 \times 3855 \times 1+6391]=-109472$
This identity is verified since the value of either LHS or RHS is equal to (-109472).

IX. Third set of Identities satisfied by Jacobsthal numbers

The following set of identities satisfied by Jacobsthal numbers are mentioned in [3]. These identities are verified by taking examples and showing the LHS of identity is equal to its RHS. The Table no. 1 is referred for the values of Jacobsthal numbers.
Define
$\tau_{0}^{* *}=1$ and $\left(\tau_{n+1}^{* *}-\tau_{n}^{* *}\right)=101 \times 2^{4 n+1}+25 \times 2^{4 n+3}\left(2^{4 n}-1\right)$
for $n=0,1,2, \ldots$. etc.
$\beta_{0}^{* *}=13$ and $\left(\beta_{n+1}^{* *}-\beta_{n}^{* *}\right)=401 \times 2^{4 n+3}+100 \times 2^{4 n+5}\left(2^{4 n}-1\right)$
for $n=0,1,2, \ldots$. etc.
$\beta_{0}^{* * *}=49$ and $\left(\beta_{n+1}^{* * *}-\beta_{n}^{* * *}\right)=799 \times 2^{4 n+4}+25 \times 2^{4 n+9}\left(2^{4 n}-1\right)$

$$
\begin{equation*}
\text { for } n=0,1,2, \ldots . . \text { etc. } \tag{104}
\end{equation*}
$$

Jacobsthal numbers satisfy the following identities.

1. For every $n \geq 0 \& k \geq 0$,

$$
\begin{equation*}
8 J_{2 k}\left\{2\left(\gamma_{n+1}^{*}-\gamma_{n}^{*}\right) J_{2 k-2}+\tau_{n+1}^{* *}-\tau_{n}^{* *}\right\}=J_{2 k+4 n+5}^{2}-J_{2 k+4 n+3}^{2}-J_{4 n+5}^{2}+J_{4 n+3}^{2} \tag{105}
\end{equation*}
$$

Verification: For $n=1 \& k=2$,

$$
\begin{equation*}
\mathrm{LHS}=8 J_{4}\left\{2\left(\gamma_{2}^{*}-\gamma_{1}^{*}\right) J_{2}+\tau_{2}^{* *}-\tau_{1}^{* *}\right\} \tag{106}
\end{equation*}
$$

Substituting $n=1$ in (102), we get

$$
\begin{align*}
\tau_{2}^{* *}-\tau_{1}^{* *} & =101 \times 2^{5}+25 \times 2^{7}\left(2^{4}-1\right) \\
& =101 \times 32+25 \times 128 \times 15=51232 \tag{107}
\end{align*}
$$

Using (87) and (107) in (106), we get
LHS $=8 \times 5\{2(61681-241) \times 1+51232\}=6964480$
Now for $n=1 \& k=2$,
$\mathrm{RHS}=J_{13}^{2}-J_{11}^{2}-J_{9}^{2}+J_{7}^{2}$

$$
\begin{aligned}
& =2371^{2}-683^{2}-171^{2}+43^{2} \\
& =7458361-466489-29241+1849=6964480
\end{aligned}
$$

This identity is verified since the value of either LHS or RHS is equal to 6964480.
2. For every $n \geq 0 \& k \geq 0$,

$$
\begin{equation*}
8 J_{2 k}\left\{2\left(\eta_{n+1}^{*}-\eta_{n}^{*}\right) J_{2 k-2}+\beta_{n+1}^{* *}-\beta_{n}^{* *}\right\}=J_{2 k+4 n+7}^{2}-J_{2 k+4 n+5}^{2}+J_{4 n+5}^{2}-J_{4 n+7}^{2} \tag{108}
\end{equation*}
$$

Verification: For $n=1 \& k=2$,

$$
\begin{equation*}
\mathrm{LHS}=8 J_{4}\left\{2\left(\eta_{2}^{*}-\eta_{1}^{*}\right) J_{2}+\beta_{2}^{* *}-\beta_{1}^{* *}\right\} \tag{109}
\end{equation*}
$$

From (83), we have

$$
\begin{equation*}
\eta_{2}^{*}=\frac{2^{24}-1}{17}=\frac{16777216-1}{17}=986895 \tag{110}
\end{equation*}
$$

Substituting $n=1$ in (103) we get

$$
\begin{equation*}
\beta_{2}^{* *}-\beta_{1}^{* *}=401 \times 2^{7}+100 \times 2^{9}\left(2^{4}-1\right)=819328 \tag{111}
\end{equation*}
$$

Using (92), (110) and (111) in (109) we obtain
LHS $=8 \times 5\{2(986895-3855) \times 1+819328\}=111416320$
Now for $n=1 \& k=2$,
RHS $=J_{15}^{2}-J_{13}^{2}+J_{9}^{2}-J_{11}^{2}$

$$
=10923^{2}-2731^{2}+171^{2}-683^{2}=111416320
$$

This identity is verified since the value of either LHS or RHS is equal to 111416320.
3. For every $m \geq 0 \& k \geq 0$,
$\sum_{i=0}^{m}(-1)^{i} J_{2 k+2 i+1}^{2}=\sum_{i=0}^{m}(-1)^{i} J_{2 i+1}^{2}+8 J_{2 k}\left[2 \gamma_{n}^{*} J_{2 k-2}+\tau_{n}^{* *}\right]$

$$
\begin{equation*}
\text { if } m=2 n \text { and } n=0,1,2, \ldots . \text { etc. } \tag{112}
\end{equation*}
$$

Verification: when $n=1$, we have $m=2 n=2$, then
LHS $=\sum_{i=0}^{2}(-1)^{i} J_{2 k+2 i+1}^{2}$ and RHS $=\sum_{i=0}^{2}(-1)^{i} J_{2 i+1}^{2}+8 J_{2 k}\left[2 \gamma_{1}^{*} J_{2 k-2}+\tau_{1}^{* *}\right]$
Now taking $k=2$, we get
LHS $=\sum_{i=0}^{2}(-1)^{i} J_{4+2 i+1}^{2}=J_{5}^{2}-J_{7}^{2}+J_{9}^{2}=11^{2}-43^{2}+171^{2}=27513$
RHS $=\sum_{i=0}^{2}(-1)^{i} J_{2 i+1}^{2}+8 J_{4}\left[2 \gamma_{1}^{*} J_{2}+\tau_{1}^{* *}\right]$
$=J_{1}^{2}-J_{3}^{2}+J_{5}^{2}+8 J_{4}\left[2 \gamma_{1}^{*} J_{2}+\tau_{1}^{* *}\right]$
Substituting $n=0$ in (102), we get
$\tau_{1}^{* *}-\tau_{0}^{* *}=101 \times 2+25 \times 2^{3}\left(2^{0}-1\right)=202$
$\Rightarrow \tau_{1}^{* *}=202+\tau_{0}^{* *}=202+1=203$ [Refer (102)]
Using the value of γ_{1}^{*} from (87) and the above value of $\tau_{1}^{* *}$ and the values of Jacobsthal numbers in (113), we have
RHS $=1^{2}-3^{2}+11^{2}+8 \times 5[2 \times 241 \times 1+203]=27513$
This identity is verified since the value of either LHS or RHS is equal to 27513.
4. For every $m \geq 0 \& k \geq 0$,
$\sum_{i=0}^{m}(-1)^{i} J_{2 k+2 i+1}^{2}=\sum_{i=0}^{m}(-1)^{i} J_{2 i+1}^{2}-8 J_{2 k}\left[2 \eta_{n}^{*} J_{2 k-2}+\beta_{n}^{* *}\right]$
if $m=2 n+1$ and $n=0,1,2, \ldots .$. etc.
Verification: when $n=1$, we have $m=2 n+1=3$, then
LHS $=\sum_{i=0}^{3}(-1)^{i} J_{2 k+2 i+1}^{2}$ and RHS $=\sum_{i=0}^{3}(-1)^{i} J_{2 i+1}^{2}-8 J_{2 k}\left[2 \eta_{1}^{*} J_{2 k-2}+\beta_{1}^{* *}\right]$
Now taking $k=2$, we get
$\mathrm{LHS}=\sum_{i=0}^{3}(-1)^{i} J_{4+2 i+1}^{2}=J_{5}^{2}-J_{7}^{2}+J_{9}^{2}-J_{11}^{2}$

$$
=11^{2}-43^{2}+171^{2}-683^{2}=-438976
$$

RHS $=\sum_{i=0}^{3}(-1)^{i} J_{2 i+1}^{2}-8 J_{4}\left[2 \eta_{1}^{*} J_{2}+\beta_{1}^{* *}\right]$
$=J_{1}^{2}-J_{3}^{2}+J_{5}^{2}-J_{7}^{2}-8 J_{4}\left[2 \eta_{1}^{*} J_{2}+\beta_{1}^{* *}\right]$
Substituting $n=0$ in (103), we have

$$
\begin{align*}
& \beta_{1}^{* *}-\beta_{0}^{* *}=401 \times 2^{3}+100 \times 2^{5}\left(2^{0}-1\right)=3208 \\
\Rightarrow & \beta_{1}^{* *}=3208+\beta_{0}^{* *}=3208+13=3221 \tag{116}
\end{align*}
$$

Using (92),(116) and the values of Jacobsthal numbers in (115), we get
RHS $=1^{2}-3^{2}+11^{2}-43^{2}-8 \times 5[2 \times 3855 \times 1+3221]=-438976$
This identity is verified since the value of either LHS or RHS is equal to (-438976).
5. For every $n \geq 0 \& k \geq 0$,
$J_{2 k}\left\{8\left(\eta_{n+1}^{*}-\eta_{n}^{*}\right) J_{2 k-2}+\beta_{n+1}^{* * *}-\beta_{n}^{* * *}\right\}$

$$
\begin{equation*}
=J_{2 k+4 n+6} J_{2 k+4 n+7}-J_{2 k+4 n+4} J_{2 k+4 n+5}+J_{4 n+5} J_{4 n+4}-J_{4 n+6} J_{4 n+7} \tag{117}
\end{equation*}
$$

Verification: For $n=0 \& k=2$,

$$
\begin{equation*}
\mathrm{LHS}=J_{4}\left\{8\left(\eta_{1}^{*}-\eta_{0}^{*}\right) J_{2}+\beta_{1}^{* * *}-\beta_{0}^{* * *}\right\} \tag{118}
\end{equation*}
$$

$$
\begin{align*}
& \text { Substituting } n=0 \text { in (104), we get } \\
& \beta_{1}^{* *}-\beta_{0}^{* * *}=799 \times 2^{4}+25 \times 2^{9}\left(2^{0}-1\right)=12784 \tag{119}
\end{align*}
$$

Using (92) and (119) and the values of Jacobsthal numbers in (118) we obtain
LHS $=5\{8(3855-15) \times 1+12784\}=217520$
For $n=0 \& k=2$,

$$
\begin{aligned}
\mathrm{RHS} & =J_{10} J_{11}-J_{8} J_{9}+J_{5} J_{4}-J_{6} J_{7} \\
& =341 \times 683-85 \times 171+11 \times 5-21 \times 43=217520
\end{aligned}
$$

This identity is verified since the value of either LHS or RHS is equal to 217520.
6. For every $m \geq 0 \& k \geq 0$,

$$
\begin{align*}
& \sum_{i=0}^{m}(-1)^{i} J_{2 k+2 i} J_{2 k+2 i+1}=\sum_{i=0}^{m}(-1)^{i} J_{2 i} J_{2 i+1}-J_{2 k}\left[8 \eta_{n}^{*} J_{2 k-2}+\beta_{n}^{* * *}\right] \\
& \quad \text { if } m=2 n+1 \text { and } n=0,1,2, \ldots \ldots \text { etc. } \tag{120}\\
& \text { Verification: For } n=1 \& k=2, \\
& \text { LHS }=\sum_{i=0}^{3}(-1)^{i} J_{4+2} J_{5+2 i}=J_{4} J_{5}-J_{6} J_{7}+J_{8} J_{9}-J_{10} J_{11} \\
& \quad=5 \times 11-21 \times 43+85 \times 171-341 \times 683=-219216 \\
& \text { RHS }=\sum_{i=0}^{3}(-1)^{i} J_{2 i} J_{2 i+1}-J_{4}\left[8 \eta_{1}^{*} J_{2}+\beta_{1}^{* * *}\right] \\
& \quad=J_{0} J_{1}-J_{2} J_{3}+J_{4} J_{5}-J_{6} J_{7}-J_{4}\left[8 \eta_{1}^{*} J_{2}+\beta_{1}^{* * *}\right] \tag{121}\\
& \quad \text { Using }(104) \text { in }(119) \text { we have } \\
& \quad \beta_{1}^{* * *}=12784+\beta_{0}^{* * *}=12784+49=12833 \tag{122}\\
& \text { Using }(92),(122) \text { and the values of Jacobsthal numbers in }(121) \text { we obtain } \\
& \text { RHS }=0 \times 1-1 \times 3+5 \times 11-21 \times 43-5[8 \times 3855 \times 1+12833] \\
& \quad=-219216
\end{align*}
$$

This identity is verified since the value of either LHS or RHS is equal to (- 219216).

X. Conclusion

Jacobsthal and Jacobsthal-Lucas numbers have interesting properties. Jacobsthal and Jacobsthal-Lucas numbers are related to each other. These numbers can be represented by matrices. Jacobsthal numbers can be expressed in terms of Fibonacci numbers and vice versa. The identities satisfied by Jacobsthal and JacobsthalLucas numbers can be derived from their Binet formulas. This article may inspire curious mathematicians to explore it further.

References

[1]. A.F.Horadam, Jacobsthal representation numbers, The Fibonacci Quarterly, Vol.43, No.1, pp.40-54, 1996.
[2]. F.Koken and D.Bozkurt, On the Jacobsthal numbers by matrix methods, International Journal of Contemporary Mathematical Sciences, Vol.3, No.13, pp.605-618, 2008.
[3]. Zvonko Cerin, Sums of squares and products of Jacobsthal numbers, Journal of Integer Sequences, Vol.10, Article 07.2.5, pp.1-15, 2007.
[4]. Ahmet Dasdemir, A study on the Jacobsthal and Jacobsthal-Lucas numbers, DUFEED, 3(1), pp.13-18, 2014.
[5]. Abdul Hamid Ganie and Mashael M. AlBaidani, Matrix structure of Jacobsthal numbers, Hindawi Journal of Function Spaces, Volume 2021, Article ID 2888840, 5 pages.
[6]. Ahmet Dasdemir, On the Pell, Pell-Lucas and modified Pell numbers by matrix method, Applied Mathematical Sciences, Vol.5, No.64, pp.3173-3181, 2011.

[^0]
[^0]: M. Narayan Murty. " A Review on Jacobsthal and Jacobsthal-Lucas Numbers." IOSR Journal of Mathematics (IOSR-JM), 18(3), (2022): pp. 55-67.

