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Abstract: 
In this paper, we developed a continuous third derivative block method using polynomial approximate solution 

for the solution of stiff first order initial value problems of ordinary differential equations. The development of 

the technique involved the interpolation and collocation of the polynomial approximate solution which give a 

Continuous Linear Multistep Method (CLMM). The CLMM is evaluated at some selected grid points to give 

discrete methods which are implemented in block form. Two cases among others are implemented, the methods 

are convergent and L-stable. Numerical results show that the methods are effective and computationally 

reliable for stiff problems. 
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I. Introduction 
In this work, we focused on the numerical integration of first order stiff initial value problems (IVPs) of the 

form 

'

0( , ( )), ( ) , [ , ]n n Ny f x y x y x y x x x  
                                                                                      (1) 

Where 𝑓:  𝑥𝑛 , 𝑥𝑁 × ℝ𝑚 → ℝ𝑚 , 𝑦0𝜖ℝ
𝑚  is continuously differentiable, moreover, the Jacobian (𝐽) arising from 

(1) varies slowly and the eigenvalues of  𝐽 have negative real parts. The desire to develop methods that will 

integrate (1) and also, control its special properties (Stiffness, Oscillatory, etc.) has drawn much attention of 

scholars, among them are [1, 2,3,4]. Stiffness is a subtle, difficult and important concept in the numerical 

solution of ODEs, it depends on the DEs, the initial condition and the interval under consideration [5]. It is a 

well-known fact that (1) always occur in engineering and control systems. [6] noted that mathematical 

formulation of new models of physical situations in engineering and sciences often lead to systems of the form 

(1) and as such, there is a need to generate techniques to conveniently cope with these types of problems. The 

search for better methods for solving these stiff systems leads to the discovery of the Backward Differentiation 

Formulae (BDF) [7, 8], since then, most of the improvements in the class of linear multistep methods have been 

based on the BDF, because of its special properties. 

[9] worked on the hybrid BDF with one additional off-grid point introduced in the first derivative of the solution 

to improve the absolute stability region of the method. [10] noted that the search for higher order A-stable 

multistep methods is carried out in two main directions: the use of higher derivatives of the solutions and the use 

additional stages, off-step points, super-future points. We are therefore motivated with the point raised by [10] 

to consider higher derivative method to construct LMM for the solution of first order stiff (IVPs). 

Assumption 1.1. In ODEs (1), the function 𝑓  belongs to ℂ1-class and therefore satisfies the Lipschitz condition 

with the constant  𝐿 . That is, if the estimation 

∥  𝑓 𝑥, 𝑦 −  𝑓 𝑥, 𝑦∗ ∥≤ 𝑳 ∥ 𝒚 − 𝑦∗ ∥ 

holds,  𝐿 is called Lipschitz constant [2]. 

Theorem 1.1. If  𝑓  satisfies Lipschitz condition with constant  𝐿 then the initial value problem 

𝑦′ = 𝑓 𝑥, 𝑦 𝑥  , 𝑦 𝑥𝑛 = 𝑦0  

possesses a unique solution on the interval  [𝑥0 , 𝑇] [1]. 
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II. Mathematical procedures 
We derive third derivative CLMM using polynomial approximate solution of the form 

0

( )
p

j

j

j

y x a x


 (2) 

where   𝑎𝑗 ′𝑠 are parameters to be determined. First, second and third derivative of (2) give 

' 1

1

( )
p

j

j

j

y x ja x 



                                                                                          (3) 

 

'' 2

2

( ) ( 1)
p

j

j

j

y x j j a x 



                                                                            (4) 

 

''' 3

3

( ) ( 2)
p

j

j

j

y x j j a x 



                                                                           (5) 

 

Interpolating (2) at the point 𝑥𝑛+𝑖  and collocating (3), (4) and (5) at the point  𝑥𝑛+𝑖 , we therefore imposed the 

following conditions 

𝑦 𝑥𝑛+𝑖 = 𝑦𝑛+𝑖 , 𝑖 = 0,1, … , 𝑟 

𝑦′ 𝑥𝑛+𝑖 = 𝑓𝑛+𝑖 , 𝑖 = 0,1, … , 𝜆 

             𝑦′′ 𝑥𝑛+𝑖 = 𝑔𝑛+𝑖 , 𝑖 = 0,1, … , 𝜅 

𝑦′′′ 𝑥𝑛+𝑖 = 𝑙𝑛+𝑖 , 𝑖 = 0,1, … , 𝜏 

Give a system of non-linear equations of the form 

𝑿𝑨 = 𝑼  (6) 

Where; 

𝐴 = [𝑎0 … 𝑎𝑝  ]𝑇 , 𝑓𝑜𝑟 𝑝 = 𝑟 + 𝜆 + 𝜅 + 𝜏 + 1 

𝑈 = [𝑦𝑛 … 𝑦𝑛+𝑟𝑓𝑛 … 𝑓𝑛+𝜆𝑔𝑛 … 𝑔𝑛+𝜅𝑙𝑛 … 𝑙𝑛+𝜏]𝑇 
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Solving (6) using Crammer's rule for the unknown parameters, substituting the result into (2) and after some 

algebraic sorting give third derivative CLMM in the form 

 
3

( 1)

0

1 0

( )
k

i i i

n t n j n j

i j

y t y h t f  

 

 

                                                                            (7) 

2.1 Specification of the Method 

The parameters of the third derivative method can be obtain by considering the CLMM (7), we set  𝑡 =
𝑥−𝑥𝑛

𝑕
  

and introduce some points  𝑢, 𝑣  to specified the method. These points are carefully chosen to guaranty the 

convergent of the block third derivative methods. Expanding (7) we have the following continuous scheme 

specified as 

 1 1 1 2 2 3 3
1 0 0n n u n u v n v v n v v n vty y h f f f h g h l                                       (8) 

Where; 

 

 
 

1 4 3 3 2 2 2 3 2 3

0 3

2
1 3 2 2 3

0 3

1
4 15 5 20 20 10 30 20

20

1
1, 4 15 20 10

20
u

t
t t v ut t v ut v tv utv uv

uv

t
t t v tv v

u u v






       

    

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 

 

3 2 3 3 2 2 3 2 2 2 3 32
1

3 2 2 4 3 2 2 3 43

3 3 2 2 2 2 22
2

2 2 2 3 2 2 32

3

4 12 12 5 30 40 201

20 40 40 30 80 60

4 8 5 5 251

20 20 20 20 20 30

1

20

v

v

v

t u t uv t v t u t uv t v tu vt

tu v tv u v u v uvv u v

t u t v t u t uv t vt

tu v tuv tv u v uvv u v

t







      
          

     
          

 
 

 
2

3 2 2 2 2

2
12 30 15 20 40 30t t v t u tv utv uv

v u v
    



 

Evaluating (8) at  𝑡 = 𝑢, 𝑣  and implementing in a block method give the following class of DLMMs as 

           1 0 0 1 1 12 3

1 1m m m m m mY A Y hB F hB F h C G h D LA                                     (9) 

     

     

1
1 0 00 0

1
0 0

1 1 2 3
1 1 1

1 1 2 3

01 0 0
, , ,

00 1 0

0 0
, ,

0 0

u u

v v

uu vu vu vu

uv uv vv vv

B

B C D

A A
 

 

   

   

   
      
     

     
       
     

 

4 3 2 2 3

3

1
0 0 0

5 10 10
1, 1, ,

20
u v u

u u v u v uv

v
  

   
    

 
 

 
 
 

4 3 2 2 3

2

3 2 2 3

1 1
0

4 15 20 101
5 ,

20 20 60 60 20
uuv

u u v u v uv
v uv

u u u v uv v
 

  
   

  
, 

 
 

7 6 5 2 4 3 3 4

3 3 2 4 5 6

1
8 28 40 20

20 60 60 20
vu

u u v u v u v u v

u v u v uv v


   
 
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, 

 
 

 
 

5 3 2 2 3 4

4 3 2 2 3 3 2 2 3

1 1
15 44 42 12

,
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 

   
   

      
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   

 

 

 

 

 

 

 



Third Derivative Block Methods for Stiff Initial Value Problems  

DOI: 10.9790/5728-1804020109                                 www.iosrjournals.org                                              5 | Page 

III. Analysis of the block methods 

3.1 order of the block method 

Let’s apply linear operator   ;y x hL     to (9) then  

             1 0 0 1 1 12 3

1 1; 0m m m m m my x h Y A Y hB F hB F h C G h D LL A                                 (10) 

expanding (10) in Taylor series and comparing the coefficient of  𝑕 gives 

   

 
 

 

0 0 1 1 1 2

2 2

2 1 2 0 1

2 2

1 2 0 1

... , 2 ...

1
2 ... ...

2

1 1
2 ... ... , 3, 4,

! 2

j j

j j

q j j

j

j

j q
q q

C C

C

C

     

     

     

       

       

        




  

According to [11,12,13,14,15,16] (9) has order p if
0 1 1 10.p p pC C C C C     

 is the error constant 

and    1 1 2

1 0p p p

p nC h y x h  

    is the truncation error at point  𝑥𝑛 . 

 We have presented the order and the error constant of the third derivative block method in the table below. 

Table 1: Order and Error Constant of the Third Derivative methods 

Method Order Error Constant 

n uy   
4 

 3 2 2 331
2 9 15 10

7200
u u v uv vu     

n vy   
4 

 51
3

7200
v v u  

 

3.2 Consistency of the block method 

(9) is said to be consistent if the order of the individual members is greater or equal to one, i.e., if  𝑝 ≥ 1 .The 

order of the block method is  𝑝 =  4,4 𝑇 ≥ 1  hence it is consistent [12]. 

(9) is said to be zero stable if the roots  𝜆𝑠 = 1,2, … , 𝑛  of the first characteristic polynomial 𝜌 𝜆  , defined by 

     1 0
det 0A A     

 
                                                             (11) 

satisfies     1s  and every root with    1s    has multiplicity not exceeding 1 in the limit as  0h . 
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 0,1                                                                                             (12) 

3.3 Convergence 

Numerical method is said to be convergent if it is consistent and zero-stable [6] 

3.4 Regions of Absolute Stability  

3.4.1 Linear Stability 

The linear-stability of block method is done by applying the block method to the test equations 
'y y , where  

  is supposed to run through the negative eigenvalues of the Jacobian matrix  
y

x




. Letting  z h it is easily 

shown that the application of method to the test equation yields  

               
1

1 1 1 1 0 02 3 2

1, :Y M z Y M z A zB z C z D A z B 




        
   

                          (13) 

where the matrix   M z  is the amplification matrix which determines the stability function of the method. 

 
 

2 2 2 2 2 3 2 3 2

2 2 3 3 2 3 2 4 3

20 4 5 3
6

18 2 24 72 18 6 120

u zu zu z v z uv z uv z u v zuv
M z

u z v z v zv zv z uv z v u z uv

       
 

      
                  (14) 

As z   ,  M z =0, then we conclude that the method is 𝐿 − 𝑠𝑡𝑎𝑏𝑙𝑒 

 

 

Fig.1. Region of Absolute Stability 

 



Third Derivative Block Methods for Stiff Initial Value Problems  

DOI: 10.9790/5728-1804020109                                 www.iosrjournals.org                                              7 | Page 

 

Fig.2. Region of Absolute Stability 

In this paper, we consider two cases that belongs to the class of this method among others. 

Case I: Weconsider two step method with equal intervals, that is,  𝑢 = 1, 𝑣 = 2 

We obtained third derivative block method of order  4 4 𝑇 , an error constant     
1

200

1

255
 
𝑇

  with region of 

absolute stability as shown in figure 1. 

Case II: We consider one step hybrid method that is,  𝑢 =
1

2
, 𝑣 = 1 

We obtained a class of hybrid third derivative block method of order   4 4 𝑇 , with an error constant  

 
1

12800

1

14400
 
𝑇

  with region of absolute stability as shown in figure 2 

IV. Numerical Examples 
We consider the following linear and non-linear problems to test the efficiency of the developed methods. The 

following notation will be used in the presentation of the result. 

(3𝐵𝐸𝐵𝐷𝐹)  =3-Point Block Extended Backward Differentiation Formula of order five [16]. 

(3𝐵𝐵𝐷𝐹)  = 3-Point Block Backward Differentiation Formula [17]. 

𝑎𝑏𝑠 = Absolute error 

𝑎𝑏𝑠(𝑦 − 𝑦𝑛) = 𝑦 is the exact result and  𝑦𝑛  is the computed result 

𝑀𝑎𝑥 = Maximum 

𝑕 = Step-size 
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Example I: 

 

 

 

 

' 1 2 1
1

'

2
1 2 2

3 39

1

3 39

1

1 4
9 24 5cos sin 0

( ) 3 3
,

1 2( )
24 51 9cos sin 0

3 3

0.01,0 10

1
2 cos

3

1
2 cos

3

x x

x x

y y x x y
y x

y x
y y x x y

h x with the exact solution

y x e e x

y x e e x

 

 

   
       

     
         
      

  

  

   

 

:[16,17]Source  

Table 2:Comparison of  𝑀𝑎𝑥(𝑎𝑏𝑠 𝑦 − 𝑦𝑛 )  for example I 

𝑕 𝑐𝑎𝑠𝑒 𝐼 𝑐𝑎𝑠𝑒 𝐼𝐼 (3𝐵𝐸𝐵𝐷𝐹) (3BBDF) 

 0.01  7.7631(-004)   8.4073(-005)  1.68449(-001)  6.62694(+099) 

 0.001  7.7631(-004)  9.3090(-006)  5.14997(-002)  7.44768(-002) 

 0.0001  7.5050(-005)  9.3089(-006)  6.95725(-003)  8.45376(-003) 

 0.00001  7.5030(-005)  1.5284(-006)  7.16727(-004)  8.53717(-004) 

 

Example II: 

 ' 2 100100( ), (0) 2, 1

0.01,0 10

:[16,17]

xy y y y Exact y x e

h x

Source

     

    

Table 3:Comparison of  𝑀𝑎𝑥(𝑎𝑏𝑠 𝑦 − 𝑦𝑛 )  for example II 

𝑕 𝑐𝑎𝑠𝑒 𝐼 𝑐𝑎𝑠𝑒 𝐼𝐼  (3𝐵𝐸𝐵𝐷𝐹) (3BBDF) 

 0.01 2.2204 (-016) 0 1.83156 (-002) 1.47562 (+128) 

 0.001 1.1102(-015) 1.1102(-15) 3.45336 (-002) 6.92223 (-002) 

 0.0001 1.1102(-014) 1.1102(-014) 8.42901 (-003) 1.07264 (-002) 
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Example III: 

' 10050
50 , (0) 2, ( ) 1

0.01, 0 1

:[16,17]

xy y y Exact y x e
y

h x

Source

    

    

Table 4:Comparison of  𝑀𝑎𝑥(𝑎𝑏𝑠 𝑦 − 𝑦𝑛 )  for example III 

𝑕 𝑐𝑎𝑠𝑒 𝐼 𝑐𝑎𝑠𝑒 𝐼𝐼  (3𝐵𝐸𝐵𝐷𝐹) (3BBDF) 

 0.01 1.1102(-015) 1.1102(-015) 8.35838 (-003)  5.49256 (+009) 

 0.001 1.1102(-014) 1.1102(-014) 1.29425 (-002) 2.69497(-002) 

 0.0001 1.1102(-013) 1.1102(-013) 2.70535 (-003) 3.82432 (-003) 

 

V. Conclusion 

To crown it all, third derivative block methods for the solution of first order stiff IVPs of ODEs has 

been developed. Two cases among others are implemented using MATLAB8.5 Source code. The methods are 

convergent and L-stable. Numerical results show that the methods are effective and computationally reliable for 

stiff problems. 
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