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Abstract

In this paper a mathematical model describing a within host cervical cancer infection with viral and cellular
infection incorporating diffusion was formulated and analysed. The replenishment rate of the cells was
represented by a logistic growth rate. The qualitative analysis of model showed that the infection dynamics can
best be described by the thresh- old value ROw , in which for the value of ROw<1 the infection free equilibrium
is globally asymptotically stable. This is theoretically in terpreted to means that cervical cancer is cleared from
the body. On the other hand when ROw>1, the endemic equilibrium is globally asymptotically stable which
implies viral persistence. The numerical results show that the movement of the virus makes the infection persist
within the cells. This results in a more infected cells which implies that introduction the virus to purely
uninfected cells results in propagation of the infection.
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l. Introduction

Human papilloma Virus (HPV) is transmitted sexually through skin-to-skin genital contact. Cervical
cancer is mainly due to the infections of HPV though the risk due to the various HPV types has been given little
attention. Over one hundred dissimilar strains of HPV being identified and classified with HPV types 16, 18,
31 and 45 been classified as “high-risk”. Approximately 85 percentage cancer of the cervix are reported to be as
a result of these four strains alone [3]. There is no treatment for HPV but in most cases it disappears naturally.
However, with persistent infections the high risk strains may become chronic and shed HPV virions.

Precancerous cells develop in the cervix as a result of the persistence of Human Papilloma Virus
infection which eventually turn out to be malignant. Precancerous cells can be prevented from developing to
cancer if they are properly treated. So far, it has not yet been discovered which individual who have Hu- man
papilloma Virus can progress to cancer or any other health complications but studies show that persons with
puny immune systems as well as those with HIV/AIDS and severe diseases might not be capable to combat
off the virus. Sexually active females are at a higher risk of infection with human papilloma virus, the virus
which causes cervical cancer, however no much information is there about the occurrence of the HPV infection.
After development of symptoms or any other health problems is when some people will realize they have
human papilloma virus but others will neither know they are infected nor develop symptoms from it [3, 9].

Within host models are also called immunological models, and they are basically tools used in
understanding how to regulate viral load dynamics which is an infection progress within a single individual. In
Diffusion equations will be used to develop within host model and diagnosis will be incorporated in between
host model. Diffusion allows perturbation that is, it makes the sys- tem to be real by introducing movement of
the Human papilloma virus (HPV) from one compartment to another. The transmission of Cervical cancer
within the body is related with the spatial distribution of the high risk Human papillomavirus (consisting of viral
type that may lead to cervical cancer). For example, cervical cancer is partially attributed to the mobility of high
risk Human papilloma virus from one cell to the other which increases the rate of interaction and expose target
cells to the virus which causes cervical cancer. The understandings on movement are hardly explored to explain
the connection between the cervical cancer infection and the movement of high risk Human papilloma virus [6].
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1. The model

We formulate a model composed of three variables, namely, the
uninfected cells T (t), cells infected with higher risk Human
Papillomavirus types ( wviruses which leads to cervical cancer
infection) T*(t). and free wvirus particles V (t). The uninfected

cells are produced at rate y and die naturally at a rate p. The total
number of cells in the body remains bounded and thus, the growth

: . e T

of cells is governed by the logistic proliferation term (1 — )
max

which limits cell growth as the cell population approaches the limit

Tmax . The uninfected cells become infected by free virus which
at this instance is the lower risk Human Papillomavirus types and
later dewvelop to higher nisk Human Papillomavirus types at a
infeetion terms BV T and wTT* |, respectively. This generates cells
infected with higher risk Human Papillomavirus types, T* (t) which
dies naturally at the rate o . The infected cells produce free viruses V
at the rate 6T" . The free varions are cleared from circulation at a
constant per capita rate of € .

In this model, Diffusion occurs in all classes at the rate D1,
D2 and D3 .D1 is the diffusion rate for the free virus class,
D2 is the diffusion rate forthe uninfected cells while D3 is the
diffusion rate for the infected cells. The movement of the Human

Papillomavirus from one cell to another influences
development of cervical cancer infection.

For this reason. the following model with spatial diffusion is
developed to capture the mobility of the HumanPapillomavirus
within an individual.

Infected
cells, T*

Virus production,
aT*

—» D3

D, “he
Figure 1: Within-Host Model flow diagram
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Where D;,D,, Dy is the diffusion coefficient with homogeneous Neumann

boundary  condition

ar ar* av
= = == = 2
at at at 0 @

On d0 x (0, +o2). And initial conditions
T(0) =Ty >0, T*(0) = T*4 = 0,V(0) =V, >0 (3)

The region is assumed to be whole (—o0, +00)

3 DModel analysis

The basic reproduction number R, is defined as the average number of
secondary infections produced by one infectious virion over the course of their
infectious period in uninfected cell population. The basic reproduction number,
Ry, for model (1) was computed using the next generation matrix methodas
used in [2. 8]. From Model (1) and at diffusion free state (D = 0), the basic
reproduction number R, was computed as

. N\ BS
Row = Thax (l - };_w)% + Thnax (1 - HT“)FT (4)
4 TLocal stability of the Disease free equilibrium

We linearize the system (1) around the arbitrary spatially homogeneous fixed
point Egy (T.T°,V ) for small space and time.

Theorem 4.1. The infecrion free equilibrium Eow is locallv
asvinptoticallvstable if and onlv if Rg,, < 1

Proof. The Jacobian matrix of Equation (1) is given by

Uw —Vv —D —@Tnax (1 — ”T“’) —BTomax (1 — “Tw)
J= 0 @Tiax (1 — “7‘”) — 0D Blia (1-12) (5)
0 od —e—D

Clearly A, = y,, — ¥ — D is an eigenvalue. The eigenvalue 4, is negative since for any
population whose growth is positive: the production rate is greater than the mortality rate, that
is ¥y > M. We analyse the reduced matrix of equation (5)

;= (meax(l—‘;—w —o—D ,GTmM(lg%)) ©
a0 —E —

Applying the Routh-Hurwitz criterion. for stability analysis. then matrix J in
equation (6) will have negative real roots if and only it the tr(J) << 0 and
det(J) == 0. and thus

tT‘U)=meux(l—%)—o'—f—2D <0 (7
Provided that @wT,, 4. (1 — #T“) < 0 and
det() = {—0Tpa (1 -22) 2 — T (1 -22) 2+ 1} —2D (®

Using equation (4) equation (7) reduces to

det(J) = {Rgy — 1} — 2D [€)]
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The det(J) is positive when Rg, <1 and {Rg, — 1} > 2D . Therefore.
the DFE is locally asymptotically stable whenever R;, < 1 and unstable
when Ry, > 1. This implies that for any perturbation of the model by the
introduction of the virus, the solutions of the model (1) will converge to the
DFE when R, < 1. Biologically, if a few virion enters the blood stream. then
there is a high chance of infecting less than one susceptible cells in its entire
period of infectivity whenever Ry, < 1. Thus the virus will clear from the human
body when Ry, < 1.

S Global stability of the disease-free equilibrium
The Castillo Chavez theorem [1] is applied to study the global stability of the

disease-free equilibrium. We rewrite model (1) with D1 = D2 = D3 =
0 in the form:

dr
%:G(X,Z),G(X,o) ~0 (10)

Where X €R denotes the number of susceptible cells and ZelR? denotes the

number of actively infected cells and free virions respectively. At disease Free
Equilibriuvm (DFE)

Eow = (X©,0), X° = Tppgy (1—2%) (11)

The conditions below must be met to guarantee global asymptotic stability

‘;—f = H(X,0)X° is globally Asymptotically stable (GAS)
G(X,Z)=PZ— G(X.2),G(X,2) = 0, for (X,Z)e (12)

Where P = D,G(X°,0) is an M- matrix (the off diagonal elements of P are
nonnegative)

and € is the region where the model makes biological sense. If system (10)
satisfies conditions in (12) then the following theorem holds:

Theorem 5.1. The fived point Ey = (X°,0) is a Globally Asyvinptotically Stable
equilibrium point of model (1) provided that Ry,, < 1. and the conditions in (12) are
satisfied

Proof.

H(X,0) = yT (1 - T:M) — T (13)

And  G(X,Z) = PZ— G(X, Z) where

P~ (o5 2 a9
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o =(G02) - (7o)

Considering the Jacobian matrix. and replacing T(t) = Tyax (1 - ?J T =0 and

V(t) = 0 we obtain él{X, Z) =0 and so the conditions in (12) are satisfied. therefore,
Epy 1s globally asymptotically stable whenever Ry, < 1.

This implies that given a large perturbation of the DFE by the introduction of free virus particles,
the solutions of model (1) will eventually converge to the DFE whenever Ry, < 1.

6 Existence of Endemic Equilibrium

Theorem 6.1. A positive Endemic Equilibrium exist provided Ry, > 1, T, #0and V, # 0

Proof. The endemic equilibrivm Egy,, = (1., 75, V) satisfies:

T? *
¥Te (1 —72) — BT.Ve — 0T TS, —pyTe = O (16)
max
BTV, + wT, T}, —0cT}, =0 a7
50T, —€V, =0 (18)

From equation (18) we have
SoTg

V. = (19)

(S

Substituting equation (19) in equation (17) and making T, the subject of the
formula we get:

Tmax(1-22)

T. = (20)
Row
Substituting V, and T, and equation (4) in equation (16) we obtain:
Tmax(lﬂ){l"_ﬂwj(Row_l)
. _ r
Te = oRE., (21)
The endemic equilibrium E, will thus be given by
EE — Tma.r('l_ﬂ% 'Tma.r(l M;“:}(YZ_#W)(Row_l-)’ SaTgy (22)
Row g Rgw €
Upon simplification we get
Tma"'{l%) Te(y —tw)(Row—1) 80Tz
Eep = , — (23)
Row T Row E

T; > 0ifand only if Ry, > 1 and thus V, > 0

7 Local Stability of the Endemic Equilibrium

To investigate the local stability at endemic equilibrivm E,,, = (T, T;,V.)
Turing stability concept was used

Theorem 7.1. The endemic equilibrium point Ea, is locally
asympitoticallvstable when Rg, > 1  otherwise unstable

Proaf. Consider the Jacobin matrices evaluated at endemic state

y—2 BV, —wT;—p, -owl, —PT,

Tmazx
= wT, + BT, wl, —o BT, (24)
0 al —€
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This simplifies to

Row Row Row
s , .
J= | o) Bosy Tmax(157) o Tmax(157) (25)
RO“’ ROM’ RUW
0 agd —€

The characteristic equation can be found using the formula

—2 +tr()A2 = {tr(.)? — tr (J,)? JA + det],

From equation (25) we obtain the characteristic equation in the form

P(A)=A2+al?+bl+c=0 (26)

Thus, the number of possible negative real roots of equation (26) depends on the signs of a, band ¢ .
This can be established by applying the Descartes Rules of Signs of the polynonual given in [7]:

P(A)=aiA’=bl+c @n

The number of negative real zeros of P is either equal to the number of variations
in sign of P (1) or less than this by an even number. Thus, the possibilities of

negative roots of Equation (27) is as sunumarized in the Table.

Cases a b c Roy No. of changes No. of negative
roots

1 + + Row 0 0

2 + - + Row 2 2.0

3 + - - Row 1 0

4 + + - Row 1 0

5 - - + Rop 1 0

6 - + o+ Row 1 0

7 - + - Row 2 2.0

8 - i _ Row 0 0

From the table the maximum number of variations of signs in P (—A4)
characteristic polynomial in equation (27) has two negative roots. Thus.

P(—A)=—A+al?—bl+c=0

Where
Tmax‘{ 1 _“TwJ

Row

Hw—y

a=0g+¢€—
RGW

L Hw
o (Tnax(1-22 — by ) (Rou— -
b:'u“')' mar( Y}+[]f How ) (Row 1} +'u“' Y(E—lﬂ')"‘l‘fa_l
Row Row Row Row
L W R — — \
CZ(Y v (Row 1)+r“w Y(I—U'E.)

RUW REI“»

is two. hence the

has negative roots and thus if y > u,, and if cases 1 — B in the table are satisfied,

then model (1) is locally asymptotically stable if Ry, > 1 .

This means that. given a small number of free virus particle, each virus in the

entire period of

infectivity will produce on average more than one infected cells when Rg,, > 1. This

shows that persistence of the virus occurs whenever.
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8 Global Stability of the Endemic Equilibrinm

Here we study the global stability of model (1) with homogeneous boundary
conditions

du

5, =0 on a0 % (0,+00) and initial conditions

T(x,0)=To(x) = 0,T"(x,0) = Ty 2 0,V(x,0) =Vo(x) = 0inQ
Where ;—n 1s the outward normal derivative on d1).
Let u(x,t) = {T(x,t), T*(x,t),V(x,t) } be any solution of the model (1) and

w = [ v(u(t,x))dx 28)
be a lyapunov functional for model (1). Caleulating the time derivative of W
along the positive solution of the model (1),

i—zv = [, VV(w). (DAu + f(uw))dx
= [,W(w).f(wdx + [ AV(u). DAudx

i—‘fz Jo W), flwdx + XL, D; fﬂaV{u)A  dx (29)

Using Green’s formula, we obtain

av(u) B V() du; av
. Dwdx = jﬂn_aui Sdx — [ Vu,. v (a 1) dx (30)

a
22— 0 on 0. then
an

O Augdx = = Jo V. V— dx
dug

av _ |vv)?
— anuI-.Va—uf dx = —fﬂde (31
Thus the Lyapunov function of the model (1) at E,,. is given by
V=T—T,InT+T" —T:InT* +V—V,InV (32)
2 T,
V(). f(u) =[ — (T Y +BV+wT*+pu, } T(1—?‘*‘)

max

+ (BTV + w TT* — 6T") (

*

;': )+ (80T* — ev) (1 —%)

VWu). f(u) =y —'y&—( 2y +,G‘V+mT*+,uw)T+( 2y

T Tm oax max

+BV+wT*+pW)TQ

T; V.
+ BTV — ,GTV——{S wT)T* + 86T* — SJT“?E—EV+ED;

Thus at endemic state

f[(

v
fn -

) (2__.,__] + BT,V, ( T—”;Vieﬁ)+aﬁr (1_?17;)}_
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The inequality

42_12! = 0 holds if and only if (7,7, V) takes the equilibrium values (T,,T,,V.) . Hence all the
solution of model (1) are positive where the largest invariant subset of the set (t—':’= ) Thus

the endenuc equilibrium point E,,. 15 globally asymptotically stable.

This implies that regardless of any starting solution. the solution of the model
will converge to Ey, whenever Ry, = 1. This means that any perturbation
of the equilibrium point as a result of the introduction of the free virus particles,
the model solutions will converge to the endemic state.

8 Numerical Simulation

In this section. numerical simulations were carried out to graphically illustrate
the behavior of model (1). To do this, some parameter values were used as indicated

in table (1).

Table 1: Parameter values used in simulation of model (1)

Parameter Descriptions Values Resource
T(t) Uninfected cells 50 Estim
ate
T*(t) Infected cells 100 Estim
ate
Vi(t) Free virus 97 Estim
ate
Tnax Maximum cell population level 1500 cells mm™3 [4]
% Production rate of uninfected 0.05 cells days™* [4]
Tcells
o Mortality rate of uninfected 0.02 cells days™* [4]
cells
a Mortality rate of infected cells 0.25 cells days—* [4]
B Viral infection rate by free 2.4 x 1075 mm—3 [5]
virions
€ Shedding rate of virions 2.4 days™! [5]
) Viral production rate 6=0 Estim
ate
w Cellular infection rate 2.4 x107° mm™3 [5]

Based on the initial conditions and parameter values in table (1), the following
graphs were obtained:

" ® a 2 Terw
Figure 2: Figure 3: Graph
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Wiral Lomd

a1

Figure 4

The viral load increase exponentially with the passage of time and space. figure
(4). while the uninfected cells decrease exponentially. figure (2). Correspondingly,
the infected cells merease with increase m time and space, figure (3).This agrees
with reality, m that as the viral load inereases. more uninfected cells are recruited
into the infected compartment. This explains why the infected cells are increasing.
Therefore, the increase in viral load has a corresponding increase in infected cells
and decrease in uninfected cells.

The virus will diffuse to regions where there is no infection till an equilibrium
is achieved. The numerical results show that the movement of the virus makes
the infection persist within the cells. This results in a more infected cells which
implies that introduction the virus to purely uninfectad cells results in
propagation of the infection.

It can be deduced that the mobility of HPV from one cell to the other has
an impact on the number of infected cells as well as viral load. With minimal
mobility of HPV leads to decrease in the number of infected cells and the viral

load.

8 Discussion

In this study. a mathematical model describing a within host cervical cancer
mfection with wiral and cellular infection incorporating diffusion was
formulated and analysed. The replenishment rate of the cells was represented
by a logistic growth rate. The qualitative analysis of model (1) shows that the
infection dynamics can best be deseribed by the threshold value Ry, . in which
for the walue of Ry, <1 the infection free equilibrium is globally
asymptotically stable. This is theoretically interpreted to means that cervical
canceris cleared from the body. On the other hand when Ry, = 1. the endemic
equilibrium is globally asyvmptotically stable which implies viral persistence.

8 Conclusion

The disease persists in the cells if there exist movement of the virus from one cell
to the other which increases the spread of the high risk Human Papilloma Virus
in a high risk domain. Introduction of the Virus at one end of the equilibrium
results in a wide spread to the infected cells. This shows that the mobility of the
virus from one cell to the other increases the spread and hence higher riskof
developing cervical cancer. Hence. the spread of the infection is dependenton
the movement patterns of the virus. This result are in agreement with a study
done by [10]. thev argued that the spread of the disease is dependent on the
interaction between the uninfected cells and the virus and the spreading speed
of the virus.
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