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Abstract 
In this paper a coupled cervical cancer model incorporating diffusion and diagnosis was formulated. Two 

transmission subsystems were coupled in which the transmission rate at the population was expressed as a 

function of the viral load, while the within-host infection rates were modelled as functions of the number of 

infectives. The basic reproduction number ,𝑅0𝐶of the coupled model was found to be a maximum of the two 

reproduction numbers 𝑅0𝐵and 𝑅0𝑤 corresponding to the between host and within host subsystems respectively. 

Stability analysis revealed that the disease free equilibrium is globally asymptotically stable whenever𝑅0𝐵 <  1 

and 𝑅0𝑤<1. Theoretically this means that the disease is wiped out. Using the center manifold Theorem, the 

endemic equilibrium was found to be locally asymptotically stable if 𝑅0𝐶 > 1and unstable otherwise. This 

reveals that the high transmissibility of the high viral load at the within host level which causes cervical cancer 

will lead to disease persistence in the population. Numerical simulation shows that an increase in viral load at 

the within host level leads to proportional increase in the number of infectives at the population level. In 

addition numerical simulations revealed that early diagnosis has remarkable effect on cervical cancer 

management and HPV transmission. Early diagnosis leads to significant reduction of the number infected cells 

and the viral load within a short period of time and space leading to much reduction of the number of infected 

and cervical cancer individuals at the population level. 
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I. Introduction 
Human papilloma Virus (HPV) is transmitted sexually through skin-to-skin genital contact. Cervical 

cancer is mainly due to the infections of HPV though the risk due to the various HPV types has been given little 

attention. Over one hundred dissimilar strains of HPV being identified and classified with HPV types 16, 18, 31 

and 45 been classified as ‘’high-risk’’. Approximately 85 percentage cancer of the cervix are reported to be as a 

result of these four strains alone [3]. There is no treatment for HPV but in most cases it disappears naturally. 

However, with persistent infections the high risk strains may become chronic and shed HPV virions. 

Early stage diagnosis of cervical cancer makes it curable. Coupling brings in a new dimension which 

incorporates what happens inside the cell and what happens outside the cell. That is, the interaction between cell 

to cell and human to human. Coupled dynamics factor the spread of cervical cancer dynamics considering the 

population level to be a function of within-host immune viral responses at the individual level. The transmission 

potential between cervical cancer individuals to susceptibles can be affected by the viral load of infected hosts 

[1]. The transmission rate of between hosts is proportional to within-host viral load and the equilibrium of the 

within-host model is used to calculate the transmission rate. 

 

II. The model 
A coupled cervical cancer model linking both the within- host and between- host transmission subsystems is 

constructed. The coupled model consist of two processes, one for the between-host processes at the population 

level and the other for the viral dynamics within an individual host. 
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III. Within-Host model 
We formulate a model composed of three variables, namely, the uninfected cells 𝑇(𝑡), cells infected 

with higher risk Human Papillomavirus types ( viruses which leads to cervical cancer infection) 𝑇∗ 𝑡 ,and free 

virus particles 𝑉(𝑡). The within - host model can be represented mathematically as follows 

 

𝑑𝑇(𝑡, 𝑥)

𝑑𝑡
= 𝛾𝑇  1 −

𝑇

𝑇𝑚𝑎𝑥
 − 𝛽𝑇𝑉 − 𝜔𝑇𝑇∗ − 𝜇𝑤 −

𝐷2𝑑
2𝑇

𝑑𝑥2
 

 
𝑑𝑇∗(𝑡, 𝑥)

𝑑𝑡
= 𝛽𝑇𝑉 + 𝜔𝑇𝑇∗ − 𝜍𝑇∗ −

𝐷3𝑑
2𝑇∗

𝑑𝑥2
 

 

𝑑𝑉(𝑡, 𝑥)

𝑑𝑡
= 𝛿𝜍𝑇∗ − 𝜖𝑉 −

𝐷1𝑑
2𝑉

𝑑𝑥2
 

(1) 

Thebasicreproductionnumber𝑅0𝑤 isgivenas 

𝑅0𝑤 = 𝑇𝑚𝑎𝑥  1 −
𝜇𝑤

𝛾
 
𝜔

𝜍
+  𝑇𝑚𝑎𝑥  1 −

𝜇𝑤

𝛾
 
𝛽𝛿

𝜖
                                                    (2) 

 

 

IV. Between-Host model 
We formulate a model in which the total human population at any time 𝑡 denoted by N is subdivided 

into classes, 𝑆(𝑡)the class of individuals susceptible to cervical cancer infection. The class𝐼𝑕 (𝑡)consists of 

individuals who are infected with higher risk Human papilloma virus. Individuals progress to cervical cancer 

𝐶(𝑡)class due to persistence of the HPV infection. The dynamics described can be represented mathematically 

as: 

 

𝑆  𝑡 =  Λ + 𝛼𝐼𝑕 𝑡 −  
𝜅𝜏𝜋𝐼𝑕
𝑁

+ 𝜇 𝑆(𝑡) 

𝐼𝑕  𝑡 =  
𝜅𝜏𝜋𝐼𝑕
𝑁

𝑆 𝑡 − (𝛼 + 𝜌 + 𝜇)𝐼𝑕(𝑡) 

𝐶  𝑡 =  ρ𝐼𝑕 𝑡 −  𝜈 + 𝜇 𝐶(𝑡)                (3) 

 

 

The basicre production number𝑅0𝐵 isgivenas 

𝑅0𝐵 =    
𝜋𝜅𝜏

𝜇+𝛼+𝜌
                          (4) 

 

 

V. Coupling the subsystems 
Coupled dynamics factor the spread of cervical cancer dynamics considering the population level to be 

a function of within-host immune viral responses at the individual level. In order to link the two processes, we 

examine the relationship between the two subsystems (3) and (1),by employing the method used by [6]. From 

system (3), it can be established that the host viral load has significant effect on Human Papilloma Virus 

transmission rate in the population. From subsystems (3) and (1)for the between- and within-host dynamics 

respectively, we obtain the coupled model linking between- and within-host dynamics of cervical cancer. 
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The dynamics described can be represented mathematically as: 

𝑑𝑇(𝑡, 𝑥)

𝑑𝑡
= 𝛾𝑇  1 −

𝑇

𝑇𝑚𝑎𝑥
 − 𝛽𝑇𝐼𝑕𝑉 − 𝜔𝑇𝐼𝑕𝑇

∗ − 𝜇𝑤𝑇 −
𝐷2𝑑

2𝑇

𝑑𝑥2
 

𝑑𝑇∗(𝑡, 𝑥)

𝑑𝑡
= 𝛽𝑇𝐼𝑕𝑉 + 𝜔𝑇𝐼𝑕𝑇

∗ − 𝜍𝑇∗ −
𝐷3𝑑

2𝑇∗

𝑑𝑥2
 

𝑑𝑉(𝑡, 𝑥)

𝑑𝑡
= 𝛿𝜍𝑇∗ − 𝜖𝑉 −

𝐷1𝑑
2𝑉

𝑑𝑥2
 

𝑑𝑆(𝑡)

𝑑𝑡
=  Λ + 𝛼𝐼𝑕 𝑡 −  

𝜅𝜏𝜋𝑉𝐼𝑕
𝑁

+ 𝜇 𝑆(𝑡) 

𝑑𝐼𝑕 (𝑡)

𝑑𝑡
𝐼𝑕

 
 𝑡 =  

𝜅𝜏𝜋𝑉𝐼𝑕
𝑁

𝑆 𝑡 − (𝛼 + 𝜌 + 𝜇)𝐼𝑕(𝑡) 

𝑑𝐶(𝑡)

𝑑𝑡
=  ρ𝐼𝑕 𝑡 −  𝜈 + 𝜇 𝐶(𝑡)         (5) 

 

Since the rate of transmission of HPV in the human population is considered as a function of the number of free 

viruses, then the viral load (𝑉)at the between-host compartments can be considered as a parameter value and 

can therefore be denoted as 𝜃1. Similarly, the infectives(𝐼𝑕)at the within host can also be taken as a parameter 

and denoted as 𝜃2 . Hence model (5)becomes 

 

𝑑𝑇(𝑡, 𝑥)

𝑑𝑡
= 𝛾𝑇  1 −

𝑇

𝑇𝑚𝑎𝑥
 − 𝛽𝑇𝜃2𝑉 − 𝜔𝑇𝜃2𝑇

∗ − 𝜇𝑤𝑇 −
𝐷2𝑑

2𝑇

𝑑𝑥2
 

𝑑𝑇∗(𝑡, 𝑥)

𝑑𝑡
= 𝛽𝑇𝜃2𝑉 + 𝜔𝑇𝜃2𝑇

∗ − 𝜍𝑇∗ −
𝐷3𝑑

2𝑇∗

𝑑𝑥2
 

𝑑𝑉(𝑡, 𝑥)

𝑑𝑡
= 𝛿𝜍𝑇∗ − 𝜖𝑉 −

𝐷1𝑑
2𝑇

𝑑𝑥2
 

𝑑𝑆(𝑡)

𝑑𝑡
=  Λ + 𝛼𝐼𝑕  𝑡 −  

𝜅𝜏𝜋𝜃1𝐼𝑕
𝑁

+ 𝜇 𝑆(𝑡) 

𝑑𝐼𝑕 (𝑡)

𝑑𝑡
𝐼𝑕

 
 𝑡 =  

𝜅𝜏𝜋𝜃1𝐼𝑕
𝑁

𝑆 𝑡 − (𝛼 + 𝜌 + 𝜇)𝐼𝑕(𝑡) 

𝑑𝐶(𝑡)

𝑑𝑡
=  ρ𝐼𝑕 𝑡 −  𝜈 + 𝜇 𝐶(𝑡)         (6) 

 

VI. Basic Reproductive Ratio 
The local stability of the model (6)is governed by the basic reproduction Number 𝑅0𝐶 =

 𝑀𝑎𝑥(𝑅0𝐵 ,𝑅0𝑤 ), where R0wand R0B  are the basic reproduction numbers for within-host and between-host 

subsystems respectively. Using the next generation matrix approach Diekmann [4], at diffusion free state 

(𝐷 =  0) the basic reproduction number is given by 

 

𝑅0𝐶 =  𝑀𝑎𝑥  
𝜋𝜅𝜏 𝜃1

𝜇+𝛼+𝜌
, 𝑇𝑚𝑎𝑥  1 −

𝜇𝑤

𝛾
 
𝜔𝜃2

𝜍
+  𝑇𝑚𝑎𝑥  1 −

𝜇𝑤

𝛾
 
𝛽𝜃2𝛿

𝜖
    (7) 

 

Fromequations(2)and(4),equation(7)canbeexpressedas 

 

𝑅0𝐶 =  𝑀𝑎𝑥(𝑅0𝐵 ,𝑅0𝑤 )         (8) 

 

R0wis a measure of the average number of secondary viral and cellular infections within host caused by a single 

virion and infectious cells introducedinto an entirely susceptible cell population. 𝑅0𝐵 is a measure of the average 

number of secondary Human Papilloma Virus infections in human population caused by a single infectious 

individual introduced into an entirely susceptible population. 

 

VII. Local stability of Disease-free Equilibrium point 

The system (6) always has a disease free equilibrium (DFE), ), 𝐸0 =  
Λ

𝜇
, 0,0, 𝑇𝑚𝑎𝑥  1 −

𝜇𝑤

𝛾
 , 0,0 .The local 

stability of the DFE obtained by analysing the eigenvalues of the Jacobian matrix of system (6) at the DFE with 

𝐷1 =  𝐷2 =  𝐷3 =  0. 
 

The Jacobian matrix of system (6) is as follows; 
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Where 

𝐴 =  𝛽𝜃2𝑉 + 𝜔𝜃2𝑇
∗ 

𝐵 =  𝜔𝜃2𝑇 

𝐶 =  𝛽𝜃2𝑇  

𝐷 =
𝜅𝜏𝜋𝜃1𝑆

𝑁
− (𝛼 + 𝜌 + 𝜇)  

 

At disease free equilibrium (DFE), 𝐸0 =  
Λ

𝜇
, 0,0, 𝑇𝑚𝑎𝑥  1 −

𝜇𝑤

𝛾
 , 0,0  the Jacobian matrix 𝐽𝑐   will be; 

 

 
 

Where  𝐸 = 𝜔𝜃2𝑇𝑚𝑎𝑥  1 −
𝜇𝑤

𝛾
   and  

𝐹 =  𝛽𝜃2𝑇𝑚𝑎𝑥  1 −
𝜇𝑤
𝛾
  

 

Since at DFE, 𝑇0 = 𝑇𝑚𝑎𝑥 , then 𝛾 −
2𝛾𝑇

𝑇𝑚𝑎𝑥
− 𝜇𝑤  reduces to  −𝛾 − 𝜇𝑤 . The eigenvalues of the Jacobian 

matrix 𝐽𝑐(10) are  

 

𝜆1 = −𝜇           (11) 

𝜆2 = (𝛼 + 𝜌 + 𝜇)(𝑅0𝐵 − 1)        (12) 

𝜆3 = −(𝜈 + 𝜇)          (13) 

𝜆4 = −𝛾 − 𝜇𝑤           (14) 

 

We analyze the reduced matrix  

𝐽𝑐 =  
𝜔𝜃2𝑇𝑚𝑎𝑥  1 −

𝜇𝑤

𝛾
 − 𝜍 𝛽𝜃2𝑇𝑚𝑎𝑥  1 −

𝜇𝑤

𝛾
 

𝜍𝛿 −𝜖
      (15) 

 

Using Routh-Hurwitz criterion [7], the trace of Equation (15) is 

𝑡𝑟 𝐽𝑐 = 𝜔𝜃2𝑇𝑚𝑎𝑥  1 −
𝜇𝑤

𝛾
 − 𝜍 − 𝜖 < 0       (16) 

Provided that  𝜔𝜃2𝑇𝑚𝑎𝑥  1 −
𝜇𝑤

𝛾
 < 0 

 

And  det 𝐽𝑐 = −
𝛽𝜃2𝛿

𝜖
𝑇𝑚𝑎𝑥  1 −

𝜇𝑤

𝛾
 −

𝜔𝜃2

𝛿
𝑇𝑚𝑎𝑥  1 −

𝜇𝑤

𝛾
 + 1    (17) 
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Which simplifies to 

det 𝐽𝑐 =  1 − 𝜃2𝑅0𝑤  > 0        (18) 

 

Equation(18)holds provided that𝑅0𝑤 < 1.Thus the Disease Free 

EquilibriumDFEislocallyasymptoticallystablewhenever𝑅0𝐵 < 1and𝑅0𝑤 < 1. This means that 
introduction of an infected individual into the 

populationwouldnotleadtonewtransmissionandthediseaseiswipedout. 

 

VIII. Local stability of Endemic Equilibrium 
Attheendemicequilibrium,persistenceofinfectionoccursatthepopulation.The endemic equilibrium of system 

(6) is obtained by means of the CentreManifoldTheorem[2] 
 

Theorem8.1.Considerthefollowinggeneralsystemofordinarydifferentialequationswithaparameter𝑎∗ 
 
Proof 

𝑑𝑥

𝑑𝑡
= 𝑓 𝑥, 𝑎∗ , 𝑓: ℝ𝑛 × ℝ → ℝ𝑛    𝑎𝑛𝑑 𝑓𝜖 𝐶2  (ℝ → ℝ𝑛 )  

Thefollowingassumptionshold 

(i) Zeroisanequilibriumpointforsystem(6)forallvaluesoftheparameter 

𝑎∗,thatis𝑓 0, 𝑎∗ ≡ 0, ∀ 𝑎∗.  

(ii) Zeroisasimpleeigenvectorof𝐵andallothereigenvaluesof𝐵havenegativerealparts. 

(iii) Matrix𝐵hasarighteigenvector𝑤andalefteigenvector𝑣correspondingtothezeroeigenvalue

. 

(iv) 𝐵 = 𝐷𝑥𝑓 0,0 =  
𝜕𝑓𝑖

𝜕𝑥𝑖
 (0,0)  is the linearized matrix of the system (6) around the 

equilibrium 0 with 𝑎∗ evaluated at zero 

Let 𝑓𝑘  be the 𝑘𝑡𝑕  component of 𝑓 and  

 

𝑠∗ =  𝑣𝑘𝑤𝑖𝑤𝑗
𝜕2𝑓𝑘
𝜕𝑥𝑖𝜕𝑥𝑗

 0,0 ,

𝑛

𝑘,𝑖,𝑗=1

 

𝑟∗ =  𝑣𝑘𝑤𝑖𝑤𝑗
𝜕2𝑓𝑘
𝜕𝑥𝑖𝜕𝑎

∗
 0,0 ,

𝑛

𝑘,𝑖=1

 

Weusethesignsof𝑠∗and𝑟∗todeterminethelocaldynamicsofthesystem aroundtheequilibriumpoint0 
 

(i) In the case where  𝑠∗ > 0,  𝑟∗ > 0  when 𝜑 < 0, with  𝜑 ≪ 1, (0,0) islocally 

asymptotically stable and there exist a positive unstable equilibrium;when0 < 𝑎∗ ≪
1, (0,0)isunstableandthereexistsanegativeandlocallyasymptoticallystableequilibrium. 

(ii) In the case where𝑠∗ < 0,  𝑟∗ < 0   , when𝑎∗ < 0with 𝑎∗ ≪ 1, (0,0) 

isunstableandthereexistapositiveunstableequilibrium,when0 < 𝑎∗ ≪ 1, (0,0)islocallyasymptoticallystable. 

(iii) In the case where  𝑠∗ > 0,  𝑟∗ < 0 ,  when  𝑎∗ < 0  with    𝑎∗ ≪ 1, (0,0)is unstable and 

there exists a negative and locally asymptotically stableequilibrium, when 0 < 𝑎∗ ≪ 1, (0,0)is stable and 
there exists a positiveunstableequilibrium. 

(iv) Inthecasewhere𝑠∗ > 0,  𝑟∗ < 0,when𝑎∗ < 0changesfromnegative to positive, (0,0)changes 
its stability from stable to unstable.Correspondingly, a negative unstable equilibrium becomes positive 

andlocallyasymptoticallystable. 
 

Thefollowingsimplificationandchangeofvariablesaremadeonthesystem(6). Let  𝑆 = 𝑥1,𝐼𝑕 = 𝑥2, 𝐶 =
𝑥3, 𝑇 =  𝑥4 , 𝑇∗ = 𝑥5and  𝑉 = 𝑥6.so  that𝑁𝐵 = 𝑥1 + 𝑥2 + 𝑥3and𝑁𝑊 = 𝑥4 + 𝑥5 + 𝑥6.Then the 

system(6)can bewrittenas 

 
𝑑𝑥

𝑑𝑡
= 𝐹(𝑋) 

Where   𝑋 =  𝑥1 , 𝑥2, 𝑥3, 𝑥4 , 𝑥5, 𝑥6         and 𝐹 = (𝑓1, 𝑓2, 𝑓3 , 𝑓4 , 𝑓5 , 𝑓6) 

Thus 
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𝑑𝑥4

𝑑𝑡
= 𝑓4 = 𝛾𝑥4  1 −

𝑥4

𝑇𝑚𝑎𝑥
 − 𝛽𝑥4𝜃2𝑥6 −𝜔𝑥4𝜃2𝑥5 − 𝜇𝑤𝑥4 −

𝐷2𝑑
2𝑥4

𝑑𝑥2
 

𝑑𝑥5

𝑑𝑡
= 𝑓5 =  𝛽𝑥4𝜃2𝑥6 + 𝜔𝑥4𝜃2𝑥5 − 𝜍𝑥5 −

𝐷3𝑑
2𝑥5

𝑑𝑥2
 

𝑑𝑥6

𝑑𝑡
= 𝑓6 =  𝛿𝜍𝑥5 − 𝜖𝑥6 −

𝐷1𝑑
2𝑥6

𝑑𝑥2
 

 
𝑑𝑥1

𝑑𝑡
= 𝑓1 =  Λ + 𝛼𝑥2 −  

𝜅𝜏𝜋𝜃1𝑥2

𝑁
+ 𝜇 𝑥1 

𝑑𝑥2

𝑑𝑡
= 𝑓2  =  

𝜅𝜏𝜋𝜃1𝑥2

𝑁
𝑥1 − (𝛼 + 𝜌 + 𝜇)𝑥2  

𝑑𝑥3

𝑑𝑡
= 𝑓3 =  ρ𝑥2 −  𝜈 + 𝜇 𝑥3          (19) 

 

TheJacobianmatrixofsystem(6)atdiseasefreeequilibrium 

(DFE) 𝐸0 =  
Λ

𝜇
, 0,0, 𝑇𝑚𝑎𝑥  1 −

𝜇𝑤

𝛾
 , 0,0  and with 𝐷 1 =  𝐷2 =  𝐷 3 =  0 is given by; 

 

 
 

 

Where 𝐺 =  𝜔𝜃2𝑇𝑚𝑎𝑥  1 −
𝜇𝑤

𝛾
    and  𝐻 =  𝛽𝜃2𝑇𝑚𝑎𝑥  1 −

𝜇𝑤

𝛾
 .The Jacobian matrix  20  has a right 

eigenvector given by 

 

𝑊 =  𝑤1, 𝑤2, 𝑤3, 𝑤4,𝑤5 ,𝑤6 
𝑇 where   𝑤1=0,  𝑤2 = 0,  𝑤3=0, 𝑤4 =

𝑤5 𝐺−𝐻
𝛿𝜍

𝜖
 

 𝛾+𝜇𝑤  
,𝑤5 = 𝑤5 >

 0,𝑤6 =
𝑤5𝛿𝜍

𝜖
 

 

ThecomponentsofthelefteigenvectoroftheJacobianmatrix(20)denotedby 

 

𝑉 =  𝑣1 , 𝑣2 , 𝑣3 , 𝑣4, 𝑣5 , 𝑣6 
𝑇  given by  𝑣1 = 0,𝑣2 = 0,𝑣3 = 0, 𝑣4 = 0, 𝑣5 = 𝑣5 > 0 and𝑣6 =

𝐻𝑣5

𝜖
 

 

Let𝑎and𝑏bethecoefficientsdefinedintheorem(8.1).Thuswecancalculates∗for the transformed system(20), the 

associated nonzero partial differentialsof𝑓evaluatedattheDFE,𝐸0aregivenby; 

 

 𝑣2𝑤1𝑤𝑗
𝜕2𝑓2

𝜕𝑥𝑖𝜕𝑥𝑗
 0,0 = 2𝑣5𝜔5

2 𝐺 −𝐻 
𝛿𝜍

𝜖
 𝜔𝜃2 +

𝛿𝜃2𝛽𝜍

𝜖
 > 0

6

𝑘,𝑖,𝑗

 

 

Considerthecasewhen 𝑅0𝐶 = 1   and assuming    𝑅0𝐵 < 𝑅0𝑤  we choose 𝜃2 =

𝜑asabifurcationparameter.Solvingfor 𝜃2 from  𝑅0𝐶 = 𝑅0𝑤 = 1 gives 

 

𝜃2 = 𝜑 =
1

𝑇𝑚𝑎𝑥  1−
𝜇𝑤
𝛾
  
𝛿𝛽

𝜖
+
𝜔

𝜍
 
       (21) 

 

And  𝑟∗  is given by 
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𝑟∗ =  𝑣𝑘𝑤𝑖

𝜕2𝑓𝑘
𝜕𝑥𝑖𝜕𝜑

(0,0)

𝑛

𝑘,𝑖=1

 

 

= 2𝑣5𝑤5𝑤 𝑇𝑚𝑎𝑥  1 −
𝜇𝑤

𝛾
 > 0       (22) 

Since 𝑠∗ > 0  and 𝑟∗ > 0,thentheorem(8.1)holdsandthussystem(6)has 

auniqueendemicequilibriumwhichislocallyasymptoticallystablewhenever 𝑅0𝐶 > 1andunstablewhen 

𝑅0𝐶 < 1. 

 

IX. Numerical simulation 

Numerical simulations were carried out to graphically illustrate the coupled of cervical cancer. 

 
 

 
The viral load decreases exponentially both in space and time, 𝑓𝑖𝑔𝑢𝑟𝑒 (4). This is attributed to 

immune response, the natural death of virions and/or exhaustion of uninfected cells or the slow process of viral 

replication as a result of latency or treatment after diagnosis is done. The uninfected cells decreases, 

𝑓𝑖𝑔𝑢𝑟𝑒(2).On the other hand, the infected cells increase considerably and then decrease with the passage of 

time and with the increase in distance from the reference cell 𝑓𝑖𝑔𝑢𝑟𝑒 (3). This behavior is brought about by the 

coupling due to 𝐼𝑕 (𝑡)shown by 𝑓𝑖𝑔𝑢𝑟𝑒(5) , which increases sharply before plateaus and then decreases slowly. 

The decrease in uninfected cells is an indication that more cells are recruited into the infected compartment, 

brought about by theincrease in 𝐼𝑕 (𝑡). This explains why the infected cells are increasing. 

 

It can also be deduced that the decline in the viral load at the within- host may not necessarily lead to a 

decline in the number of infectives at the population level. This is attributed to the fact that infectivity at the 
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population is highly dependent on the contact rate between infected and susceptible individuals. Even with low 

viral load transmission at the population level can persist as long as the contact rate is kept high. 

 

 
  

 
 

 𝐹𝑖𝑔𝑢𝑟𝑒 (6) illustrates exponential increase in the number of uninfected cells increase with the passage 

of time and space, while the infected cells decrease exponentially, 𝑓𝑖𝑔𝑢𝑟𝑒 (7). Correspondingly, the viral load 

decreases sharply with increase in time and space, 𝑓𝑖𝑔𝑢𝑟𝑒 (8). The decrease in viral load leads to a 

corresponding but at a lower rate decrease in the number of infected cells both in space and time. This agrees 

with reality, in that at early diagnosis, the infected cells and infected areas are removed from the body before 

cancer spreads to other organs and thus the patient recover from the infection. Therefore, the decrease in viral 

load has a corresponding decrease in infected cells and increase in uninfected cells. This is also brought about 

by the coupling where at early diagnosis, 𝐼𝑕(𝑡) reduces and then tends to zero 𝑓𝑖𝑔𝑢𝑟𝑒 (9) . The decrease in 

infected cells and the viral load is due to the removal of the infected areas, that is the cervix and the uterus, 

brought about by the decrease in 𝐼𝑕(𝑡). This explains why the uninfected cells are increasing. 

Furthermore, the graphs show that with early diagnosis, the rate of increase in the number of infected 

cells is decreased while late diagnosis corresponds to an increase in the number of infected cells. Hence, the 

stage of diagnosis is crucial in combating and managing the cervical cancer infection. 

 

X. Discussion 
In this study we have formulated and analysed a model framework linking the two subsystems of 

within-and between-host cervical cancer dynamics. The newness in this study is in deriving the coupled model 

by expressing the transmission rate as a function of the viral load at the between host level, while expressing the 

infection rate at within host as a function of the infectivesat the population level. This was based on the 

approach by [5]. The six compartments model obtained remained mathematically and computationally tractable. 

Hence a detailed mathematical analysis was conducted, this involved determining the basic reproduction 

number for the coupled model. This wasfound to be a maximum of the two reproduction numbers for the 



A Coupled Mathematical Model For Cervical Cancer Incorporating Diffusion And Diagnosis 

DOI: 10.9790/5728-1804030109                                www.iosrjournals.org                                             9 | Page 

between-and within-host subsystems, that is𝑅0𝐶 =  𝑀𝑎𝑥(𝑅0𝐵 ,𝑅0𝑤 ). The analysis of the DFE was done using 

the Routh-Hurwiz criteria and was found to be asymptotically stable whenever𝑅0𝐵 <  1 and 𝑅0𝑤<1. This has 

both within and between-host significance, in that the introduction of an infected individual into the population 

would not lead to new transmission and the disease is wiped out. 

The centre manifold theorem was used to show that the coupled model has a unique endemic 

equilibrium. This was found to be locally asymptotically stable whenever𝑅0𝐶 > 1andunstablewhen𝑅0𝐶 <
1.From the numericalsimulations, it was deduced that an increase in viral load has a corresponding increase in 

the number of infectives at the population level. This means that, movement of the virus makes the disease 

persist in the population. However,a decline in the viral load at the within- host may not necessarily lead to a 

decline in the number of infectives at the population level. This is because transmissibility is highly dependent 

on the rate of contact between the infectives and the susceptibles. 
In addition numerical simulations revealed that early diagnosis has remarkableeffect on cervical cancer 

management and HPV transmission. Early diagnosis leads to significant reduction of the viral load and the 

number infected cellswithin a short period of time and space. 

 

XI. Conclusion 
Early diagnosis contributes to low viral replication, since it prevents successful infection of new cells 

and infected cells from maturing into actively infectious virions. This is likely to result into low transmission of 

HPV at the population level. Hence the small number of infected individuals at the population when diagnosed 

early, treatment is done and the patients gain full recovery from cervical cancer infection. This is in agreement 

with Bungoma district report where, those diagnosed early, fully recovered from the infection unlike late 

diagnosis. 
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