Every Cycle C_n with Parallel Chords of Pendant Edge Extension is Even Graceful

A. Elumalai

Department of Mathematics RajalakshmiInstituteofTechnologyChennai-600124 Tamilnadu

A graph G is called a pendant edge extension graph of a graph H if G is obtained from H by adjoining a new pendant edge with each vertex of H and denote pendant edge extension graph of a graph H by $H \odot K_1$.

In this paper, I have proved

- 1. Every cycle with parallel chords is even graceful for all $n \ge 6$.
- 2. Every cycle with parallel chords of pendant edge extension is even graceful for all $n \ge 6$.

Keywords: Graph labeling, Graceful graph, Even and odd graceful graph, Cycle with parallel chords.

AMS Subject Classification: 05C78.

Date of Submission: 28-07-2022 Date of Acceptance: 09-08-2022

I. Introduction

A function f is called a graceful labeling of a graph G with m edges if f is an injection from the vertex set of G to the set $\{0, 1, 2, \ldots m\}$ such that, when each edge xy is assigned the label |f(x) - f(y)| the resulting edge labels are distinct.

A function f is called an even graceful labeling of a graph G with m edges if f is an injection from the vertices of G to the set $\{0, 1, 2, \ldots 2m\}$ such that when each edge uv is assigned the label ||f(u)-f(v)||, the resulting edge labels are distinct even numbers that ranges from 2 to 2m.

A graph G with m edges to be odd graceful if there is an injection from f from V(G) to $\{0, 1, 2, \dots 2m - 1\}$ such that when each edge uv is assigned the label f(u) - f(v), the resulting edge labels are $\{1, 3, 5, \dots, 2m - 1\}$.

A line of work on graceful graphs has concentrated on graphs related to the cycles stemming from Rosa's result that a cycle C_n is graceful iff n = 0 or 3 (mod 4). A chord of a cycle is an edge joining two non-adjacent vertices of the cycle. Bodendiek, Schumacher and Wegner conjectured in that every cycle with a chord is graceful.

The validity of this conjecture has been proved by Delorme, Mahev et al in [2].

A natural extension of the structure of a cycle with a chord is that of a cycle with a P_k -chord. A cycle with a P_k -chord (k > 2) is a graph obtained by joining a pair of non-adjacent vertices of a cycle of order n (n > 4) by a path of order k.

Koh and Yap [6] have shown that cycles with P_3 -chords are graceful and conjectured that all cycle with P_k -chords are graceful. This was proved for $k \ge 4$ by Punnim and Prabhapote [7]. For an excellent survey on graceful labeling see [5].

A graph G is called cycle with parallel chords if G is obtained from a cycle $c_n : v_0v_1 \dots v_{n-1}v_0 \ (n \ge 6)$ by adding the chords $v_1v_{n-1}, v_2v_{n-2}, \dots, v_\alpha v_\beta, \alpha = \left\lfloor \frac{n}{2} \right\rfloor - 1$ and $\beta = \left\lfloor \frac{n}{2} \right\rfloor + 2$, if n is odd or $\beta = \left\lfloor \frac{n}{2} \right\rfloor + 1$, if n is even [3].

A cycle with pendant edges extension is a graph obtained by attaching edges if non adjacent chords of a cycle of order n [1, 8].

In this direction I have proved the following results, every cycle with parallel chords is even graceful for all $n \ge 6$ and every cycle with parallel chords of pendant edges is even graceful for all $n \ge 6$.

II. Even Gracefulness of a Cycle with Parallel Chords and Parallel Chords of Pendant Edge Extension of Graphs

In this section I have proved that certain pendent edge extension of cycle related graphs.

Theorem 2.1. For $n \ge 6$, every cycle with parallel chords is an even graceful.

Proof. Let G be a cycle C_n with parallel chords for $n \ge 6$.

Let $v_0, v_1, \ldots, v_{n-1}$ be the vertices of a cycle C_n of G. Observe that by definition, G has n vertices and $M = \frac{3n-p}{2}$ edges, if p = 3, if n is odd or p = 2, if n is even.

I give labels to the vertices of cycle C_n in the following four cases:

Case 1: When n is even (i.e., $C_n = C_{4k}$; k = 1, 2, ...) Define

$$f(v_0) = 0$$

$$f(v_{n-(2i-1)}) = M - 6(i-1), \quad \text{for } 1 \le i \le \frac{n-4}{4}$$

$$f(v_{n-2i}) = 6i, \quad \text{for } 1 \le i \le \frac{n-4}{4}$$

$$f(v_{2i-1}) = 6i - 4, \quad \text{for } 1 \le i \le \frac{n}{4}$$

$$f(v_{2i}) = M - 6i + 4, \quad \text{for } 1 \le i \le \frac{n}{4}$$

$$f(\frac{v_n}{2}) = 6k - 2, \quad \text{for } k \ge 2$$

$$f(\frac{v_n}{2} + 1) = 6k + 2, \quad \text{for } k \ge 2$$

Case 2: When *n* is even (i.e., $C_n = C_{4k+2}$; k = 1, 2, ...)

Define

$$f(v_0) = 0$$

$$f(v_{n-(2i-1)}) = M - 6(i-1), \quad \text{for } 1 \le i \le \frac{n-2}{4}$$

$$f(v_{n-2i}) = 6i, \quad \text{for } 1 \le i \le \frac{n-6}{4}$$

$$f(v_{2i-1}) = 6i - 4, \quad \text{for } 1 \le i \le \frac{n-6}{4}$$

$$f(v_{2i}) = M - 6i + 4, \quad \text{for } 1 \le i \le \frac{n-2}{4}$$

$$f(v_{2i}) = M - 6i + 4, \quad \text{for } 1 \le i \le \frac{n-2}{4}$$

$$f(v_{2i}) = 6k - 2, \quad \text{for } k \ge 2$$

$$f(v_{2i-1}) = 6k + 2, \quad \text{for } k \ge 2$$

Case 3: When *n* is odd (i.e., $C_n = C_{4k+1}$; k = 1, 2, ...) Define

$$f(v_0) = 0$$

$$f(v_{n-(2i-1)}) = M - 6(i-1), \quad \text{for } 1 \le i \le \frac{n-1}{4}$$

$$f(v_{n-2i}) = 6i, \quad \text{for } 1 \le i \le \frac{n-1}{4}$$

$$f(v_{2i-1}) = 6i - 4, \quad \text{for } 1 \le i \le \frac{n-1}{4}$$

$$f(v_{2i}) = M - 6i + 4, \quad \text{for } 1 \le i \le \frac{n-1}{4}$$

Case 4: When *n* is odd (i.e., $C_n = C_{4k+3}$; k = 1, 2, ...) Define

$$f(v_0) = 0$$

$$f(v_{n-(2i-1)}) = M - 6(i-1), \quad \text{for } 1 \le i \le \frac{n+1}{4}$$

$$f(v_{n-2i}) = 6i, \quad \text{for } 1 \le i \le \frac{n-3}{4}$$

$$f(v_{2i-1}) = 6i - 4, \quad \text{for } 1 \le i \le \frac{n+1}{4}$$

$$f(v_{2i}) = M - 6i + 4, \quad \text{for } 1 \le i \le \frac{n-3}{4}$$

It is clear that f is injective and the edge values are distinct and range from 1 to M. Thus f is even graceful labeling. Hence the graph G is even graceful.

Theorem 2.2. For $n \ge 6$, every cycle with parallel chords of pendant edge extension is an even graceful.

Proof. Let G denote a cycle C_n with parallel chords of pendant edge extension with $n \ge 6$. By definition of G, G is obtained from the cycle C_n of order $n: v_0, v_1, \ldots, v_{n-1}v_0$ $(n \ge 6)$ by attaching the pendent edge extension of non-adjacent chords of cycle with parallel chords of vertices of order n that is the vertices are $u_1, u_2 \& u_3$ respectively.

Observe that G has n+p vertices where p=2, if n is even or p=3, if n is odd and $M=\frac{3n-p}{2}$ edges, where p=2, if n is even or p=3, if n is odd.

I give labels to the vertices $v_0v_1 \dots v_nv_{n-1}$ and $u_1, u_2 \& u_3$ in the following four cases

Case 1: When n is even (i.e., $C_n = C_{4k}$; k = 1, 2, ...) Define

$$f(v_0) = 0$$

$$f(v_{n-(2i-1)}) = M - 6(i-1), \quad \text{for } 1 \le i \le \frac{n-4}{4}$$

$$f(v_{n-2i}) = 6i, \quad \text{for } 1 \le i \le \frac{n-4}{4}$$

$$f(v_{2i-1}) = 6i - 4, \quad \text{for } 1 \le i \le \frac{n}{4}$$

$$f(v_{2i}) = M - 6i + 4, \quad \text{for } 1 \le i \le \frac{n-2}{4}$$

$$f(\frac{v_n}{2}) = 6k + 4, \quad \text{for } k \ge 2$$

and pendant vertices

$$f(u_1) = 10$$
, $f(u_2) = 6k + 10$, for $k \ge 2$

Case 2: When n is even (i.e., $C_n = C_{4k+2}$; k = 1, 2, ...) Define

$$f(v_0) = 0$$

$$f(v_{n-(2i-1)}) = M - 6(i-1), \quad \text{for } 1 \le i \le \frac{n-4}{4}$$

$$f(v_{n-2i}) = 6i, \quad \text{for } 1 \le i \le \frac{n-4}{4}$$

$$f(v_{2i-1}) = 6i - 4, \quad \text{for } 1 \le i \le \frac{n}{4}$$

$$f(v_{2i}) = M - 6i + 4, \quad \text{for } 1 \le i \le \frac{n-2}{4}$$

$$f(\frac{v_n}{2}) = 6k + 8, \quad \text{for } k \ge 1$$

and pendant vertices

$$f(u_1) = 10$$
, $f(u_2) = 6k + 2$, for $k \ge 2$

Case 3: When *n* is odd (i.e., $C_n = C_{4k+1}$; k = 1, 2, ...) Define

$$f(v_0) = 0$$

$$f(v_{n-(2i-1)}) = M - 6(i-1), \qquad \text{for } 1 \le i \le \frac{n-1}{4}$$

$$f(v_{n-2i}) = 6i, \qquad \text{for } 1 \le i \le \frac{n-1}{4}$$

$$f(v_{2i-1}) = 6i - 4, \qquad \text{for } 1 \le i \le \frac{n-1}{4}$$

$$f(v_{2i}) = M - 6i + 4, \qquad \text{for } 1 \le i \le \frac{n-1}{4}$$

and pendant vertices

$$f(u_1) = 4$$
, $f(u_2) = 6k + 6$, for $k \ge 1$, $f(u_3) = 6k + 2$, for $k \ge 1$

Case 4: When n is odd (i.e., $C_n = C_{4k+3}$; k = 1, 2, ...) Define

$$f(v_0) = 0$$

$$f(v_{n-(2i-1)}) = M - 6(i-1), \quad \text{for } 1 \le i \le \frac{n-1}{4}$$

$$f(v_{n-2i}) = 6i, \quad \text{for } 1 \le i \le \frac{n-1}{4}$$

$$f(v_{2i-1}) = 6i - 4, \quad \text{for } 1 \le i \le \frac{n-1}{4}$$

and pendant vertices

$$f(u_1) = 4$$
, $f(u_2) = 6k + 8$, for $k \ge 1$, $f(u_3) = 6k + 4$, for $k \ge 1$

It is clear that f is injective and the edge values are distinct and range from 1 to M. Thus f is even graceful labeling. Hence the graph G is even graceful.

References

- J. Ayel and O. Favaron, Helms are graceful, Progress in Graph Theory (Waterloo, Ont, 1982), Academic Press, Toronto, Ont. (1984), 89–92.
- [2] C. Delorme, K.M. Koh, M. Maheo, Teo H. Thuillier, Cycles with a chord are graceful, J. Graph Theory, 4 (1980), 409–415.
- [3] A. Elumalai and G. Sethuraman, Gracefulness of a cycle with parallel P_k -chords, Australasian J. Combin., 32 (2005), 205–211.
- [4] A. Elumalai and G. Sethuraman, Gracefulness of a cycle with parallel chords and parallel P_k -chords of different lengths, Ars Comb., 104 (2012), 143–148.
- [5] J.A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, (2018), # DS6.
- [6] K.M. Koh and K.Y. Yap, Graceful numbering of cycles with a P₃-chords, Bull. Inst. Math. Acad. Sinica, 12 (1985), 41–48.
- [7] N. Punnim and N. Pabhapote, On graceful graphs: Cycles with a P_k -chord, $k \ge 4$, Ars Combin, 23A (1987), 225–228.
- [8] G. Sethuraman and A. Elumalai, On graceful graphs: pendant edge extensions of a family of complete bipartite and complete tripartite graphs, Indian J. Pure Appl. Math., 32(9) (2001), 1283–1296.

Illustrative examples

1

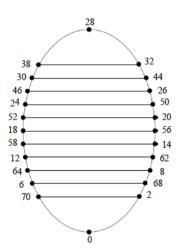


Figure 1: Even graceful labeled C24 with parallel chords

2.

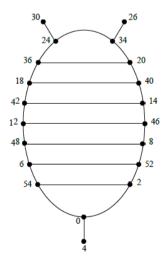


Figure 2: Even graceful labeled C_{17} with parallel chords of pendant edge extension