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I. Definition 

Let the sequence {xn} be defined by the seed x1 = x2 = 1, and the recursive relation 
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The first ten terms are  
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For reasons that will be apparent later, we do not reduce the fractions in (2) to lowest terms. Now multiplying 

both sides of (1) by xn+1 yields  

       xn+1xn+2 = xnxn+1 + 1   (3) 

Lettingf(n) = xnxn+1, (3) becomes f(n + 1) = f(n) + 1. Since f(1) = x1x2 = 1, we find that f(n) = n, implying that 

xnxn+1 = n. It follows that  
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In other words, the sequence defined by the recursive relation (1) in which each term depends on the two terms 

preceding it has a simpler recursive relation (4) in which each term depends solely on the preceding term. The 

reader should verify that the first ten terms satisfy the new recursion.  

We use (4) to write another recursive formula from which the sequence may be obtained (with the seed x1 = x2 = 

1). We have, using (4),  
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II. Several theorems 

As a consequence of (5), we have the following theorem.  

Theorem 1: 
2lim
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Proof: By (5), we have 
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which approaches e as n goes to infinity.  ■ 

We now find closed form expressions for the sequence, using (4). The two seed terms will be omitted, but can 

be shown to follow the pattern to be established. Once again, the fractions in Table 1, below, will not be reduced 

to lowest terms.  
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Table 1 

Clearly, the closed form of xn will depend on the parity of n.  

Case 1: n = 2k + 1. Then 
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Case 2: n = 2k . Then 
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The reader is reminded that two functions f(x) and g(x) are called asymptotic if 1
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x
. This does 

not imply that |f(x) – g(x)| is bounded, as can be seen by the pair of asymptotic functions f(x) = x
2
 + x and g(x) = 

x
2
 whose absolute difference goes to infinity. We write f(x) ~ g(x) to denote that f and g are asymptotic. The 

reader is also reminded of Stirling’s beautiful relation [1] 
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which we will use to obtain asymptotic approximations for x2k and x2k+1. We require the easily verified 

asymptotic relations (9) and (10). 
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Using (9) and (10) have  
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Obtaining an asymptotic approximation for x2k will be more difficult.  
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The last asymptotic approximation made use of the fact that e
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calculations, we have the following theorem. 
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Letting n = 2k in (4), we have kxx kk 2122  ,which is consistent with the above theorem. Furthermore, 

Theorem 2 implies that 
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As a consequence of Corollaries 1 and 2, note that 

n

n
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
 fails to exist. Moreover,  by these corollaries, 

there exists a positive integer, K, such that for all k>K, one has x2k+1>x2k, while x2k+2<x2k+1. In other words, from 

some point on, terms with odd index are greater than the terms immediately before them, while the reverse is 

true for terms with even index. Note that this strict alternation between increasing and decreasing behavior 

appears to be the case for the terms in (2) with the exception of the equality of the first two terms.The next 

theorem requires the following Lemma which we state without proof. 
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Lemma 1: Let a and b be positive integers, and let p be a prime that divides b but does not divide a. Then 
b

a
 is 

not an integer.          ■ 

The reader is reminded that Bertram’s Postulate [2] says that for n> 1, there is at least one prime p such 

that n<p< 2n. 

Theorem 3: Let n> 3. Then xn is not an integer. 

Proof: We have two cases depending on the parity of n.  

Case 1: n = 2k + 1, where k> 1. Then by (6), 
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prime p such that k<p<2k. Then p divides that denominator, but not the numerator, of x2k+1. Then by Lemma 1, 
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Case 2: n = 2k, where k> 1. From Table 1, one has x2k=
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Let Pn = x1x2x3···xn, from which xn+1(Pn)
2
 = x1x1x2x2x3x3···xnxnxn+1. Recall that (4) can be written xnxn+1 = n. Then 

we have xn+1(Pn)
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The equations of Table 1, which were obtained from (4), imply that  
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In light of (12) and (13), we turn our attention to the sequence of numerators {Nn}, whose first few terms are 1, 

1, 2, 3, 8, 15, 48, 105, 384, 945. Since 
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are not reducing these fractions, it follows that  

        Nn+1 = nDn    and   Dn+1 = Nn                    (13) 
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Note that the terms 8, 15, 48, 105 and 384 of the sequence {Nn} can be rewritten 1(3
2
 – 1), 1(4

2
 – 1), 

2(5
2
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2
 – 1) and 8(7

2
 – 1), where the factors before the parentheses are consecutive members of the same 

sequence. This is not a coincidence.  

By (13), Nn+2 = (n + 1)Dn+1 = (n + 1)Nnimplying that Nn+4 = (n + 3)Nn+2 = (n + 3)(n + 1)Nn= [(n + 2)
2
 – 

1]Nn. We have proven the following theorem. 
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By the second equation in (13), a similar identity holds for the sequence, {Dn}, of denominators. 
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Proof: Let m go to infinity in Theorem 6. Then use 
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III. A related sequence 

Let a new sequence {yn} be defined by the seedy1 = y2 = 1, and the recursive relation 
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The first few terms are  .
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Question 1: Find a recursive relation of the form ),(1 nygy nn   as was the case for {xn} in section I, 

that is, a relation such as (4). 

By (14), one sees that {yn} is strictly increasing, unlike the sequence {xn}. As a consequence, we have the 

following theorem. 
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Proof: Since {yn} is strictly increasing, it must either approach infinity or have a finite limit, say L.We show the 

latter is impossible  by contradiction. Assume that 
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The next theorem yields a result similar to Theorem 6. 
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IV. Another sequence whose recursive definition can be simplified 

Let the sequence {xn} be defined by the seed x1 = x2 = 1, and the recursive relation 

nnn xxx 212                          (15) 

which is a variant on the recursive relation of the Fibonacci sequence. The first few terms are  

     {1, 1, 3, 5, 11, 21, 43, 85, … }                                (16) 

We have the following interesting theorem which, by the way, is the reason the above sequence is included in 

this paper. 
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Theorem 9: The sequence defined by (15) and the seed x1 = x2 = 1 satisfies the recursion 

 nnn xx 121  . 

Proof: We use a variant of induction. The theorem is clearly true for n = 1 and n = 2. Now assume it is true for n 
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