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Abstract 
In many tropical countries, influenza epidemic has remained a health concern. Allocating resources for its 

treatment and control has always targeted certain period of the year when its incidence is believed to be 

highest. In this study, we have used the stochastic rates of changes insix classes of the population N(t) to  find 

suitable Markov jump  process from which  a stochastic differential equation was obtained for the symptomatic 

infectious class and solved by Ito’s formula. Analysis of the sample path of the infectives shows that influenza is 

endemic in Nigeria throughout the year with occasional change in epidemic size.  
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I. Introduction 

Influenza is a highly infectious viral disease of the lung,nose and throat which“causes between 250,000 

– 500,000 deaths annually world-wide out of 3 to 5 million cases of severe illness annually”[6]. Nigeria is one 

of the worst hit by influenza epidemic.In 2018, the World Health Organisation(WHO) reported that influenza 

and pneumonia deaths reached 288,619 or 14.89% of total deaths in Nigeria[8].Its  

symptoms include: fever, muscle pain, chills, and cough (dry or with phloem), fatigue, loss of appetite, 

runny nose or sneezing. It can also include, headache, vomiting, sore throat, shortness of breath or swollen 

lymph nodes. The disease has incubation period of 2 days on the average but can range from one to four days. 

The disease is spread by inhalation of respiratory droplets of infected persons through cough or 

sneezing. It can also be contracted by a healthy person in skin-to-skin contact, saliva exchange or by touching 

contaminated surfaces.One in three influenza infected individuals is asymptomatic” [2] while“50% of seasonal 

influenza infections may be asymptomatic” [7]. Access, adherence to  preventive information and timely 

treatment are very crucial to the control of influenza epidemic. Contrary to the usual practice of concentrating 

control measures on the cold seasons, this research focusses on using stochastic differential equations (SDE’s) 

to findthe best time of the year when health authorities could deplore the most resources in the treatment and 

control of influenza. 

 

II. Methodology 
We use a multitype form of Bartlett’s compartmental epidemic model [1]. Therefore, we have a 

stochastic epidemic model with 6 compartments, each of which can be described by a linear stochastic 

differential equation with additive noise and multidimensional Brownian motion.  The population N(t), t≥ 0 is 

divided into 6 non-overlapping categories such that 

 N(t) = S1(t) + S2(t) + I1(t) + I1(t) + T(t) + D(t) 

At the initial time, S1(0) = s1, S2(0) = s2, I1(0) = i1, I2(0) = i2, D(0) = T(0) = 0 

The classes and their sizes at time t include two susceptible classes namely: Informed Susceptible (S1(t)) and 

Uniformed Susceptible (S2(t)); two infectious classes namely: Symptomatic Infectives(I1(t)) and Asymptomatic 

Infectives (I2(t)), and two removed classes namely: The Treated T(t) and the Dead (D(t)). 

Members of the informed class have adequate knowledge ofinfluenza preventive measures such as 

regular washing of hands, maintaining social distancing, personal hygiene and they are assumed to abide by 

them. The class of the uninformed, S2(t) are individuals who are either unaware of influenza preventive 

measures or are aware but fail to follow the rules. An uninformed person can become informed and move to the 

informed category at the rate 𝛾. The two susceptible classes can gain member through birth at the rate 𝜆1or lose 

members through non-influenza-related death at the rate 𝜆2. 

The Symptomatic Infectious Class I1(t) consists of members of the population who are infected by 

influenza and clearly manifest its notable symptoms such as cough chills sneezing, muscle aches, runny nose, 

headache and fatigue. A person becomes a member of this class when a contact is made between an infected 

person and a member of either of the two susceptible classes, therefore resulting in infection at the Poisson 
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rate𝛽1.The compartmentI2(t) of the population consists of individuals who have contracted influenza but either 

show mild symptoms or do not manifest the influenza symptoms at all. They are assumed to also take part in the 

spread of the infection unnoticed. A member of the informed susceptible class or uninformed susceptible class 

can move to the I2(t) compartment when infectious contact is made with an infectious person at the Poisson rate 

𝛽2. 

T(t) is the compartment containing people who have been treated either by medication or quarantine 

and are assumed to no longer participate in the transmission of the disease. A member of I1(t) or I2(t) will transit 

to this class at the rate 𝜇1when hegets treated.The section of the population is for those who died as a result of 

the infection are represented, in name and size, by D(t). Obviously, a dead person can no longer participate in 

the spread of the disease. However, a member of the population can be in this compartment at the rate 𝜇2 if he 

died of influenza or rate 𝜆2 if he died of other causes.  

The increments in each of the classes in disjoint time interval [t, t + ∆𝑡] are independent. Thus, for 𝛽 > 0 and 

any compartment Y(t) of the model, the increment ∆𝑌(𝑡) has the probabilities  

P[Y(t + ∆𝑡) – Y(t) = 1] =  𝛽∆𝑡  + o(∆𝑡)                                                                                   P[Y(t + ∆𝑡) – Y(t) > 

1] =  o(∆𝑡)                                                    P[Y(t + ∆𝑡) – Y(t) = 0] = 1 - 𝛽∆𝑡  + o(∆𝑡) 

Where𝛽, the Poisson rate, is an important factor of the stochastic  rate of transition of an individual from 

Susceptible class to Infective class given by 𝛽
𝑆𝐼

𝑁
, known as the stochastic infection rate where 𝛽 defines the 

mean number of infectious contacts made by  mean infectious individuals per unit time, N is the total population 

.Hence, using the stochastic rates as in [6]the probabilitiesof changes the  compartmentsin a short time∆𝑡are:

     

 P{Δ𝑆1 t } = [𝜆1N(t)  +  𝛾𝑆2 − 𝜆2S1 t −  
𝛽1

𝑁
𝐼1 𝑡 𝑆1 𝑡 +

𝛽2

𝑁
𝐼2 𝑡 𝑆1 𝑡  ]∆𝑡  +  o(Δ𝑡)     

P{Δ𝑆2 t } = [𝜆1N(t) - 𝜆2S2(t) - 𝛾𝑆2  - 
𝛽1

𝑁
𝐼1 𝑡 𝑆2 𝑡 +

𝛽2

𝑁
𝐼2 𝑡 𝑆2 𝑡  ]∆𝑡  +  o(Δ𝑡)    

P Δ𝐼1 t   = [𝜃1𝑁 𝑡 + 𝜆1𝐼1 t +
𝛽1

𝑁
𝐼1 𝑡 𝑆1 𝑡 +

𝛽1

𝑁
𝐼1 𝑡 𝑆2 𝑡 −   𝜇1𝐼1 t + 𝜇2𝐼1 t + 𝜆2𝐼2 t  ]Δ𝑡+o(Δ𝑡)  

         

P{Δ𝐼2 t } = [𝜃2𝑁(𝑡) + 𝜆1I2(t) + ( 
𝛽2

𝑁
𝐼2 𝑡 𝑆1 𝑡  + 

𝛽2

𝑁
𝐼2 𝑡 𝑆2 𝑡  

                    -(𝜇1𝐼2 𝑡  + 𝜇2𝐼2 𝑡  + 𝜆2𝐼2 𝑡 ) ]Δ𝑡 + o(Δ𝑡)      (1) 

P ΔT t    =  [𝜇1𝐼1 𝑡  + 𝜇1𝐼2 𝑡  - 𝜆2T(t)] Δ𝑡 + o(Δ𝑡)   

P ΔD t    =  [𝜇2𝐼1 𝑡  + 𝜇2𝐼2 𝑡 ] Δ𝑡 + o(Δ𝑡) 

The changes in the various compartments will yield deterministic equations and later the corresponding 

stochastic equations, firstby adding to the increments in S(t), I1(t), I2(t), T(t) and D(t), the conditional 

expectation of each disease state given the value of the process at the beginning of [t, t + Δ𝑡].    
Thus,                    

  

Δ𝑆1 t  = [𝜆1N(t)  +  𝛾𝑆2 −  𝜆2𝑆1 t −  
𝛽1

𝑁
𝐼1 𝑡 𝑆1 𝑡 +

𝛽2

𝑁
𝐼2 𝑡 𝑆1 𝑡  ]∆𝑡  +  ΔZ1 –ΔZ3 – ΔZ4  

Δ𝑆2 t  = [ 𝜆1N(t) - 𝜆2S2(t) - 𝛾𝑆2  -  
𝛽1

𝑁
𝐼1 𝑡 𝑆2 𝑡 +

𝛽2

𝑁
𝐼2 𝑡 𝑆2 𝑡  ]∆𝑡  +  ΔZ2 –ΔZ3 – ΔZ4   

Δ𝐼1 t  = [𝜃1𝑁 𝑡 + 𝜆1𝐼1 t +
𝛽1

𝑁
𝐼1 𝑡 𝑆1 𝑡 +

𝛽1

𝑁
𝐼1 𝑡 𝑆2 𝑡 −  𝜇1𝐼1 t + 𝜇2𝐼1 t + 𝜆2𝐼2 t  ]Δ𝑡 

               +ΔZ1 +ΔZ2 – ΔZ3       (2) 

Δ𝐼2 t  = [𝜃2𝑁 𝑡 𝜆1I2(t) + ( 
𝛽2

𝑁
𝐼2 𝑡 𝑆1 𝑡  + 

𝛽2

𝑁
𝐼2 𝑡 𝑆2 𝑡  - (𝜇1𝐼2 𝑡  + 𝜇2𝐼2 𝑡  + 𝜆2𝐼2 𝑡 ) ]Δ𝑡  

               + ΔZ1 –ΔZ2 – ΔZ4      

Δ𝑇 t  = [𝜇1𝐼1 𝑡  + 𝜇1𝐼2 𝑡  - 𝜆2T(t)] Δ𝑡 + ΔZ5     

ΔD t  = [𝜇2𝐼1 𝑡  + 𝜇2𝐼2 𝑡 ] Δ𝑡 + ΔZ6 

Where  ΔZi, i = 1, 2, . . . ,6 are the differences of the Poisson increment resulting frombirth and death in the 

Informed Susceptible, Uninformed Susceptible, Symptomatic Infective, Asymptomatic Carrier, The Treated and 

The Dead Classes respectively 

All the ∆𝑍𝑖 , 𝑖 = 1, 2, . . . , 6are normally distributed with mean zero and variances ( 𝜆1N(t)  +  𝛾𝑆2 −  𝜆2S1 t )∆𝑡,  

(𝜆1N(t) - 𝜆2S2(t) -. 𝛾𝑆2)Δ𝑡, [𝜃1𝑁 𝑡 + 𝜆1𝐼1 t +
𝛽1

𝑁
𝐼1 𝑡 𝑆1 𝑡 +

𝛽2

𝑁
𝐼1 𝑡 𝑆2 𝑡  - 𝜆2𝐼1 t ]Δ𝑡,[𝜃2𝑁 𝑡 + 𝜆1I2(t) + ( 

𝛽1

𝑁
𝐼2 𝑡 𝑆1 𝑡  + 

𝛽2

𝑁
𝐼2 𝑡 𝑆2 𝑡  - 𝜆2𝐼2 𝑡 )]Δ𝑡, [𝜇1𝐼1 𝑡  + 𝜇1𝐼2 𝑡  - 𝜆2T(t)] Δ𝑡 and [𝜇2𝐼1 𝑡  + 𝜇2𝐼2 𝑡 ]Δ𝑡 

respectively. 

Dividing through (2) by Δ𝑡, letting ΔZi, i = 1,2,. . ., 6 go to zero and taking limit as Δt→0 

yields the deterministic framework for the desired stochastic differential equations for the symptomatic 

infectiveswhich is our focus.   
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𝑑𝐼1(𝑡)

𝑑𝑡
 = [𝜃1𝑁 𝑡 + 𝜆1𝐼1 t +

𝛽1

𝑁
𝐼1 𝑡 𝑆1 𝑡 +

𝛽1

𝑁
𝐼1 𝑡 𝑆2 𝑡 −  𝜇1𝐼1 t + 𝜇2𝐼1 t + 𝜆2𝐼2 t  ](3) 

To derive the stochastic model corresponding to the deterministic form, we rely on the strong law of large 

numbers to estimate an expected population E(N(t)) = N from the stochasticprocess N(t).However, our main 

concern now is on the pattern of changes in the infectious classes. So, an SDE corresponding to I1(t) will suffice 

for this study.Next, we find the diffusion approximation to the Markov jump process (3) by normalizing the 
processes [3]. That is,expressing each of the state variables as a proportion of the expected total population 

and replacing each 
∆𝑍𝑖

𝑁
 by a multiple of the Brownian motion increment ΔWi having standard deviation equal to 

that of the corresponding Poisson increment. In particular, 
𝑑

𝑑𝑡

𝐼1 𝑡 

𝑁
 = [𝜃1 + 𝜆1

𝐼1 𝑡 

𝑁
+

𝛽1

𝑁

𝐼1 𝑡 

𝑁

𝑆1 𝑡 

𝑁
+

𝛽1

𝑁

𝐼1 𝑡 

𝑁

𝑆2 𝑡 

𝑁
−  𝜇1

𝐼1 𝑡 

𝑁
+ 𝜇2

𝐼1 𝑡 

𝑁
+ 𝜆2𝐼1 t  ] 

               + 𝜎1
𝑑𝑊1

𝑑𝑡
 + 𝜎2

𝑑𝑊2

𝑑𝑥
- 𝜎3

𝑑𝑊3

𝑑𝑡
      (4)Since the Brownian motion 

is nowhere differentiable, we clear the equation (4)of dtto have the real-valued stochastic differential equation 

corresponding to the symptomatic infectious class. 

𝑑(
𝐼1 𝑡 

𝑁
) = [𝜃1 + 𝜆1

𝐼1 𝑡 

𝑁
+

𝛽1

𝑁

𝐼1 𝑡 

𝑁

𝑆1 𝑡 

𝑁
+

𝛽1

𝑁

𝐼1 𝑡 

𝑁

𝑆2 𝑡 

𝑁
−  𝜇1

𝐼1 𝑡 

𝑁
+ 𝜇2

𝐼1 𝑡 

𝑁
+ 𝜆2𝐼1 t  ]dt + 𝜎1𝑑𝑊1  

+ 𝜎2𝑑𝑊2- 𝜎3𝑑𝑊3        (5)Representing the 

processes
𝑆1(𝑡)

𝑁
, 
𝑆2(𝑡)

𝑁
,
𝐼2(𝑡)

𝑁
, 
𝑇(𝑡)

𝑁
, 
𝐷(𝑡)

𝑁
 by the X1, X2, X4, X5, X6and 

𝐼1(𝑡)

𝑁
 by X we have the stochastic differential 

equations associated with eachcompartment. In particular, 

𝑑𝑋 = [𝜃1 − 𝜆2X + 𝛽1X𝑋1 + 𝛽1𝑋𝑋2 −  𝜇1X + 𝜇2X ]dt + 𝐺1𝑑𝑊1 +  𝐺2𝑑𝑊2+ 𝐺3𝑑𝑊3,X 0 =  x 
 

III. Results And Analysis 
The initial size of each disease state is important to epidemic size at time t. So expressingdX in terms of the 

initial sizes of the compartment associated with it by evaluating theXi’s at t = 0 so  that the SDE becomes a 

linear SDE whose explicit solutions can be found by Ito formular. Thus, 

𝑑𝑋 = [𝜃1 − 𝜆2𝑋 + 𝛽1X𝑥1 + 𝛽1X𝑥2 −  𝜇1X + 𝜇2X ]dt + 𝐺1𝑑𝑊1  

+ 𝐺2𝑑𝑊2- 𝐺3𝑑𝑊3 ,  𝑋 0 = x where the diffusion coefficients are  

 G1 =  𝜆1 − 𝜆2𝑥1  +   𝛾𝑥2, G2 =  𝜆1 − (𝜆2 + 𝛾)𝑥2,  G3 =   𝛽1𝑥3𝑥1 + 𝛽1𝑥3𝑥2.  

Thus,        

𝑑𝑋 = [(𝜃1 + (−𝜆2 + 𝛽1𝑥1 + 𝛽1𝑥2 −  𝜇1 + 𝜇2 )X]dt + 𝐺1𝑑𝑊1 

+ 𝐺2𝑑𝑊2+ 𝐺3𝑑𝑊3 ,  𝑋 0 =  x 
          =  [𝑏1 + 𝑏2𝑋]dt + 𝑯. 𝒅𝑾(𝒕), X 0 =  x 

Where b1 =𝜃1,  b2 = (−𝜆2 + 𝛽1𝑥1 + 𝛽1𝑥2) − (𝜇1 + 𝜇2), H = (G1, G2, G3) 

and𝒅𝑾(𝒕) = (dW1,dW2, dW3)with the fundamental solution F0,t =exp( 𝑏2𝑑
𝑡

0
s = exp(b2t). 

Using Ito’s formularwith the transformation Y = U(t, X(t))= exp(-b2t)dY = 
𝜕𝑢

𝜕𝑡
𝑑𝑡 +  

𝜕𝑢

𝜕𝑥
𝑑𝑋 +

1

2

𝜕2𝑢

𝜕𝑥2 |𝐇|2𝑑𝑡 where 

the vector  = (G1, G2, G3) =𝐇   = 
𝜕𝑢

𝜕𝑡
𝑑𝑡 +  

𝜕𝑢

𝜕𝑥
( (𝑏1  +

 𝑏2X)dt +  𝐺2𝑑𝑊2(𝑡) −  𝐺3𝑑𝑊3(𝑡) −  𝐺4𝑑𝑊4(𝑡)) +
1

2

𝜕2𝑢

𝜕𝑥2 |𝐇|2𝑑𝑡              = [
𝜕𝑢

𝜕𝑡
+ 

𝜕𝑢

𝜕𝑥
 (𝑏1 + 𝑏2X)  +

1

2

𝜕2𝑢

𝜕𝑥2 |𝐇|2]𝑑𝑡 +
𝜕𝑢

𝜕𝑥
(𝐺1𝑑𝑊1 𝑡 + 𝐺2𝑑𝑊2 𝑡 + 𝐺3𝑑𝑊3 𝑡 )  

 Since U(t, X(t)) = 𝑒−𝑏2𝑡𝑋, we have  
𝜕𝑢

𝜕𝑥
 = 𝑒−𝑏2𝑡  and  

𝜕2𝑢

𝜕𝑥2  = 0      

d(𝑒−𝑏2𝑡𝑋) = [
𝜕

𝜕𝑡
𝑒−𝑏2𝑡𝑋  + 𝑒−𝑏2𝑡𝑏1 + 𝑒−𝑏2𝑡𝑏2𝑋]𝑑𝑡 

+ 𝑒−𝑏2𝑡(𝐺1𝑑𝑊1 𝑡 + 𝐺2𝑑𝑊2 𝑡 + 𝐺3𝑑𝑊3(𝑡))     

But  
𝜕

𝜕𝑡
𝑒−𝑏2𝑡 =  −𝑏2𝑒

−𝑏2𝑡 .= −𝑏2𝐹𝑡0 ,𝑡
−1  , so 

  d(𝑒−𝑏2𝑡𝑋) =    𝑒−𝑏2𝑡𝑏1𝑑𝑡 +  𝑒−𝑏2𝑡(𝐺2𝑑𝑊2(𝑡) −  𝐺3𝑑𝑊3(𝑡) −  𝐺4𝑑𝑊4(𝑡)) 

𝑒−𝑏2𝑡𝑋  = Ϝ𝑡0 ,𝑡0
−1 𝑋(0) +  𝑒−𝑏2𝑠𝑏1𝑑𝑠

𝑡

𝑡0
+  𝑒−𝑏2𝑠𝐺2𝑑𝑊2 𝑠 𝑑𝑠 −  𝑒−𝑏2𝑠𝐺3𝑑𝑊3 𝑠 

𝑡

𝑡0

𝑡

𝑡0
                       −

  𝑒−𝑏2𝑠𝐺4𝑑𝑊4
𝑡

𝑡0
 

For  Ϝ𝑡0 ,𝑡0
−1 = 𝑒

− 𝑏2𝑑𝑠
𝑡0
𝑡0 =  𝑒0 = 1 

𝑒−𝑏2𝑡𝑋 = 𝑋(0)+  𝑒−𝑏2𝑠𝑏1𝑑𝑠
𝑡

𝑡0
+   𝑒−𝑏2𝑠𝐺1𝑑𝑊1 𝑠 +  𝑒−𝑏2𝑠𝐺2𝑑𝑊2 𝑠 

𝑡

𝑡0

𝑡

𝑡0
-  𝑒−𝑏2𝑡𝐺3𝑑𝑊3(𝑠)

𝑡

𝑡0
 

X = 𝑒𝑏2𝑡  {𝑥 −
𝑏1

𝑏2
(𝑒𝑥𝑝 −𝑏2𝑡 − 1) +  𝑒−𝑏2𝑠𝐺1𝑑𝑊1(𝑠)

𝑡

𝑡0
 +  𝑒−𝑏2𝑠𝐺2𝑑𝑊2(𝑠)

𝑡

𝑡0
-  𝑒−𝑏2𝑠𝐺3𝑑𝑊3(𝑠)

𝑡

𝑡0
} Therefore,
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   I1(t)  = N𝑒𝑏2𝑡  {𝑥 −
𝑏1

𝑏2
(𝑒𝑥𝑝 −𝑏2𝑡 − 1) +  𝑒−𝑏2𝑠𝐺1𝑑𝑊1(𝑠)

𝑡

𝑡0
 +  𝑒−𝑏2𝑠𝐺2𝑑𝑊2(𝑠)

𝑡

𝑡0
     - 

 𝑒−𝑏2𝑠𝐺3𝑑𝑊3(𝑠)
𝑡

𝑡0
}    since X = 

𝐼1(𝑡)

𝑁
 and x = X(0) = x =

𝐼1(0)

𝑁
Using Gaussian random number generator for the 

increments ∆𝑊𝑖 = 𝑊(𝑖+1)ℎ − 𝑊𝑖ℎ , 𝑖 = 0, 1, 2 . . . , 𝑛 − 1 of a standard Wiener process we simulate the sample 

path of I1(t) against time (in weeks) for n = 104, corresponding to 52 weeksas follows.  

 

Fig. 1: Sample path of I1(t){b1 = 𝜃1= 0, b2 = -0.42768, x=x3 = 1.7371x10
-5

, 𝜆1= 7.0875x10
-4

, 
𝜆2 = 2.1423x10

-4
, 𝛾 = 0.0075, 𝛽1= 1.7372x10

-5
, 𝛽2= 8.68602x10-

6
, x1 = 0.075, x2 = 0.0011731 [4]. We assume the 

mother-to-child transmission rate 𝜃1= 0. 
 

Fig. 1 shows that I1(t) increases with time as susceptible individuals (informed or uninformed) get 

infected at rate 𝛽1 and 𝛽2 respectively It also increases as new symptomatic infected people migrate into the 

population at rate  𝜆1. Its sources of decrease are: treatment at the rate 𝜇1, influenza related death at the rate 

𝜇2,and death from other causes at the rate 𝜆2. Due to the competing effects ofits interaction with the other four 

compartments, the graph in Fig. 1 shows an oscillation around an approximately horizontal line from the 

beginning of the year to the end. 

 

IV. Conclusion 
This trend implies that influenza is endemic in Nigeria throughout the year with periodic rise and fall 

resulting from both environmental stochasticity and human controllable factors such as prevention through 

adequate information and effective treatment. Therefore, adequate control measures should be in place all year 

round. 

 

References 
[1]. M. S. Bartlett-Some evolutionary stochastic processes. Journal of Royal StatisticalSociety vol. B no. 11: 211 – 229. 1928. 

[2]. F.Carrat, E.Vergu,N. Ferguson M.,Lemaitre, S.Cauchemez, S. Leach andA. Valleron.Timeline of infection and disease in 

human influenza: a review of volunteerchallenge studies. American Journal of Epidemiology 167.7: 775-785. 2008. 
[3]. P. E. Greenwood. and L. F. Gordillo -Stochastic epidemic modeling. Mathematical and Statistical Estimation Approaches in  

Epidemology, Springer, Dordrecht, 2020 31 – 52, 2009. Retrieved Aug. 15, 2021 from https://doi.or/10.1007/978-90-481-2313-1_2.  

[4]. Knoeman.com -Nigeria Birth and Death Rates, 1950 – 2021. RetrievedFebruary 12, 2022 from https//knoema.com. 
 

0

1000000

2000000

3000000

4000000

5000000

6000000

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

1
0

3



Stochastic Modelling Of Influenza Epidemic 

DOI: 10.9790/5728-1902010610                                 www.iosrjournals.org                                             10 | Page 

[5]. T. G. Kurtz - Strong approximation  theorems for density dependent Markov  chains. Stochastic Processes and their  

Applicationsvol. 6: 223 – 240, 1978. 

[6]. A.Lagere, S. Rajatonirina, J. Testa, and  S. Mamadou-The epidemiology of Seasonal influenza pandemic in Africa: a  

systematic review.African Health Sciences vol. 20 no.4, 2020. Retrieved April 4, 2021  
from https://www.ajool.info/index.php/ahs/article/view/202264 

[7]. E. Toner – Do Public Health  and Infection Control Measures Work to Prevent  the Spread of Flu? Clinicians Biosecutiy. Retrieved 

Jone 29, 2020 from  https://www.centreforhealthsecurity.org 
[8]. World Health Organisation - Nigeria: Influenza and Pneumonia.World Health Ranking Retrieved March 10, 2020 from 

worldlifeexpectancy.com.  

 

J. G.Olawuwo. et. al. "Stochastic Modelling Of Influenza Epidemic." IOSR Journal of 

Mathematics (IOSR-JM), 19(2), (2023): pp. 06-10. 

https://www.ajool.info/index.php/ahs/article/vie

